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Abstract Plants infested with herbivorous arthropods emit
complex blends of volatile compounds, which are used by
several natural enemies as foraging cues. Despite detailed
knowledge on the composition and amount of the emitted
volatiles in many plant-herbivore systems, it remains
largely unknown which compounds are essential for the
attraction of natural enemies. In this study, we used a
combination of different fractionation methods and olfac-
tometer bioassays in order to examine the attractiveness of
different compositions of volatile blends to females of the
parasitoid Cotesia marginiventris. In a first step, we passed
a volatile blend emitted by Spodoptera littoralis infested
maize seedlings over a silica-containing filter tube and
subsequently desorbed the volatiles that were retained by
the silica filter (silica extract). The volatiles that broke
through the silica filter were collected on and subsequently
desorbed from a SuperQ filter (breakthrough). The silica
extract was highly attractive to the wasps, whereas the
breakthrough volatiles were not attractive. The silica extract
was even more attractive than the extract that contained all
herbivore-induced maize volatiles. Subsequently, we frac-
tioned the silica extract by preparative gas-chromatography
(GC) and by separating more polar from less polar
compounds. In general, C. marginiventris preferred polar
over non-polar compounds, but several fractions were
attractive to the wasp, including one that contained

compounds emitted in quantities below the detection
threshold of the GC analysis. These results imply that the
attractiveness of the volatile blend emitted by Spodoptera-
infested maize seedlings to C. marginiventris females is
determined by a specific combination of attractive and
repellent/masking compounds, including some that are
emitted in very small amounts. Manipulating the emission
of such minor compounds has the potential to greatly
improve the attraction of certain parasitoids and enhance
biological control of specific insect pests.
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Introduction

Volatiles emitted by plants upon infestation with herbivo-
rous arthropods are important foraging cues for natural
enemies of these herbivores. Over the last two decades,
numerous studies have provided evidence that these
herbivore-induced plant volatiles (HIPV) indeed function
as an indirect defense by which the plants purposefully
recruit parasitoids and predators, although fully conclusive
evidence for this function is still missing (for recent
reviews: Turlings and Wäckers 2004; D’Alessandro and
Turlings 2006; Heil 2008; Arimura et al. 2009; Dicke 2009;
Dicke et al. 2009). Enormous progress has been made in
terms of understanding the mechanisms of emission and
biosynthesis of plant volatiles, including the emission of
HIPV (Dudareva et al. 2006; Pichersky et al. 2006). For
instance, some compounds are constitutively emitted by
healthy, uninfested plants, whereas others are synthesized
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de-novo only after herbivore-damage (Paré and Tumlinson
1999). Among the HIPV, some compounds are emitted
immediately upon herbivore damage, while the synthesis of
others is truly induced, and it takes a certain time after
initial infestation before they are emitted (Turlings et al.
1998). Several genes involved in the biosynthesis of HIPV
now have been identified, and this opens the possibility to
apply molecular tools to study their role both as attractants
for natural enemies and as signaling compounds within and
between plant species (Baldwin et al. 2001; Kappers et al.
2005; Paschold et al. 2006; Schnee et al. 2006; Ton et al.
2007; Frost et al. 2008).

Maize has been a model plant since the beginning of the
studies on these chemically-mediated tritrophic interactions
(e.g., Turlings et al. 1990), and the volatile blends emitted
from the aboveground shoot, as well as from the below-
ground roots, are well characterized (Degen et al. 2004;
Köllner et al. 2004; Rasmann and Turlings 2008). Despite
detailed knowledge on the chemical composition and the
relevance of the entire blend as a host location cue to a range
of parasitoid species (Tamò et al. 2006), we still lack an
understanding of the relative importance of individual
compounds or group of compound to specific parasitoids.
Specifically, the importance of minor compounds that are
emitted in quantities below the threshold level or compounds
which cannot easily be detected by common analytical
methods is unknown.

In this study, we used a combination of different
fractionation methods (filtering tubes, preparative GC
and different solvents) and olfactometer bioassays in
order to study the attractiveness of different fractions of
a blend of HIPV emitted by maize seedlings infested by
Spodoptera littoralis (Lepidoptera: Noctuidae) to females
of the parasitoid Cotesia marginiventris (Hymenoptera:
Braconidae). Cotesia marginiventris is an important larval
parasitoid of Spodoptera spp. larvae, which are major pest
insects that cause substantial economic damage to maize
throughout the Americas. The attraction of C. marginiventris
females to Spodoptera-induced maize volatiles has been
investigated in a series of previous studies, which showed
clearly that this wasp strongly prefers volatiles emitted by
caterpillar-infested maize seedlings over non-infested healthy
seedlings (Turlings et al. 1991a, b; 2004). Recent studies,
however, indicate that not all compounds emitted by infested
seedlings are attractive, and some might even be repellent or
mask attractiveness (D’Alessandro and Turlings 2005;
D’Alessandro et al. 2006). This was evident from a series
of experiments in which we tested attraction of C. margin-
iventris females to volatiles emitted by Spodoptera-infested
maize seedlings after passing the volatile blend through a
selection of adsorbent-containing filter tubes (D’Alessandro
and Turlings 2005). Surprisingly, the volatile blend that
broke through a filter filled with silica had lost all

attractiveness to naïve females, although it still contained at
least 70% of the volatiles of the original blend. By contrast,
the volatile compounds that were adsorbed by the filter
(silica extract) and subsequently extracted with a solvent and
applied to filter paper were extremely attractive to C.
marginiventris females.

