
Numer. Math. (2012) 121:1–29
DOI 10.1007/s00211-011-0426-8

Numerische
Mathematik

Convergence analysis of trigonometric methods for stiff
second-order stochastic differential equations

David Cohen · Magdalena Sigg

Received: 10 January 2011 / Revised: 15 August 2011 / Published online: 13 November 2011
© Springer-Verlag 2011

Abstract We study a class of numerical methods for a system of second-order
SDE driven by a linear fast force generating high frequency oscillatory solutions. The
proposed schemes permit the use of large step sizes, have uniform global error bounds
in the position (i.e. independent of the large frequencies present in the SDE) and offer
various additional properties. This new family of numerical integrators for SDE can
be viewed as a stochastic generalisation of the trigonometric integrators for highly
oscillatory deterministic problems.

Mathematics Subject Classification (2000) 65C20 · 60H10

1 Introduction

In this article we present an error analysis for a family of numerical schemes for the
solution of the (d-dimensional) stiff second-order SDE

Ẍt + 1

ε2 AXt = g(Xt )+ BẆt , (1)

where ε � 1 is a small parameter, the nonlinearity g(x) ∈ R
d is a smooth real function

and Wt = (W1(t), . . . ,Wm(t))T is a standard m-dimensional Wiener process. We will
assume that the matrix A ∈ R

d×d , which does not depend on ε, is a symmetric positive
definite matrix such that the norm of A−1 is not small compared to ε, that is, all the
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2 D. Cohen, M. Sigg

eigenvalues of
1

ε2 A are away from zero. We will also assume that the norm of the

matrix B ∈ R
d×m is small compared to the norm of the fast force F(x) = 1

ε2 Ax .
At this point, we would like to add, that we can also consider the case, where the matrix
A has zero as eigenvalues. For ease of presentation, this will be shown only in the last
section of the paper. Here and in the following we will work with the Euclidean norm
or with norms induced by the Euclidean norm.

We are interested in numerical methods that can attain good accuracy with step
sizes whose product with the large frequencies in (1) need not to be small. So that the
error bounds in the position of the methods should be independent of the product of
the step size with the frequencies of our problem.

The proposed schemes can be viewed as a stochastic generalisation of the
trigonometric methods (or exponential integrators) for highly oscillatory determin-
istic problems (see [2], [5, Chapter XIII] and references therein) and appeared for the
first time in [1] for the numerical discretisation of scalar stochastic oscillators with a
high frequency. Since a key building-block in the development of stochastic trigono-
metric methods is the variation-of-constants formula, we begin by rewriting (1) as a

system of first order SDE (setting X1
t := Xt , X2

t := Ẋt and Ω := 1

ε
A1/2):

(
d X1

t
d X2

t

)
=

(
0 1

−Ω2 0

) (
X1

t
X2

t

)
dt +

(
0

g(X1
t )

)
dt +

(
0
B

)
dWt . (2)

The variation-of-constants formula for the above equation will then suggest the
construction of the stochastic trigonometric schemes (see Sect. 2 for details on the
derivation of the numerical methods). After that, we will present the main theorems
on the convergence of the schemes in Sects. 3 and 4. It turns out that the proposed
schemes offer additional features similar to the one of the exact solution of (2). This
will be studied in more details in Sect. 5. Numerical experiments demonstrating the
convergence and the good long-time behaviour of the stochastic trigonometric schemes
are presented in the final section.

Let us mention that the use of the variation-of-constants formula to derive efficient
numerical schemes for large stiff systems of first order differential equations is not new.
In the deterministic setting, one may consult, for example, [6,13] and more recently
the review [7] on exponential integrators. Stochastic exponential integrators were also
considered for the numerical approximation of parabolic stochastic partial differential
equations in [9,10,14] and references therein.

We conclude the introduction by mentioning that there are only few numerical
works in the literature to solve stiff systems of the form (1). We are only aware of the
work [17]. The results given in this article are, in the spirit, closely related to ours; the
techniques and the equation considered here are however different. Let us finally men-
tion, that for the linear scalar case and with a frequency 1/ε = 1 (non-stiff problems),
we are only aware of the works [8,16] and [18]. For a numerical comparison between
these schemes and the stochastic trigonometric methods, we refer to [1].
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Trigonometric methods for stiff second-order SDEs 3

2 Stochastic trigonometric methods

In this section we recall the definition of the (stochastic) trigonometric schemes. For
details on the derivations we refer to [5, Chapter XIII] for the deterministic case and
to [1] for the stochastic scalar case.

As stated in the introduction, the main building-block for the construction of the
stochastic trigonometric integrators is the variation-of-constants formula. The exact
solution of (2) with initial values X1

0 = x0 and X2
0 = y0 satisfies

(
X1

t
X2

t

)
=

(
cos(tΩ) Ω−1 sin(tΩ)

−Ω sin(tΩ) cos(tΩ)

) (
x0
y0

)

+
t∫

0

(
Ω−1 sin

(
(t − s)Ω

)
cos

(
(t − s)Ω

)
)

g(X1
s )ds +

t∫
0

(
Ω−1 sin

(
(t − s)Ω

)
cos

(
(t − s)Ω

)
)

BdWs .

We will sometimes use the notation t sinc(tΩ) forΩ−1 sin(tΩ), which is defined for
arbitrary matrices Ω .

We now discretise the above deterministic and Ito integrals and thereby obtain a
family of explicit trigonometric numerical integrators:

(
X1

n+1
X2

n+1

)
=

(
cos(hΩ) Ω−1 sin(hΩ)

−Ω sin(hΩ) cos(hΩ)

) (
X1

n
X2

n

)

+
⎛
⎝ h2

2
Ψ g(ΦX1

n)
h

2

(
Ψ0g(ΦX1

n)+ Ψ1g(ΦX1
n+1)

)
⎞
⎠ +

(
Ω−1 sin(hΩ)B�Wn

cos(hΩ)B�Wn

)
, (3)

where h denotes the step size of the scheme and�Wn = W (tn+1)−W (tn) the Wiener
increments. Here Ψ = ψ(hΩ) and Φ = φ(hΩ), where the filter functions ψ, φ are
even, real-valued functions withψ(0) = φ(0) = 1. Moreover, we haveΨ0 = ψ0(hΩ),
Ψ1 = ψ1(hΩ)with even functionsψ0, ψ1 satisfyingψ0(0) = ψ1(0) = 1. The purpose
of these filter functions is to attenuate numerical resonances, see [5, Chapter XIII] for
the deterministic case. The choice of the filter functions may also have a substantial
influence on the long-time properties of the method. We will not deal with these issues
in the present paper. We note that the family of integrators (3) reduces (in the symmetric
case) to the Störmer–Verlet scheme for Ω = B = 0 and give the exact solution for
g = 0 and B = 0.

Example 1 Replacing the deterministic integral in the variation-of-constants formula
for the exact solution by its trapezoidal rule approximation yields the following explicit
scheme (see [3] for the deterministic case):

(
X1

n+1
X2

n+1

)
=

(
cos(hΩ) Ω−1 sin(hΩ)

−Ω sin(hΩ) cos(hΩ)

)(
X1

n
X2

n

)

+ h

2

(
Ω−1 sin(hΩ)gn

gn+1 + cos(hΩ)gn

)
+

(
Ω−1 sin(hΩ)B�Wn

cos(hΩ)B�Wn

)
,
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4 D. Cohen, M. Sigg

where gn = g(X1
n). This is exactly method (3) for the choices ψ(ζ ) =

sinc(ζ ), ψ0(ζ ) = cos(ζ ), ψ1(ζ ) = 1 and φ(ζ ) = 1.

Example 2 Another possibility is to use only the left-hand endpoint to discretise
the deterministic integral. This gives us the following filter functions: ψ(ζ ) =
2 sinc(ζ ), ψ0(ζ ) = 2 cos(ζ ), ψ1(ζ ) = 0 and φ(ζ ) = 1. Note that we do not have
ψ1(0) = 1. One recognises the exponential Euler scheme for parabolic problems
from [14]. Another discretisation of the deterministic integral (with filter functions
ψ(ζ ) = 2(1 − cos(ζ ))/ζ 2, ψ0(ζ ) = 2 sinc(ζ ), ψ1(ζ ) = 0 and φ(ζ ) = 1) gives us
the exponentially fitted Euler scheme from [9]. We remark that the stochastic part
in the scheme presented in [9] is not treated in the same way as in (3). Moreover, a
nice feature of the numerical integrator proposed in [9] is that it takes advantage of a
smoothing effect of a linear functional of the noise-term.

Remark 1 Other discretisations of the stochastic integral present in the variation-
of-constants formula are possible and will lead to various numerical schemes. We
can for example use the following approximation:

h∫
0

(
Ω−1 sin

(
(h − s)Ω

)
cos

(
(h − s)Ω

)
)

BdWs ≈
(
Ω−1 sin(φ̃(hΩ))B�W0

cos(φ̃(hΩ))B�W0

)
.

Taking the trivial choice φ̃ ≡ 0, one obtains the numerical scheme proposed by Tocino
in [18] for scalar linear second-order SDE Ẍt + Xt = αẆt . However a more natural
and appropriate discretisation of the integral is by taking the Riemann left-end points,
that is with the choice φ̃(x) = x , and thus obtain the approximation present in method
(3). We will only consider this discretisation in the present paper.

Since we are interested in using large step sizes, we will consider the numerical
solution of (1) by method (3) with a step size h ≤ h0 (with a sufficiently small h0
independent of ε) for which

h

ε
≥ c0 > 0.

3 Mean-square convergence analysis

In this section, we will derive mean-square error bounds over finite time intervals for
the family of stochastic trigonometric methods derived in Sect. 2. To do so, we first
look at the mean-square error for linear problems, that is equation (1) with g ≡ 0.
The proofs follow the lines of the scalar case given in [1]. Combining these results
with the results from [4], this then permits us to derive order one mean-square error
bounds, for the position component, independent of the product of the step size with
the large frequencies present in our problem.

Let us first recall the definition of mean-square convergence, see for example [11].
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Trigonometric methods for stiff second-order SDEs 5

Definition 1 A numerical method {Yn} with step size h converges in the mean-square
sense with order β > 0 to the solution Ytn of an SDE at time tn = nh if β is the largest
value such that there exists a positive constant C , which does not depend on h, and an
h0 > 0 such that

(
E

[‖Ytn − Yn‖2])1/2 ≤ Chβ

for all h ∈ (0, h0).

We now show that the local mean-square error in the position of our stochastic
trigonometric integrator is of order O(h3/2) for linear problems.

Lemma 1 Consider the numerical solution of (1) with g ≡ 0 by method (3) with a
step size h ≤ h0 (with a sufficiently small h0 independent of ε) for which h/ε ≥ c0 > 0
holds. The mean-square errors after one step of the numerical scheme satisfy

(
E

[‖X1
1 − X1

h‖2])1/2 ≤ Cεh1/2 ≤ Ch3/2

(
E

[‖X2
1 − X2

h‖2])1/2 ≤ Ch1/2,

where the constant C depends on the norm of the matrix B, but is independent of
ε and h. That is, the local errors are of order (at least) 1/2 uniformly in the frequen-
cies.

Proof Let us start with the local mean-square error in the position. By definition of
the method and by the variation-of-constants formula for the exact solution, we obtain

E
[‖X1

1 − X1
h‖2] = E

⎡
⎣∥∥∥

h∫
0

Ω−1(sin(hΩ)− sin((h − s)Ω))BdWs

∥∥∥2

⎤
⎦ .

Using the Ito isometry and the triangle inequality, we get

E
[‖X1

1 − X1
h‖2] ≤ ‖B‖2‖Ω−1‖2

h∫
0

‖sin(hΩ)− sin((h − s)Ω)‖2ds

≤ C‖Ω−1‖2h.

Using the definition of the matrix Ω , we end up with the stated bounds for the local
error in the position component. The estimate for the error in the velocity component
is obtained in a similar way: we have
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6 D. Cohen, M. Sigg

E
[‖X2

1 − X2
h‖2] = E

[∥∥∥
h∫

0

(cos(hΩ)− cos((h − s)Ω))BdWs

∥∥∥2]

≤ ‖B‖2

h∫
0

‖cos(hΩ)− cos((h − s)Ω)‖2ds ≤ Ch.

	

We now turn our attention to the global mean-square error of the stochastic trigono-
metric integrator (3) for linear systems. We obtain the following result.

Proposition 1 Consider the numerical solution of (1) with g ≡ 0 by method
(3) with a step size h ≤ h0 (with a sufficiently small h0 independent of ε) for which
h/ε ≥ c0 > 0 holds. The mean-square errors of the numerical scheme satisfy

(
E

[‖X1
n − X1

nh‖2])1/2 ≤ Cε ≤ Ch
(
E

[‖X2
n − X2

nh‖2])1/2 ≤ CT 1/2 for nh ≤ T,

where the constant C is independent of ε, h and n with nh ≤ T . That is, the global error
in the position component is of order 1 uniformly in the frequencies. Unfortunately,
we obtain a non-uniform global error in the velocity component.

Remark 2 We would like to point out, that it is not surprising to obtain a non-uniform
global error in the velocity in the stochastic case. This was also observed in [17].