Hence, the objective of the current study was to
confirm and examine the high attractiveness of the
volatiles in the silica extract, as a first step towards
characterizing and identifying key volatile compounds or
combinations of compounds that are used as foraging
cues by C. marginiventris. Modifying the release of such
key compounds in maize seedlings or applying synthetic
versions of these compounds in a maize field could be part
of a sustainable and environmentally sound strategy to
control Spodpotera larvae feeding on maize.

Methods and Materials

Insects and Plants

The caterpillar Spodoptera littoralis (Boisduval) (Lepidoptera:
Noctuidae) and the solitary endoparasitoid, Cotesia margin-
iventris (Cresson) (Hymenoptera: Braconidae) were reared as
previously described (Turlings et al. 2004). Adult parasitoids
were kept in plastic cages in incubators (25±1°C, 16:8 h L/D)
and transferred to the laboratory 30 min before the bioassays.
Two-4-d-old naive females were used in the bioassays. Plants
(Zea mays, var. Delprim) were grown in plastic pots (10 cm
high, 4 cm diam) with commercial potting soil (Ricoter
Aussaaterde, Aarberg, Switzerland) in a climate chamber (25±
2°C, 60% r.h., 16:8 h L/D, and 50,000 lm/m2). Plants used for
the volatile collection were 10-12-d-old and had 3 fully
developed leaves. The evening before the volatile collection
they were infested with 20 s instar S. littoralis, which were
released in the whorl of the youngest leaf. After infestation,
plants were kept under laboratory conditions (25±2°C, 40±
10% r.h., 16:8 h L/D, and 8000 lm/m2), and volatiles were
collected on the following day, between 10 A.M. and 4 P.M.

Volatile Collection

Volatiles were collected by passing the herbivore induced
volatile blend over a filter tube filled with 25 mg silica
(63–200 mesh, 60 Å, Brunschwig, Basel, Switzerland)
for 2.5 h and by adsorbing the breakthrough volatiles on
a filter tube that contained 25 mg of the highly adsorbent
SuperQ (25 mg, 80–100 mesh, Alltech Associates, Inc.,
Deerfield, IL, USA). Silica is a rather weak adsorbent
and used mainly to adsorb polar compounds. Many
volatiles break through the silica filters and can be
recollected on SuperQ, which is a strong adsorbent and
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commonly used to collect a broad range of different
volatile compounds (D’Alessandro and Turlings 2005).
Volatiles retained by the silica filters were desorbed with
300 µl dichloromethane (Suprasolve, GC-grade, Merck,
Darmstadt, Germany) (silica extract). The volatiles
adsorbed on the SuperQ filters were extracted with
150 µl dichloromethane (breakthrough). Further details
on the volatile collection and volatile filtration are
described by D’Alessandro and Turlings (2005). Several
samples were pooled in order to obtain a standardized
stock solution for each treatment (silica extract and
breakthrough), which was stored at −80°C in small vials
(Supelco, Amber Vial, 7 ml with solid cap w/PTFE Liner),
and used throughout the experiments for all fractionation
steps and bioassays.

Fractionation and Analyses of Volatile Blends

The silica extract was separated into several fractions by
preparative gas-chromatography (preparative GC). For
this purpose, a Hewlett Packard HP 6890 GC with an
automated column injection system (HP G1513 A) was
either equipped with a non-polar (HP-1 MS, 30 m,
0.25 mm ID, 0.25 μm film thickness; Alltech Asso-
ciates, Inc, USA) or a polar column (HP-Innowax,
30 m, 0.25 mm ID, 0.25 μm film thickness; Alltech
Associates, Inc, USA). Helium at constant pressure
(non-polar column: 19.39 psi; polar column: 45.14 psi)
was used as carrier gas, and 5 µl of the silica extract
were injected in the “on column mode”. After injection,
the non-polar column temperature was maintained at 40°C
for 3.5 min and then increased to 100°C at 8°C/min and
subsequently to 200°C at 5°C/min followed by a post-
run of 5 min at 250°C. The polar column was also
maintained at 40°C for 3.5 min but then increased to
250°C at 8°C/min followed by a post-run of 5 min at
250°C. Fractions were recollected at specific retention
times as indicated in Fig. 3 on Pasteur pipettes that
contained 20 mg of SuperQ. The precise retention time for
each fraction was calculated by installing the outlet of the
GC column to a flame ionization detector (FID) prior to
the fractionation steps verified by re-analyzing an aliquot
of the recollected volatiles by GC-FID. For each fraction,
a separate recollection pipette was attached at the outlet of
the GC column and cooled to 4°C with ice in order to
recollect all volatiles after GC-separation. Ten aliquots of
5 µl silica extract were recollected on one pipette in order
to obtain sufficient material for one bioassay. All volatiles
were desorbed from the SuperQ filters with 200 µl
dichloromethane and applied to filter paper disks for the
bioassay as described below. The recollection efficiency of
the preparative GC procedure was calculated by injecting
a mixture of synthetic volatile compounds with known

concentration and was ≥80% except for (Z)-3-hexenal that
was recollected with approximately 66% efficiency (data
not shown).

To separate non-polar from polar compounds in the
silica extract we first desorbed the volatiles collected on
the silica filters with 300 µl methanol (Suprasolve, GC-
grade, Merck, Darmstadt, Germany). The silica extract in
methanol similarly was attractive to the wasps just as the
silica extract obtained with dichloromethane (data not
shown), and it contained the same major compounds as
found in the dichloromethane (Fig. 5). Subsequently, 1 ml
of hexane was added to 1 ml of the silica extract in
methanol, thoroughly shaken, and placed in the −80°C
freezer in order to separate the non-polar hexane phase
from the polar methanol phase. Each phase was trans-
ferred to a separate vial by a 1 ml GC-syringe and stored
in the freezer until used for the bioassays as described
below.

To identify the volatile compounds, at least one 2-μl
aliquot of the silica extract and the breakthrough extract
were injected in a gas chromatograph (Agilent 6890
Series GC system G1530 A) coupled to a mass
spectrometer that operated in the electron impact mode
(Agilent 5973 Network Mass Selective Detector; transfer
line 230°C, source 230°C, ionization potential 70 eV,
scan range 33–280 amu) in the pulsed splitless mode
onto either the non-polar or the polar column with
helium at constant flow (0.9 ml/min) as carrier gas.
Oven temperature and ramp were similar to that
described above for the preparative GC analyses. The
identities of volatiles were confirmed by comparing
their mass spectra with those of the NIST 02 library
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Fig. 1 Olfactometer responses of Cotesia marginiventris to different
volatile extracts of a blend with volatile compounds emitted by
Spodoptera-infested maize seedlings. Chemical composition of the
extracts are given in Fig. 2. The pie-charts indicate the number of
wasps that entered an olfactometer arm (grey) and the number of
wasps that did not make any choice and remained in the center of the
olfactometer (white). Different letters above the bars indicate
significant differences among the various extracts (GLM: P<0.05)
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and by comparing the retention times with those of
previous analyses (D’Alessandro and Turlings 2005).

Olfactometer Bioassays

All extracts and fractions were tested for attractiveness to
parasitoids in a four-arm olfactometer as described by
D’Alessandro and Turlings (2005). Cleaned and humidified
air entered the odor source vessels at 1.2 l/min (adjusted by
a manifold with four flowmeters; Analytical Research
System, Gainesville, FL, USA) via Teflon tubing and
carried the volatiles through to the olfactometer compart-
ment. Half of the air (0.6 l/min/olfactometer arm) was
pulled out via a volatile collection trap that was attached to

the system above the odor source vessels. An aliquot of
100 µl of each extract or 50 µl of the fractions obtained by
preparative GC was placed on a filter paper (1/2 disk,
55 mm diam, Schleicher & Schuell GmbH, Dassel,
Germany) that was inserted in the glass tube connecting
the odor source vessels to the olfactometer arms. After
letting the solvent evaporate for 2 h, wasps were released in
groups of 6 into the central part of the olfactometer. Wasps
that had entered an arm of the olfactometer after 30 min
were counted and removed. Wasps that did not enter an arm
after this time were removed from the central part of the
olfactometer and considered as “no choice”. Bioassays
were replicated at 4 to 8 d, and for each replicate a total of
four groups of 6 wasps were tested as described before
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Fig. 2 GC-FID chromatograms of different extracts of a blend with
volatile compounds emitted Spodoptera-infested maize seedlings that
were obtained by passing the entire blend over a silica containing filter
tube. Silica extract = volatiles retained in the silica filter. Breakthrough =
volatiles that broke through the filter. The entire blend of Spodptera-
infested maize seedlings contains the combination of both chromato-
grams. The compounds are: 1 = (Z)-3-hexenyl acetate, 2 = linalool, 3 =
benzyl acetate, 4 = phenethyl acetate, 5 = indole, 6 = unknown
compound, 7 = methyl anthranilate, 8 = geranyl acetate, 9 = (E)-β-

caryophyllene, 10 = (E)-α-bergamotene, 11 = (E)-β-farnesene, 12 = β-
sesquiphellandrene, 13 = (E)-nerolidol, 14 = (3E,7E)-4,8,12-trimethyl-
1,3,7,11-tridecatetraene (TMTT), I = (Z)-3-hexenal, II = (E)-2-hexenal ,
III = (Z)-3-hexen-1-ol, IV = β-myrcene, V = (3E)-4,8-dimethyl-1,3,7-
nonatriene (DMNT), VI = unknown sesquiterpene, VII = unknown
sesquiterpene. Some compounds are not appearing well as a peak on
this scaling, but their location is still indicated with a number.
Compounds were identified by GC-MS analyses as indicated in
Methods and Materials
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(Turlings et al. 2004). All bioassays were carried out
between 10 A.M. and 4 P.M.