Proof We start by substituting the exact solution into the numerical scheme (3) and
obtain

(
X1

tn+1

X2
tn+1

)
= R ·

(
X1

tn
X2

tn

)
+

(
Ω−1 sin(hΩ)B�Wn

cos(hΩ)B�Wn

)
+

(
d1

n
d2

n

)
, (4)

where tn = nh, the matrix R =
(

cos(hΩ) Ω−1 sin(hΩ)
−Ω sin(hΩ) cos(hΩ)

)
and the defects

d1
n =

tn+1∫
tn

Ω−1 sin((tn+1 − s)Ω)BdWs −Ω−1 sin(hΩ)B�Wn ∈ R
d

d2
n =

tn+1∫
tn

cos((tn+1 − s)Ω)BdWs − cos(hΩ)B�Wn ∈ R
d .

By Lemma 1 and properties of the Ito integral, we have the following estimates for
the defects

E
[
d1

n

] = E
[
d2

n

] = 0, E
[‖d1

n‖2] = O(ε2h), E
[‖d2

n‖2] = O(h).
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Trigonometric methods for stiff second-order SDEs 7

We now define the errors e j
n = X j

tn − X j
n ∈ R

d , for j = 1, 2. A subtraction of (4)
from the definition of the scheme gives us

En+1 = R · En + dn,

where En =
(

e1
n

e2
n

)
and dn =

(
d1

n
d2

n

)
. A recursion leads to the following formula for

the errors:

En+1 = Rn+1 E0 +
n∑

j=0

Rn− j d j =
n∑

j=0

Rn− j d j ,

with the matrix Rn− j =
(

cos((n − j)hΩ) Ω−1 sin((n − j)hΩ)
−Ω sin((n − j)hΩ) cos((n − j)hΩ)

)
.

All together and the independence of the Wiener increments give:

E
[‖e1

n+1‖2] = E
[‖

n∑
j=0

(cos((n − j)hΩ)d1
j +Ω−1 sin((n − j)hΩ)d2

j )‖2]

=
n∑

j=0

E
[‖cos((n − j)hΩ)d1

j +Ω−1 sin((n − j)hΩ)d2
j ‖2]

+2
∑
j<�

E
[(

cos((n − j)hΩ)d1
j +Ω−1 sin((n − j)hΩ)d2

j

)T

(
cos((n − �)hΩ)d1

� +Ω−1 sin((n − �)hΩ)d2
�

)]

=
n∑

j=0

E
[‖cos((n − j)hΩ)d1

j +Ω−1 sin((n − j)hΩ)d2
j ‖2].

Once again using the Ito isometry, we obtain

E
[‖cos((n − j)hΩ)d1

j +Ω−1 sin((n − j)hΩ)d2
j ‖2]

= E

[ t j+1∫
t j

|| cos((n − j)hΩ)Ω−1(sin((t j+1 − s)Ω)− sin(hΩ))B

+Ω−1 sin((n − j)hΩ)(cos((t j+1 − s)Ω)− cos(hΩ))B||2ds
]
.

Similar to the proof of Lemma 1, we can bound the above term with:

E
[‖cos((n − j)hΩ)d1

j +Ω−1 sin((n − j)hΩ)d2
j ‖2] = O(hε2).
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8 D. Cohen, M. Sigg

Finally summing up, using the fact that h/ε ≥ c0 and that nh ≤ T give the desired
bound for the position component:

E
[‖e1

n‖2] = E
[‖X1

n − X1
nh‖2] ≤ CT ε2 ≤ CT h2.

The bound for the velocity component is obtained in a similar way. 	

It is now time to consider the nonlinear case (2). Our convergence proof heavily

relies on the main result given in [4] for the corresponding deterministic case. For ease
of reading we first recall the main theorem of [4]:

Theorem 1 (Theorem 1 in [4]) Let us consider the deterministic problem ẍ + Ax =
g(x), with A a positive semi-definite symmetric matrix, and the numerical solution
given by (3) with B = 0. Under the following assumptions:

1. Suppose that g, g′ and g′′ are bounded.

2. Assume that the exact solution satisfies
1

2
‖ẋ(t)‖2 + 1

2
‖Ωx(t)‖2 ≤ 1

2
K 2 for 0 ≤

t ≤ T .
3. The filter functions have to satisfy the following assumptions:

max
ξ≥0

|χ(ξ)| ≤ M1, for χ = φ, ψ, ψ0, ψ1 (5)

for some constant M1. There exist further constants M2, M3, M4, M5, M6 and M7
such that

max
ξ≥0

∣∣∣φ(ξ)− 1

ξ

∣∣∣ ≤ M2, (6)

max
ξ≥0

∣∣∣ 1

sin
( ξ

2

)
(

sinc2
(
ξ

2

)
− ψ(ξ)

)∣∣∣ ≤ M3, (7)

max
ξ≥0

∣∣∣ 1

ξ sin
( ξ

2

) ( sinc(ξ)− χ(ξ))

∣∣∣ ≤ M4, χ = φ, ψ0, ψ1, (8)

max
ξ≥0

|ξψ(ξ)| ≤ M5, max
ξ≥0

∣∣∣ ξ

sin
( ξ

2

)
(

sinc2
(
ξ

2

)
− ψ(ξ)

)∣∣∣ ≤ M6 and (9)

max
ξ≥0

∣∣∣ 1

sin
( ξ

2

) ( sinc(ξ)− ψi (ξ))

∣∣∣ ≤ M7, i = 0, 1. (10)

Moreover, let us define M := maxi=1,...,7 Mi .

If Eq. (5)–(8) are verified then the error in the position satisfies

‖xtn − xn‖ ≤ Ch2, 0 ≤ tn = nh ≤ T . (11)

The constant C only depends on T , K , M1, . . . ,M4, ‖g‖, ‖g′‖ and ‖g′′‖, but not on
ε. If, in addition, (9) and (10) are satisfied, then
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Trigonometric methods for stiff second-order SDEs 9

‖ẋtn − ẋn‖ ≤ C̃h, 0 ≤ tn = nh ≤ T . (12)

The constant C̃ only depends on T , K , M1, . . . ,M4, ‖g‖, ‖g′‖ and ‖g′′‖, but not on ε.

As already noted in [4], these error bounds are independent of the dimension of the
problem and the constant C (resp. C̃) does not depend on the large norm of the matrix
present in our problem. These properties are very desirable, for example if the system
(1) results from a semi-discretisation of a nonlinear wave equation. In this case, the
bounds are independent of the mesh size used for the spatial discretisation.

Example 3 The following choices for the filter functions fulfill all the above
conditions, [4]:

φ(ξ)= sinc(ξ), ψ(ξ)= sinc3(ξ), ψ0(ξ)=cos(ξ) sinc2(ξ), and ψ1(ξ)= sinc2(ξ).

We can now give the main result of this section:

Theorem 2 Under the assumptions of Proposition 1 and Theorem 1, the global mean-
square errors satisfy

(
E

[‖X1
n − X1

nh‖2])1/2 ≤ C(ε2 + h4)1/2 ≤ Ch
(
E

[‖X2
n − X2

nh‖2])1/2 ≤ CT 1/2 for nh ≤ T,

where the constant C only depends on T , K , M1, . . . ,M4, ‖g‖, ‖g′‖ and ‖g′′‖, but is
independent of ε, h and n with nh ≤ T .