Statistical Analyses

The functional relationship between parasitoids’ behavioral
responses and the different volatile extracts and fractions
offered in the four-arm olfactometer was examined with a
generalized linear model as described earlier by D’Alessandro
and Turlings (2005). The model was fitted by maximum
quasi-likelihood estimation in the software package R (R: A
language and Environment for Statistical Computing, Version
1.9.1, Vienna, Austria, 2006, ISBN 3-900051-07-0, http://
www.R-project.org), and its adequacy was assessed through
likelihood ratio statistics and examination of residuals. Due to
possible differences in the evaporation rate of individual
compounds from filter papers, we included the time effect as

an explanatory variable in the statistics. However, in none of
the experiments was a time effect found, so only statistical
values of the treatment effects (volatile extract or fraction) are
indicated in the results.

Results

Fractionation over Selective Filter Tubes

In a first four-arm olfactometer experiment, we compared
the attraction of females of the parasitoid C. marginiventris
to the volatile compounds emitted by Spodoptera-infested
maize seedlings that were trapped on a silica containing
filter tube (silica extract) to the ones that broke through
the filter (breakthrough), as well as to a reconstitution of
the whole volatile blend (silica extract and breakthrough)

Fig. 3 GC-MS chromatograms
of the highly attractive silica
extract in dichloromethane indi-
cating different fractions that
were isolated by preparative GC
on two different columns. The
identity of the compounds is
given in Fig. 2
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and to the solvent only. There was a significant difference
in the attractiveness of these various odor sources (GLM:
F3,92 = 14.19, P<0.001) (Fig. 1). As in the previous study
(D’Alessandro and Turlings 2005), naïve C. marginiventris
females were extremely attracted to the silica extract, but
not to the volatile blend that broke through the filter (Figs. 1
and 2). Interestingly, the silica extract was also more than 3
times as attractive as the reconstitution of the whole blend.
The precise composition of each volatile extract is shown in
Fig. 2. The amounts of the individual compounds found in
the different extracts were not quantified in this study, but
the chromatographic analyses of the extracts indicated that
they were similar to the previous study (D’Alessandro and
Turlings 2005).

Fractionation by Preparative GC

In order to determine the most attractive compounds in the
attractive silica extract, the extract was further fractionated
into three volatile extracts by preparative gas chromatography
(preparative GC) on a non-polar GC-column (HP-1 MS)
(Fig. 3A: A1, A2, A3) and tested for attraction in the
olfactometer. Significantly more wasps entered the arm with
fraction A3 than with fractions A1 and A2, but the latter
were still more attractive than solvent only (Fig. 4A; GLM:
F3,124 = 14.19, P<0.001 ). Subsequently, the most attractive
fraction of the silica extract was again fractionated into three

extracts (Fig. 3A: A3/1, A3/2, A3/3) and tested for attraction.
Fraction A3/2 was not attractive, while fractions A3/1 and
A3/3 were similarly attractive to the wasps (Fig. 4A; GLM:
F3,116 = 4.07, P<0.01).

A second fractionation of the silica extract was carried
out on a polar column (HP-Innowax) (Fig. 3B). The most
attractive fraction resulting from a first fractionation step
was fraction B3, but all fractions with HIPV were
significantly more attractive than solvent only (Fig. 4B;
GLM: F3,124 = 7.73, P<0.001 ). Further fractionation of the
most attractive fraction B3 resulted in two fraction, B3/1
and B3/2, that were more attractive than solvent only
(Fig. 4B; GLM: F3,60 = 14.60, P<0.001).

Fractionation with Different Solvents

In a subsequent experiment, we separated less polar from
more polar compounds by the use of different solvents.
Volatiles adsorbed on the silica filter were first desorbed
with methanol. This methanol extract was similarly as
attractive as the dichloromethane extract used in the
previous experiments (data not shown), and both of these
extracts contained the same major HIPV (Figs. 2 and 5). By
adding a similar amount of hexane to the silica extract in
methanol, we obtained a hexane phase that contained non-
polar compounds and a methanol phase with polar com-
pounds (Fig. 5). In olfactometer bioassays, we found that
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Fig. 4 Olfactometer responses of Cotesia marginiventris to different fractions of the silica extract that were isolated by preparative GC as
indicated in Fig. 3. Explanations to the pie-charts and to the statistics are given in Fig. 1
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the polar methanol phase was significantly more attractive
than the less polar hexane phase, but the latter was more
attractive than the solvents only (Fig. 6A, GLM: F3,92 =
65.60, P<0.001). Comparing the methanol phase to the
whole silica extract in methanol showed that the latter was
significantly more attractive than the extract without the
less polar compounds, indicating that some attractive
compounds are soluble in hexane and were either missing
or strongly reduced in the methanol phase (Fig. 6B, GLM:
F1,46 = 6.68, P<0.05).