Proof Let us introduce the following notations for the position component:

q1 := Ω−1
n−1∑
j=0

(
cos( jhΩ) sin(hΩ)+ sin( jhΩ) cos(hΩ)

)
B�Wn− j−1,

q̂1 := Ω−1
n−1∑
j=0

⎛
⎜⎝cos( jhΩ)

tn− j∫
tn− j−1

sin((tn− j − s)Ω)BdWs

+ sin( jhΩ)

tn− j∫
tn− j−1

cos((tn− j − s)Ω)BdWs

⎞
⎟⎠ ,

123



10 D. Cohen, M. Sigg

r1 :=
n−1∑
j=0

(
cos( jhΩ)

h

2
hΨ gn− j−1 +Ω−1 sin( jhΩ)

h

2
Ψ1gn− j

+ Ω−1 sin( jhΩ)
h

2
Ψ0gn− j−1

)
,

r̂1 := Ω−1
n−1∑
j=0

⎛
⎜⎝cos( jhΩ)

tn− j∫
tn− j−1

sin((tn− j − s)Ω)g(X1
s )ds

+ sin( jhΩ)

tn− j∫
tn− j−1

cos((tn− j − s)Ω)g(X1
s )ds

⎞
⎟⎠ ,

where gn = g(ΦX1
n). For the velocity component, we set

q2 :=
n−1∑
j=0

(
sin( jhΩ) sin(hΩ)− cos( jhΩ) cos(hΩ)

)
B�Wn− j−1,

q̂2 := −
n−1∑
j=0

⎛
⎜⎝sin( jhΩ)

tn− j∫
tn− j−1

sin((tn− j − s)Ω)BdWs

+ cos( jhΩ)

tn− j∫
tn− j−1

cos((tn− j − s)Ω)BdWs

⎞
⎟⎠ ,

r2 := −
n−1∑
j=0

(
sin( jhΩ)

h

2
hΩΨ gn− j−1 − cos( jhΩ)

h

2
Ψ1gn− j

− cos( jhΩ)
h

2
Ψ0gn− j−1

)
,

r̂2 := −
n−1∑
j=0

⎛
⎜⎝sin( jhΩ)

tn− j∫
tn− j−1

sin((tn− j − s)Ω)g(X1
s )ds

− cos( jhΩ)

tn− j∫
tn− j−1

cos((tn− j − s)Ω)g(X1
s )ds

⎞
⎟⎠ .

The nth iterate of the numerical scheme (3) thus reads

X1
n = cos(nhΩ)X1

0 +Ω−1 sin(nhΩ)X2
0 + q1 + r1

X2
n = −Ω sin(nhΩ)X1

0 + cos(nhΩ)X2
0 + q2 + r2,

and for the exact solution we have
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Trigonometric methods for stiff second-order SDEs 11

X1
nh = cos(nhΩ)X1

0 +Ω−1 sin(nhΩ)X2
0 + q̂1 + r̂1

X2
nh = −Ω sin(nhΩ)X1

0 + cos(nhΩ)X2
0 + q̂2 + r̂2.

We thus get, for the global mean-square error in the position:

E
[‖X1

n − X1
nh‖2] = E

[‖q1 + r1 − q̂1 − r̂1‖2] ≤ 2E
[‖q1 − q̂1‖2] + 2E

[‖r1 − r̂1‖2].
The first term on the right-hand side is the global mean-square error in the linear case
(see Proposition 1) and the second one is the global error in the deterministic case (see
Theorem 1). We finally obtain

E
[‖X1

n − X1
nh‖2] ≤ 2E

[‖q1 − q̂1‖2] + 2E
[‖r1 − r̂1‖2] ≤ C(ε2 + h4).

The bound for the velocity component is obtained in a similar way. 	

We conclude this section by mentioning the fact, that for fixed ε, the numerical schemes
still converge as the step size goes to zero.

Remark 3 In this case Taylor expansions of the expressions in the proof of Lemma 1
can be used to determine the mean-square errors after one step. We have

E
[‖X1

1 − X1
h‖2] ≤ ‖B‖2‖Ω−1‖2

h∫
0

‖sin(hΩ)− sin((h − s)Ω)‖2ds

= ‖B‖2‖Ω−1‖2

h∫
0

∥∥∥sin(hΩ)−
∑
n≥0

sin(n)(hΩ)
(−sΩ)n

n!
∥∥∥2

ds

≤ Ch3

and similarly

E
[‖X2

1 − X2
h‖2] ≤ Ch5.

Hence, for a fixed ε, we obtain, instead of Theorem 2, the following error bounds

(
E

[‖X1
n − X1

nh‖2])1/2 ≤ Ch
(
E

[‖X2
n − X2

nh‖2])1/2 ≤ Ch for nh ≤ T .

4 Convergence in the second moment

In this section, we will derive error bounds for the stochastic trigonometric methods
in the second moment. Let us quickly restate the definition.
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12 D. Cohen, M. Sigg

Definition 2 A numerical method {Yn} with step size h converges in the second
moment with order γ > 0 to the solution Ytn of an SDE at time tn = nh if γ is
the largest value such that there exists a positive constant C , which does not depend
on h, and an h0 > 0 such that

|E[‖Ytn ‖2] − E
[‖Yn‖2]| ≤ Chγ

for all h ∈ (0, h0).

We first show that the local error in the second moment for the position of our
stochastic trigonometric integrator is of order O(h3) for linear problems.

Lemma 2 Consider the numerical solution of (1) with g ≡ 0 by method (3) with a
step size h ≤ h0 (with a sufficiently small h0 independent of ε) for which h/ε ≥ c0 > 0
holds. The errors in the second moment after one step of the numerical scheme satisfy

|E[‖X1
1‖2] − E

[‖X1
h‖2]| ≤ Chε2 ≤ Ch3

|E[‖X2
1‖2] − E

[‖X2
h‖2]| ≤ Cε ≤ Ch,

where the constant C is independent of ε and h. That is, the local errors are of order
(at least) one uniformly in the frequencies.

Proof Let us start with the error in the position. By definitions of the scheme, of
the exact solution, and using some properties of the Wiener increments and the Ito
isometry, we obtain

|E[‖X1
1‖2] − E

[‖X1
h‖2]| =

∣∣∣∣E[‖Ω−1 sin(hΩ)B�W0‖2]

−E

[∥∥∥
h∫

0

Ω−1 sin((h − s)Ω)BdWs

∥∥∥2]∣∣∣∣

=
∣∣∣∣E[‖Ω−1 sin(hΩ)B�W0‖2]

−
h∫

0

‖Ω−1 sin((h − s)Ω)B‖2ds

∣∣∣∣ ≤ Chε2.