Discussion

In this study, we used a combination of fractionation
methods and olfactometer bioassays to characterize the
most attractive compounds of the volatile blend emitted by

Spodoptera-infested maize seedlings that are used by the
solitary endoparasitoid C. marginiventris as host-location
cue. Similarly, as in a previous study (D’Alessandro and
Turlings 2005), the extract that was obtained by passing the
entire HIPV-blend over a silica filter tube and contained
rather polar compounds and was highly attractive to naive
C. marginiventris females, whereas the breakthrough
extract was not attractive at all to this wasp even though
it also contained most measurable HIPV (Figs. 1 and 2).
Further separation of less polar from more polar com-
pounds in the silica extract proved that the wasp preferred
polar over non-polar compounds (Figs. 5 and 6). However,
the detectable polar compounds that were present in the
attractive silica extract but not in the non-attractive
breakthrough extract (compounds 2, 4, 6, 7, 8, and 13)
could not explain the high attractiveness of the silica
extract. First, a combination of synthetic versions of

Fig. 5 GC-MS chromatograms
of the highly attractive silica
extract in methanol and different
fractions that were isolated by
using solvents with different
polarities. The identity of the
compounds is given in Fig. 2
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compounds 2, 4, 7, 8, and 13 was not attractive to the
wasps (data not shown). Second, further fractionation of the
silica extract by preparative GC did not result in a clear
allocation of these compounds to attractive and non-
attractive fractions. For instance, although compound 13
was present in the most attractive fraction in some
bioassays (fractions A3, B3, and in B3/1), in others it was
present in the least attractive fraction (fraction A3/2) (Figs. 3
and 4). Similarly, compound 7 was present in the highly
attractive fraction (B3/1), but fraction A2 was significantly
less attractive than fraction A3 although it also contained
this compound as well as most of other compounds that
were present in the highly attractive silica extract. Finally,
the unknown compound 6 was present in fractions with
medium attractiveness. Overall, our experiments suggest
that the compounds detected in the chemical analyses, are
not likely to be the most attractive ones, nor the only ones
that are needed by C. marginiventris as host location cues.

Another interesting observation was that the silica
extract, which contained only a fraction of the whole

blend, was by far more attractive than the entire blend of
herbivore-induced maize volatiles (Figs. 1 and 2). This
suggests that certain compounds within a blend of HIPV
have either repellent effects on the attraction of C.
marginiventris or are masking the attractiveness of other
attractive compounds. Similar findings have been found in
earlier studies and with other insect species. For instance,
naïve females of the parasitoid Microplites rufiventris
clearly preferred volatile blends that did not contain
indole, a major HIPV of maize, over blends that contained
indole at normal concentration, and this difference was
due to a masking effect of the volatile compound indole
itself (D’Alessandro et al. 2006). Another common plant
compound that recently has been claimed to interfere with
the attraction of certain parasitic wasps is isoprene
(Loivamaki et al. 2008). By contrast, other studies have
shown synergistic effects of certain volatile compounds.
For instance, neither nonanal nor geranylacetone alone
was attractive to the parasitoid females of Apanteles
carpatus, a parsitoid of the cloth moth Tineae pennionella,
but a one-to-one blend of both compounds was as
attractive as an extract of all volatile compounds from
moth-infested beaver pelt (Takács et al. 1997). Similarly,
the egg parasitoid Chrysonotomyia ruforum of the herbivo-
rous sawfly Diprion pini did not respond to the sesquiterpene
(E)-β-farnesene, an oviposition-induced pine twig volatile, if
offered to the females as an individual compound at different
doses (Mumm and Hilker 2005). However, the parasitoid was
significantly attracted to this compound when tested together
with the odor of pine twigs without eggs. These studies
illustrate, that optimal attraction requires the presence of a
specific combination of compounds. Unfortunately, so far no
general pattern could have been recognized that would help
to determine which compounds reduce or enhance the
attractiveness of odor sources to a foraging insect (reviewed
by Schröder and Hilker 2008).

One reason for the lack of a clear understanding of
synergistic and antagonistic effects of individual compounds
within complex blends might be the fact that insects respond to
volatile compounds in a dose-dependent manner (De Boer and
Dicke 2004; Ngumbi et al. 2005; Yan and Wang 2006). Such
effects also have been reported in earlier studies with the
parasitoid C. marginiventris (Fritzsche Hoballah et al. 2002;
Turlings et al. 2004). The surprising finding in this study was
the strong attraction of C. marginiventris to some fractions
that contained volatile compounds in extremely low quanti-
ties (e.g., A3/3). In fact, the concentrations of these
compounds were below the detection limit of the GC
analyses, i.e., in the pico-gram range or lower, which has
made it impossible to identify the compounds thus far.
Previous electrophysiological analyses with C. marginiventris
showed that some HIPV elicited strong electroantennographic
responses in the antennae of the insects at concentrations
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below the detection level of the GC analyses (Gouinguené et
al. 2005). These observations strongly suggest that minor, yet
unknown compounds, play a crucial role in the attraction of
C. marginiventris to Spodoptera-induced maize volatiles. In
fact, the olfactory sensitivity of insects is astonishing. For
instance, by using the moth Spodoptera littoralis, it was
nicely demonstrated that around five molecules of the sex
pheromone and around ten molecules of a specific plant odor
hitting the antenna during one second were sufficient to
trigger a heartbeat frequency change (Angioy et al. 2003). It
is likely that compounds emitted in such low quantities are
likely to escape chemical analysis.

Another complicating factor in identifying minor
compounds that are highly attractive to parasitoids is
the specific chemical structure of some volatiles. The
chemical diversity of volatiles compounds emitted by
plants is enormous, ranging from alkanes, alkenes,
alcohols, ketones, aldehydes, ethers, and esters to
carboxylic acids and others (Niinemets et al. 2004). It
is likely that a single volatile sampling and analyses
method cannot provide the entire picture of the qualitative
and quantitative composition of an herbivore-induced
volatile blend. In this study, it is possible that key
compounds did not chromatograph well and either did
not elute or were eluted throughout the analyses by
“bleeding” off the column. This latter possibility could
also explain the attractiveness of multiple fractions that
might all have contained elusive compound(s). Thus,
alternative approaches to conventional volatile collection
methods and GC analysis are needed to unravel the
identity of highly attractive minor compounds and for a
better understanding of the attractiveness HIPV-blends in
general. Recent studies that have applied novel methods,
such as PTR-MS, have revealed the presence of methanol
in the volatile blend of a number of herbivore-infested
plants, a compound, that has not been detected with
conventional trapping and GC analysis methodologies
(Penuelas et al. 2005; von Dahl et al. 2006). Other
promising approaches might benefit from novel statistical
tools (van Dam and Poppy 2008; Pareja et al. 2009) or
also might consider that some plant volatiles are sup-
pressed rather than induced upon insect infestation
(Gaquerel et al. 2009). In conclusion, when new methods
are used to analyze HIPV blends in a more comprehensive
manner, the eventual identification of key attractants or
repellents for parasitoids and predators may provide
potential to improve biological control of insect pests.
The transformation of maize plants with a gene responsible for
the biosynthesis of a (E)-ß-caryophyllene, a key volatile
attractant for entomopathogenic nematodes of the Western
corn rootworm, is a recent example of how the HIPV-blend
can be modified to successfully control this ferocious root
pest of maize plants (Degenhardt et al. 2009).

Acknowledgements We thank the members of the Laboratory of
Fundamental and Applied Research in Chemical Ecology
(FARCE) at the University of Neuchâtel for continuous support
and stimulating discussions on behavioral and chemical aspects.
We are grateful to Yves Borcard and students of the University of
Neuchâtel for parasitoid rearing and Syngenta (Stein, Switzerland)
for the weekly shipments of S. littoralis eggs. Statistical advice was
provided by Ingrid Ricard and Anthony Davison (EPF Lausanne,
Switzerland). This project was possible due to the Research Fellow
Partnership Program of the North-South Centre at the ETH-Zurich
(RFPP-fellowship) and funded by the Swiss Agency for Develop-
ment and Cooperation (SDC).

References

ANGIOY, A. M., DESOGUS, A., BARBAROSSA, I. T., ANDERSON P., and
HANSSON B. S. 2003. Extreme sensitivity in an olfactory system.
Chem. Sens. 28:279–284.

ARIMURA, G., MATSUI, K., and TAKABAYASHI J. 2009. Chemical and
molecular ecology of herbivore-induced plant volatiles: Proxi-
mate factors and their ultimate functions. Plant Cell Physiol.
50:911–923.

BALDWIN, I. T., HALITSCHKE, R., KESSLER, A., and SCHITTKO, U.
2001. Merging molecular and ecological approaches in plant-
insect interactions. Curr. Opin. Plant Biol. 4:351–358.

D’ALESSANDRO, M., HELD, M., TRIPONEZ, Y., and TURLINGS, T. C. J.
2006. The role of indole and other shikimic acid derived maize
volatiles in the attraction of two parasitic wasps. J. Chem. Ecol.
32:2733–2748.

D’ALESSANDRO, M. and TURLINGS, T. C. J. 2005. In situ modification
of herbivore-induced plant odors: A novel approach to study the
attractiveness of volatile organic compounds to parasitic wasps.
Chem. Sens. 30:739–753.

D’ALESSANDRO, M. and TURLINGS, T. C. J. 2006. Advances and
challenges in the identification of volatiles that mediate inter-
actions among plants and arthropods. Analyst 131:24–32.

DE BOER, J. G., and DICKE M. 2004. The role of methyl salicylate in
prey searching behavior of the predatory mite Phytoseiulus
persimilis. J. Chem. Ecol. 30:255–271.