Similarly, concerning the error in the second component, we have

|E[‖X2
1‖2] − E

[‖X2
h‖2]| =

∣∣∣∣E[‖cos(hΩ)B�W0‖2]

−E

[∥∥∥
h∫

0

cos((h − s)Ω)BdWs

∥∥∥2]∣∣∣∣
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Trigonometric methods for stiff second-order SDEs 13

=
∣∣∣∣E[‖cos(hΩ)B�W0‖2]

−
h∫

0

‖cos((h − s)Ω)B‖2ds

∣∣∣∣ ≤ Ch.

	


We can now derive global error bounds for the linear case. We obtain the following
result.

Proposition 2 Consider the numerical solution of (1) with g ≡ 0 by method (3)
with a step size h ≤ h0 (with a sufficiently small h0 independent of ε) for which
h/ε ≥ c0 > 0 holds. The errors in the second moment of the numerical scheme satisfy

|E[‖X1
n‖2] − E

[‖X1
nh‖2]| ≤ Cε2T ≤ Ch2

|E[‖X2
n‖2] − E

[‖X2
nh‖2]| ≤ CT for nh ≤ T,

where the constant C is independent of ε, h and n with nh ≤ T . That is, the global
error in the position component is of order two uniformly in the frequencies.

Proof In order to determine the global order of convergence in the position, we study
the expression |E[‖X1

n‖2
]−E

[‖X1
nh‖2

]|. Using the notations of Theorem 2, we obtain

|E[‖X1
n‖2] − E

[‖X1
nh‖2]| = |E[‖cos(nhΩ)X1

0 +Ω−1 sin(nhΩ)X2
0 + q1‖2]

−E
[‖cos(nhΩ)X1

0 +Ω−1 sin(nhΩ)X2
0 + q̂1‖2]|.

Using properties of the Wiener increments and of the Ito integral, we get

|E[‖X1
n‖2] − E

[‖X1
nh‖2]| = |E[‖q1‖2] − E

[‖q̂1‖2]|

=
∣∣∣

n−1∑
j=0

E
[‖Ω−1(cos( jhΩ) sin(hΩ)+ sin( jhΩ) cos(hΩ))B�Wn− j−1‖2]

−
n−1∑
j=0

tn− j∫
tn− j−1

‖Ω−1(cos( jhΩ) sin((tn− j − s)Ω)

+ sin( jhΩ) cos((tn− j − s)Ω))B‖2ds
∣∣∣

≤ Cε2nh ≤ Cε2T .
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14 D. Cohen, M. Sigg

Analogously we get for the global order of convergence in the velocity

|E[‖X2
n‖2] − E

[‖X2
nh‖2]| = |E[‖q2‖2] − E

[‖q̂2‖2]|
=

∣∣∣
n−1∑
j=0

E
[‖(sin( jhΩ) sin(hΩ)− cos( jhΩ) cos(hΩ))B�Wn− j−1‖2]

+
n−1∑
j=0

tn− j∫
tn− j−1

‖(sin( jhΩ) sin((tn− j −s)Ω)+cos( jhΩ) cos((tn− j −s)Ω))B‖2ds
∣∣∣

≤ Cnh ≤ CT

or the boundedness of the global error in the velocity. 	

We can now state the main result of this section:

Theorem 3 Under the assumptions of Proposition 2 and Theorem 1, the global errors
in the second moment satisfy

|E[‖X1
n‖2] − E

[‖X1
nh‖2]| ≤ C(ε2 + (h + ε)2 + h2 + (hε + ε2)) ≤ Ch2

|E[‖X2
n‖2] − E

[‖X2
nh‖2]| ≤ C(T + h) ≤ CT for nh ≤ T,

where the constant C only depends on T , K , M1, . . . ,M4, ‖g‖, ‖g′‖ and ‖g′′‖, but is
independent of ε, h and n with nh ≤ T .

Proof Let us first define the following quantities

p1 =cos(nhΩ)X1
0 +Ω−1 sin(nhΩ)X2

0 and p2 =−Ω sin(nhΩ)X1
0 +cos(nhΩ)X2

0

so that the numerical scheme can be written as

X1
n = p1 + q1 + r1 and X2

n = p2 + q2 + r2.

For the error in the second moment for the position, we thus obtain

|E[‖X1
n‖2] − E

[‖X1
nh‖2]| = |E[

2pT
1 q1 + 2pT

1 r1 + qT
1 q1 + 2qT

1 r1 + r T
1 r1

−q̂T
1 q̂1 − r̂ T

1 r̂1 − 2pT
1 r̂1 − 2pT

1 q̂1 − 2q̂T
1 r̂1

]|
≤ |E[‖q1‖2 − ‖q̂1‖2]| + |E[‖r1‖2 − ‖r̂1‖2]|

+2E
[|pT

1 (r1 − r̂1)|
] + 2|E[

qT
1 r1 − q̂T

1 r̂1
]|

due to the fact that E
[
�Wn− j−1

] = 0 and due to the martingale property of the Ito
integral. We will now estimate the four terms on the right. Thanks to Proposition 2,
we have

|E[‖q1‖2 − ‖q̂1‖2]| ≤ CT ε2.
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Trigonometric methods for stiff second-order SDEs 15

Using the bounds for the function g, the bounds for the filter functions and the triangle
inequality, we get

|E[‖r1‖2 − ‖r̂1‖2]| ≤ E
[‖r1‖2] + E

[‖r̂1‖2] ≤ (Cn(h2 + hε))2 + (Cnhε)2

≤ CT 2(h + ε)2.

The Cauchy–Schwarz inequality and Theorem 1 give us the bounds

2E
[|pT

1 (r1 − r̂1)|
] ≤ 2‖p1‖E

[‖r1 − r̂1‖
] ≤ Ch2.

For the last term, we obtain

E
[|qT

1 r1| ≤ E
[‖r1‖‖q1‖

] ≤ CT (h + ε)E
[‖q1‖

] ≤ CT (h + ε)

√
E

[‖q1‖2
]

≤ CT (h + ε)ε

thanks to the Cauchy–Schwarz inequality, the bounds for the function g and
Proposition 2. This finally gives us

2|E[
qT

1 r1 − q̂T
1 r̂1

]| ≤ CT (hε + ε2).

All together, we obtain the bounds for the position

|E[‖X1
n‖2] − E

[‖X1
nh‖2]| ≤ C(ε2 + (h + ε)2 + h2 + (hε + ε2)).

For the velocity component we consider the expression

|E[‖X2
n‖2] − E

[‖X2
nh‖2]| ≤ |E[‖q2‖2 − ‖q̂2‖2]| + |E[‖r2‖2 − ‖r̂2‖2]|

+2E
[|pT

2 (r2 − r̂2)|
] + 2|E[

qT
2 r2 − q̂T

2 r̂2
]|.