DEGEN, T., DILLMANN, C., MARION-POLL, F., and TURLINGS, T. C. J.
2004. High genetic variability of herbivore-induced volatile
emission within a broad range of maize inbred lines. Plant
Physiol. 135:1928–1938.

DEGENHARDT, J., HILTPOLD, I., KÖLLNER, T. G., FREY, M., GIERL, A.,
GERSHENZON, J., HIBBARD, B. E., ELLERSIECK, M. R., and
TURLINGS, T. C. J. 2009. Restoring a maize root signal that
attracts insect-killing nematodes to control a major pest. Proc. Natl.
Acad. Sci. USA 106:13213–13218.

DICKE, M., 2009. Behavioural and community ecology of plants that
cry for help. Plant Cell Environ. 32:654–665.

DICKE, M., VAN LOON, J. J. A., and SOLER, R. 2009. Chemical
complexity of volatiles from plants induced by multiple attack.
Nat. Chem. Biol. 5:317–324.

DUDAREVA, N., NEGRE, F., NAGEGOWDA, D. A., and ORLOVA, I.
2006. Plant volatiles: Recent advances and future perspectives.
Crit. Rev. Plant Sci. 25:417–440.

FRITZSCHE HOBALLAH, M. E., TAMÒ, C., and TURLINGS, T. C. J.
2002. Differential attractiveness of induced odors emitted by
eight maize varieties for the parasitoid Cotesia marginiventris: Is
quality or quantity important? J. Chem. Ecol. 28:951–968.

FROST, C. J., MESCHER, M. C., DERVINIS, C., DAVIS, J. M., CARLSON,
J. E., and DE MORAES, C. M. 2008. Priming defense genes and

J Chem Ecol (2009) 35:999–1008 1007



metabolites in hybrid poplar by the green leaf volatile cis-3-
hexenyl acetate. New Phytol. 180:722–733.

GAQUEREL, E., WEINHOLD, A., and BALDWIN, I. T. 2009. Molecular
interactions between the specialist herbivore Manduca sexta
(Lepidoptera, Sphigidae) and its natural host Nicotiana attenuata.
VIII. An unbiased GCxGC-ToFMS analysis of the plant’s elicited
volatile emissions. Plant Physiol. 149:1408–1423.

GOUINGUENÉ, S., PICKETT, J. A., WADHAMS, L. J., BIRKETT, M. A.,
and TURLINGS T. C. J. 2005. Antennal electrophysiological
responses of three parasitic wasps to caterpillar-induced
volatiles from maize (Zea mays mays), cotton (Gossypium
herbaceum), and cowpea (Vigna unguiculata). J. Chem. Ecol.
31:1023–1038.

HEIL, M. 2008. Indirect defence via tritrophic interactions. New
Phytol. 178:41–61.

KAPPERS, I. F., AHARONI, A., VAN HERPEN, T., LUCKERHOFF, L. L. P.,
DICKE, M., and BOUWMEESTER, H. J. 2005. Genetic engineering
of terpenoid metabolism attracts, bodyguards to Arabidopsis.
Science 309:2070–2072.

KÖLLNER, T. G., SCHNEE, C., GERSHENZON, J., and DEGENHARDT, J.
2004. The sesquiterpene hydrocarbons of maize (Zea mays) form
five groups with distinct developmental and organ-specific
distribution. Phytochemistry 65:1895–1902.

LOIVAMAKI, M., MUMM, R., DICKE, M., and SCHNITZLER, J. P. 2008.
Isoprene interferes with the attraction of bodyguards by
herbaceous plants. Proc. Natl. Acad. Sci. USA 105:17430–
17435.

MUMM, R. and HILKER, M. 2005. The significance of background
odour for an egg parasitoid to detect plants with host eggs. Chem.
Sens. 30:337–343.

NGUMBI, E. N., NGI-SONG, A. J., NJAGI, E. N. M., TORTO, R.,
WADHAMS, L. J., BIRKETT, M. A., PICKETT, J. A., OVERHOLT,
W. A., and TORTO, B. 2005. Responses of the stem borer larval
endoparasitoid Cotesia flavipes (Hymenoptera: Braconidae) to
plant derived synomones: Laboratory and field cage experi-
ments. Biocontrol Sci. Techn. 15:271–279.

NIINEMETS, U., LORETO, F., and REICHSTEIN, M. 2004. Physiological
and physicochemical controls on foliar volatile organic com-
pound emissions. Trends Plant Sci. 9:180–186.

PARÉ, P. W. and TUMLINSON, J. H. 1999. Plant volatiles as a defense
against insect herbivores. Plant Physiol. 121:325–331.

PAREJA, M., MOHIB, A., BIRKETT, M. A., DUFOUR, S., and GLINWOOD,
R. T. 2009. Multivariate statistics coupled to generalized linear
models reveal complex use of chemical cues by a parasitoid. Anim.
Behav. 77:901–909.

PASCHOLD, A., HALITSCHKE. R., and BALDWIN, I. T. 2006. Using
‘mute’ plants to translate volatile signals. Plant J. 45:275–291.

PENUELAS, J., FILELLA, I., STEFANESCU, C., and LLUSIA, J. 2005.
Caterpillars of Euphydryas aurinia (Lepidoptera: Nymphalidae)
feeding on Succisa pratensis leaves induce large foliar emissions
of methanol. New Phytol. 167:851–857.

PICHERSKY, E., NOEL, J. P., and DUDAREVA, N. 2006. Biosynthesis of
plant volatiles: Nature’s diversity and ingenuity. Science
311:808–811.

RASMANN, S. and TURLINGS, T. C. J. 2008. First insights into
specificity of belowground tritrophic interactions. Oikos
117:362–369.

SCHNEE, C., KÖLLNER, T. G., HELD, M., TURLINGS, T. C. J.,
GERSHENZON, J., and DEGENHARDT, J. 2006. The products of a
single maize sesquiterpene synthase form a volatile defense
signal that attracts natural enemies of maize herbivores. Proc.
Natl. Acad. Sci. USA 103:1129–1134.

SCHRÖDER, R. and HILKER, M. 2008. The relevance of background
odor in resource location by insects: A behavioral approach.
Bioscience 58:308–316.

TAKÁCS, S., GRIES, G., and GRIES, R. 1997. Semiochemical-mediated
location of host habitat by Apanteles carpatus (Say) (Hymenoptera:
Braconidae), a parasitoid of clothes moth larvae. J. Chem. Ecol.
23:459–472.

TAMÒ, C., RICARD, I., HELD, M., DAVISON, A. C., and TURLINGS, T. C. J.
2006. A comparison of naive and conditioned responses of three
generalist endoparasitoids of lepidopteran larvae to host-induced
plant odours. Anim. Biol. 56:205–220.

TON, J., D’ALESSANDRO, M., JOURDIE, V., JAKAB, G., KARLEN, D.,
HELD, M., MAUCH-MANI, B., and TURLINGS, T. C. J. 2007.
Priming by airborne signals boosts direct and indirect resistance
in maize. Plant J. 49:16–26.

TURLINGS, T. C. J., DAVISON, A. C., and TAMÒ, C. 2004. A six-arm
olfactometer permitting simultaneous observation of insect
attraction and odour trapping. Physiol. Entomol. 29:45–55.

TURLINGS, T. C. J., LENGWILER, U. B., BERNASCONI, M. L., and
WECHSLER, D. 1998. Timing of induced volatile emissions in
maize seedlings. Planta 207:146–152.

TURLINGS, T. C. J., TUMLINSON, J. H., ELLER, F. J., and LEWIS, W. J.
1991a. Larval-damaged plants—Source of volatile synomones
that guide the parasitoid Cotesia marginiventris to the microhab-
itat of its hosts. Entomol. Exp. Appl. 58:75–82.

TURLINGS, T. C. J., TUMLINSON, J. H., HEATH, R. R., PROVEAUX, A.
T., and DOOLITTLE, R. E. 1991b. Isolation and identification of
allelochemicals that attract the larval parasitoid, Cotesia margin-
iventris (Cresson), to the microhabitat of one of its hosts. J.
Chem. Ecol. 17:2235–2251.

TURLINGS, T. C. J., TUMLINSON, J. H., and LEWIS, W. J. 1990.
Exploitation of herbivore-induced plant odors by host-seeking
parasitic wasps. Science 250:1251–1253.

TURLINGS, T. C. J. and WÄCKERS, F. 2004. Recruitment of predators
and parasitoids by herbivore-injured plants, pp. 21–75, in R. T.
Cardé and J. G. Millar (eds.). Advances in Insect Chemical
Ecology. Cambridge University Press. Cambridge.

VAN DAM, N. M. and POPPY, G. M. 2008. Why plant volatile analysis
needs bioinformatics—detecting signal from noise in increasing-
ly complex profiles. Plant Biol. 10:29–37.

VON DAHL, C. C., HAVECKER, M., SCHLOGL, R., and BALDWIN, I. T.
2006. Caterpillar-elicited methanol emission: a new signal in
plant-herbivore interactions? Plant J. 46:948–960.

YAN, Z. G. and WANG, C. Z. 2006. Identification ofMythmna separata-
induced maize volatile synomones that attract the parasitoid
Campoletis chlorideae. J. Appl. Entomol. 130:213–219.

1008 J Chem Ecol (2009) 35:999–1008


	Strong Attraction of the Parasitoid Cotesia marginiventris Towards Minor Volatile Compounds of Maize
	Abstract
	Introduction
	Methods and Materials
	Insects and Plants
	Volatile Collection
	Fractionation and Analyses of Volatile Blends
	Olfactometer Bioassays
	Statistical Analyses

	Results
	Fractionation over Selective Filter Tubes
	Fractionation by Preparative GC
	Fractionation with Different Solvents

	Discussion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