Similarly, we get the following bounds for the individual terms on the right

|E[‖q2‖2 − ‖q̂2‖2]| = O(T ), |E[‖r2‖2 − ‖r̂2‖2]| = O(T ),
2E

[|pT
2 (r2 − r̂2)|

] = O(h), 2|E[
qT

2 r2 − q̂T
2 r̂2

]| = O(T ).

This yields for the whole expression

|E[‖X2
n‖2] − E

[‖X2
nh‖2]| ≤ C(T + h)

or the boundedness of the global error in the second moment for the velocity. 	

As in the mean-square case, we conclude this section by looking at the convergence
for a fixed ε.
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16 D. Cohen, M. Sigg

Remark 4 We thus fix ε and let h tend to zero in order to illustrate the convergence
behaviour. Therefore Taylor expansions of the expressions in the proof of Lemma 2
can be used to determine the errors in the second moment after one step.

|E[‖X1
1‖2] − E

[‖X1
h‖2]| =

∣∣∣E[‖Ω−1 sin(hΩ)B�W0‖2]

−
h∫

0

‖Ω−1 sin((h − s)Ω)B‖2ds
∣∣∣

=
∣∣∣E[‖Ω−1 sin(hΩ)B�W0‖2]

−
h∫

0

∥∥∥Ω−1
∑
n≥0

sin(n)(hΩ)
(−sΩ)n

n! B
∥∥∥2

ds
∣∣∣

≤ Ch3

and similarly

|E[‖X2
1‖2] − E

[‖X2
h‖2]| ≤ Ch.

Hence, for a fixed ε, we obtain, instead of Theorem 3, the following error bounds

|E[‖X1
n‖2] − E

[‖X1
nh‖2]| ≤ Ch

|E[‖X2
n‖2] − E

[‖X2
nh‖2]| ≤ CT for nh ≤ T .

5 Growth rate of the expected energy

The exact solution of our problem (2) with a smooth gradient nonlinearity g(x) =
−∇U (x) has the following interesting geometric property:

Applying Ito’s formula, it is known (see for example [15]) that the expected value
of the energy has a linear growth in time:

E

[
1

2

(||X2
t ||2 + ||ΩX1

t ||2
) + U (X1

t )
]

= 1

2

(||y0||2 + ||Ωx0||2
) + U (x0)+ T r(B BT )

2
t, (13)

where X1
0 = x0 and X2

0 = y0 are the initial position, resp. velocity for the problem (2).
In a geometric numerical integration approach (see the monographs [5,12] for

the deterministic case), one would seek numerical schemes that reproduce geometric
properties of the exact solution of the differential equation. We will see that the
proposed schemes capture almost the correct energy growth rate.
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Trigonometric methods for stiff second-order SDEs 17

In order to show the almost-linear growth rate of the expected value of the energy
for the numerical solution, we need the following lemma:

Lemma 3 Under the assumptions of Theorem 2 we have

E
[‖Ω(r1 − r̂1)‖

] ≤ Ch for nh ≤ T,

where r1 and r̂1 are defined in the proof of Theorem 2.

Proof Writing down the definitions of r1 and r̂1 we get

‖Ω(r1 − r̂1)‖ =
∥∥∥∥∥∥

n−1∑
j=0

(
cos( jhΩ)

h

2
hΩΨ gn− j−1

+ sin( jhΩ)
h

2
Ψ1gn− j + sin( jhΩ)

h

2
Ψ0gn− j−1

)

−
n−1∑
j=0

⎛
⎜⎝cos( jhΩ)

tn− j∫
tn− j−1

sin((tn− j − s)Ω)g(X1
s ) ds

+ sin( jhΩ)

tn− j∫
tn− j−1

cos((tn− j − s)Ω)g(X1
s ) ds

⎞
⎟⎠

∥∥∥∥∥∥∥

=
∥∥∥∥∥∥

n−1∑
j=0

Ω cos( jhΩ)en− j−1 +
n−1∑
j=0

sin( jhΩ)e′
n− j−1

∥∥∥∥∥∥

≤
∥∥∥∥∥∥

n−1∑
j=0

Ω cos( jhΩ)en− j−1

∥∥∥∥∥∥ +
∥∥∥∥∥∥

n−1∑
j=0

sin( jhΩ)e′
n− j−1

∥∥∥∥∥∥ ,

where

en− j−1 = h

2
hΨ gn− j−1 −

tn− j∫
tn− j−1

Ω−1 sin((tn− j − s)Ω)g(X1
s ) ds and

e′
n− j−1 = h

2
Ψ1gn− j + h

2
Ψ0gn− j−1 −

tn− j∫
tn− j−1

cos((tn− j − s)Ω)g(X1
s ) ds.
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18 D. Cohen, M. Sigg

We will now use some lemmas from [4] to estimate the above expressions. We begin
by the term with en− j−1. We write

en− j−1 = h

2
hΨ g(ΦX1

tn− j−1
)−

tn− j∫
tn− j−1

Ω−1 sin((tn− j − s)Ω)g(X1
s ) ds

+ 1

2
h2Ψ gn− j−1 − 1

2
h2Ψ g(ΦX1

tn− j−1
).

Using Lemma 1 from [4], we get

en− j−1 = − 1

2
h2

(
sinc2

(
hΩ

2

)
− Ψ

)
g(ΦX1

tn− j−1
)

−h3zn− j−1 + 1

2
h2Ψ gn− j−1 − 1

2
h2Ψ g(ΦX1

tn− j−1
)

with ‖zn− j−1‖ ≤ C and ‖hΩzn− j−1‖ ≤ C . It follows, see also Lemma 5 from [4],
that

∥∥∥
n−1∑
j=0

Ω cos( jhΩ)en− j−1

∥∥∥ ≤ ‖ 1

2
vn−1‖ +

∥∥∥h2
n−1∑
j=0

hΩ cos( jhΩ)zn− j−1

∥∥∥

+
∥∥∥ 1

2
h

n−1∑
j=0

hΩ cos( jhΩ)Ψ (gn− j−1 − g(ΦX1
tn− j−1

))

∥∥∥,

where vn−1 is defined as

vn−1 = 1

2
h

n−1∑
j=0

hΩ cos( jhΩ)
(

sinc2
(

hΩ

2

)
− Ψ

)
g(ΦX1

tn− j−1
)

and can be written as (see Lemma 5 from [4])

vn−1 = E ′
n−1(hΩ)g(ΦX1

0)+
n−2∑
j=0

E ′
j (hΩ)(g(ΦX1

tn− j−1
)− g(ΦX1

tn− j−2
)),

where

E ′
j (ξ) := −ξ

2 sin

(
ξ

2

)
(

sinc2
(
ξ

2

)
− ψ(ξ)

) (
sin

(
jξ + ξ

2

)
− sin

(
ξ

2

))
.
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Trigonometric methods for stiff second-order SDEs 19

Due to (9) and Lemma 5 from [4], E ′
j are bounded and so is vn−1. It thus follows that

∥∥∥
n−1∑
j=0

Ω cos( jhΩ)en− j−1

∥∥∥ ≤ Ch + Ch2n

+
∥∥∥ 1

2
h

n−1∑
j=0

hΩ cos( jhΩ)Ψ (gn− j−1 − g(ΦX1
tn− j−1

))

∥∥∥.

Using the bounds (5) and (9) for the filter functions together with the mean-square
error bounds in the position, we obtain

E

[∥∥∥
n−1∑
j=0

Ω cos( jhΩ)en− j−1

∥∥∥]
≤ Ch.

Now, we have to estimate ‖
n−1∑
j=0

sin( jhΩ)e′
n− j−1‖. To do this, we first rewrite e′

n− j−1

as

e′
n− j−1 = h

2
Ψ1gn− j + h

2
Ψ0gn− j−1 −

tn− j∫
tn− j−1

cos((tn− j − s)Ω)g(X1
s ) ds

= h

2
Ψ1gn− j + h

2
Ψ0gn− j−1 − h

2
Ψ1g(ΦX1

tn− j
)− h

2
Ψ0g(ΦX1

tn− j−1
)

−
tn− j∫

tn− j−1

cos((tn− j − s)Ω)g(X1
s ) ds+ h

2
Ψ1g(ΦX1

tn− j
)+ h

2
Ψ0g(ΦX1

tn− j−1
)

= h

2
Ψ1gn− j + h

2
Ψ0gn− j−1 − h

2
Ψ1g(ΦX1

tn− j
)− h

2
Ψ0g(ΦX1

tn− j−1
)

− 1

2
h( sinc(hΩ)− Ψ0)g(ΦX1

tn− j−1
)− 1

2
h( sinc(hΩ)− Ψ1)g(ΦX1

tn− j
)

− 1

2
h

1∫
0

cos((h − hs)Ω)(g(X1
tn− j−1+hs)− g(ΦX1

tn− j−1
)) ds

− 1

2
h

1∫
0

cos((h − hs)Ω)(g(X1
tn− j−1+hs)− g(ΦX1

tn− j
)) ds

using Lemma 2 from [4]. The triangle inequality gives us

E

[∥∥∥
n−1∑
j=0

sin( jhΩ)e′
n− j−1

∥∥∥]
≤ E

[∥∥∥
n−1∑
j=0

sin( jhΩ)
h

2
Ψ1(gn− j − g(ΦX1

tn− j
))

∥∥∥]
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20 D. Cohen, M. Sigg

+E

⎡
⎣∥∥∥

n−1∑
j=0

sin( jhΩ)
h

2
Ψ0(gn− j−1 − g(ΦX1

tn− j−1
)

∥∥∥
⎤
⎦

+E

⎡
⎣∥∥∥

n−1∑
j=0

sin( jhΩ) · d ′
n− j−1

∥∥∥
⎤
⎦ ,

where d ′
n− j−1 is defined as

d ′
n− j−1 = 1

2
h( sinc(hΩ)− Ψ0)g(ΦX1

tn− j−1
)+ 1

2
h( sinc(hΩ)− Ψ1)g(ΦX1

tn− j
)

+ 1

2
h

1∫
0

cos((h − hs)Ω)(g(X1
tn− j−1+hs)− g(ΦX1

tn− j−1
)) ds

+ 1

2
h

1∫
0

cos((h − hs)Ω)(g(X1
tn− j−1+hs)− g(ΦX1

tn− j
)) ds.

Replacing cos( jhΩ) by sin( jhΩ) in Lemma 6 from [4] (with a shift in the indices)
permits us to bound the terms containing the factors sinc(hΩ) − Ψi for i = 0, 1.
For the terms containing the integrals, we use the mean-value theorem and finally, an
application of Theorem 2 gives us the desired bound

E

⎡
⎣∥∥∥

n−1∑
j=0

sin( jhΩ)e′
n− j−1

∥∥∥
⎤
⎦ ≤ Ch.

We thus finally obtain the estimate

E
[‖Ω(r1 − r̂1)‖

] ≤ Ch.

	

Theorem 4 Under the assumptions of Theorem 2, the numerical solution (3) of the
stochastic oscillator (2) with a smooth gradient nonlinearity g(x) = −∇U (x) satisfies

E
[ 1

2

(||X2
n||2 + ||ΩX1

n||2
) + U (X1

n)
]

= 1

2

(||y0||2 + ||Ωx0||2
) + U (x0)+ T r(B BT )

2
tn + O(h),

where tn = nh ≤ T . The constant symbolised by the O-notation only depends on T ,
K , M1, . . . ,M4, ‖g‖, ‖g′‖ and ‖g′′‖, but is independent of ε, h and n with nh ≤ T .

Remark 5 One can show that the energy of the numerical solution (3) has exactly the
same growth rate as the exact solution of (1) in the case where g(x) ≡ 0. The proof
is an adaptation of the proof of Theorem 2.2 in [1].
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Proof Instead of the expected value of the energy

E
[ 1

2
‖ΩX1

n‖2 + 1

2
‖X2

n‖2 + U (X1
n)

]

we will calculate and estimate the expression

1

2
E

[‖ΩX1
n‖2 − ‖ΩX1

nh‖2 + ‖X2
n‖2 − ‖X2

nh‖2] + E
[
U (X1

n)− U (X1
nh)

]
+ E

[ 1

2
‖ΩX1

nh‖2 + 1

2
‖X2

nh‖2 + U (X1
nh)

]
.

Since the last term is the expected value of the total energy along the exact solution
of our problem, it is thus equal to the initial energy plus the drift:

E
[ 1

2
‖ΩX1

nh‖2 + 1

2
‖X2

nh‖2+U (X1
nh)

] = 1

2
‖Ωx0‖2+ 1

2
‖y0‖2 + U (x0)+ T r(B BT )

2
nh.

For the central term, we use the mean-value theorem and Theorem 2 to obtain

E
[
U (X1

n)− U (X1
nh)

] = ∇U (ζ )T E
[
X1

n − X1
nh

] = O(h).

Finally, using the notations of Theorem 2, we obtain for the first term:

E
[‖ΩX1

n‖2 − ‖ΩX1
nh‖2 + ‖X2

n‖2 − ‖X2
nh‖2] = E

[‖Ωq1‖2 + ‖q2‖2 − ‖Ωq̂1‖2

−‖q̂2‖2] + 2(Ωp1)
T
E

[
Ω(r1 − r̂1)

] + 2pT
2 E

[
r2 − r̂2

] + E
[‖Ωr1‖2 − ‖Ω r̂1‖2]

+E
[‖r2‖2 − ‖r̂2‖2] + 2E

[
(Ωq1)

T (Ω(r1 − r̂1))
] + 2E

[
qT

2 (r2 − r̂2)
]
.

We will now estimate each of the above terms. Let us begin with

E
[‖Ωq1‖2 + ‖q2‖2] = E

⎡
⎣n−1∑

j=0

�W T
n− j−1 BT (sin2(hΩ) cos2( jhΩ)

+ sin2(hΩ) sin2( jhΩ))B�Wn− j−1

+�W T
n− j−1 BT (cos2(hΩ) sin2( jhΩ)

+ cos2(hΩ) cos2( jhΩ))B�Wn− j−1

⎤
⎦

= E
[
n�W T

n− j−1 BT B�Wn− j−1
] = T r(B BT )nh.

Analogously we find E
[‖Ωq̂1‖2 + ‖q̂2‖2

] = T r(B BT )nh and thus

E
[‖Ωq1‖2 + ‖q2‖2 − ‖Ωq̂1‖2 − ‖q̂2‖2] = 0.
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Next, using Lemma 3 and Theorem 1 we get

2(Ωp1)
T
E

[
Ω(r1 − r̂1)

] + 2pT
2 E

[
r2 − r̂2

] = O(h).

For the following term, the Cauchy–Schwarz inequality together with Lemma 3 and
Theorem 1 give us the bounds

E
[‖Ωr1‖2 − ‖Ω r̂1‖2] + E

[‖r2‖2 − ‖r̂2‖2] = E
[
(Ω(r1 − r̂1))

T (Ω(r1 + r̂1))
]

+E
[
(r2 − r̂2)

T (r2 + r̂2)
] = O(h).

Finally, for the last term, we have

2(Ωq1)
T (Ω(r1 − r̂1))+ 2qT

2 (r2 − r̂2) ≤ 2‖Ωq1‖‖Ω(r1 − r̂1)‖ + 2‖q2‖‖r2 − r̂2‖
by the Cauchy–Schwarz inequality. Using Lemma 3 and Theorem 2 we thus obtain

E
[
2(Ωq1)

T (Ω(r1 − r̂1))+ 2qT
2 (r2 − r̂2)

] = O(h).

This concludes the proof. 	


6 Numerical experiments

In this final section, we will consider two problems in order to illustrate the robustness
of the stochastic trigonometric schemes.

6.1 The stochastic Fermi–Pasta–Ulam problem

The deterministic Fermi–Pasta–Ulam (FPU) problem is often used as a model for
highly oscillatory problems. For more details on the deterministic case we refer to
[5, Chapters I, XIII]. In this section, we will look at a stochastic FPU problem in order
to demonstrate the growth rate in the energy and the convergence behaviour of the
stochastic trigonometric method.

The deterministic FPU problem describes a chain of 2m̃ mass points, connected with

alternating soft nonlinear and stiff linear springs (with angular frequencyω := 1

ε
� 1).

The variables q1, . . . , q2m̃ denote the displacements of the mass points, the variables
pi = q̇i their velocities. The behaviour of the system is described by a Hamiltonian
system wherein the total energy is conserved. After a change of coordinates we obtain
the new Hamiltonian function

H(y, x) = 1

2

2m̃∑
i=1

y2
i + ω2

2

m̃∑
i=1

x2
m̃+i + 1

4

⎛
⎝(x1 − xm̃+1)

4

+
m̃−1∑
i=1

(xi+1 − xm̃+i+1 − xi − xm̃+i )
4 + (xm̃ + x2m̃)

4

⎞
⎠ ,
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where xi , i = 1, . . . , m̃ represents a scaled displacement of the i th stiff spring, xm̃+i
a scaled expansion of the i th stiff spring and yi and ym̃+i their velocities.

Furthermore, in the deterministic case, another quantity is almost conserved, the
oscillatory energy. Let

I j (xm̃+ j , ym̃+ j ) = 1

2
(y2

m̃+ j + ω2x2
m̃+ j )

denote the energy of the j th stiff spring. As time passes, there is an exchange of energy
between the stiff springs, but the total oscillatory energy of our problem

I =
m̃∑

i=1

I j

remains almost conserved.
Writing down the Hamiltonian equations, we obtain the following second-order

differential equation:

ẍ +Ω2x = g(x) with Ω =
(

0 0
0 ωI

)
, (14)

where I is the m̃ × m̃ identity matrix and the frequency ω is supposed to be large.
Now we will turn to the stochastic Fermi–Pasta–Ulam problem. By adding a noise

term to the equation (14) we get the system

Ẍt +Ω2 Xt = g(Xt )+ BẆt . (15)

Since the matrix Ω is not positive-definite, the convergence of the stochastic trigo-
nometric methods is not obvious. However, setting Ω = 0, the expression for the
mean-square error in the position in the proof of Proposition 1 reduces to

E
[‖X1

n − X1
nh‖2] =

n∑
j=0

E
[‖(d1

j + ((n − j)h)d2
j )‖2]

=
n∑

j=0

E

⎡
⎢⎣

t j+1∫
t j

‖(t j+1 − s − h)B‖2ds

⎤
⎥⎦

= ‖B‖2
n∑

j=0

t j+1∫
t j

(t j − s)2ds

= 1

3
‖B‖2

n∑
j=0

h3

since d2
j = 0 and thus we obtain

(
E

[‖X1
n − X1

nh‖2])1/2 ≤ Ch,
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for tn = nh ≤ T . For the mean-square error in the velocity we find analogously

(
E

[‖X2
n − X2

nh‖2])1/2 ≤ Ch.

For the expression for the error in the second moment for the position in the proof of
Proposition 2 we obtain in the case Ω = 0:

|E[‖X1
n‖2] − E

[‖X1
nh‖2]|

=

∣∣∣∣∣∣∣
n−1∑
j=0

E
[‖(h + jh)B�Wn− j−1‖2] −

n−1∑
j=0

tn− j∫
tn− j−1

‖(tn− j − s + jh)B‖2ds

∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣
n−1∑
j=0

(h + jh)2h‖B‖2 −
n−1∑
j=0

tn− j∫
tn− j−1

(tn− j − s + jh)2‖B‖2ds

∣∣∣∣∣∣∣

=
∣∣∣∣∣∣
n−1∑
j=0

‖B‖2
(

h(h + jh)2 + 1

3
( jh)3 − 1

3
( jh + h)3

)∣∣∣∣∣∣

=
∣∣∣∣∣∣
n−1∑
j=0

‖B‖2
(

jh3 + 2/3h3
)∣∣∣∣∣∣

≤ Ch.

Analogously we get for the velocity component

|E[‖X2
n‖2] − E

[‖X2
nh‖2]| ≤ CT .

Due to the block structure of the matrix Ω we can split the equation (15) into
two equations and write X1

t = (X1
t,1 X1

t,2)
T and X2

t = (X2
t,1 X2

t,2)
T , where X1

t,1,

X2
t,1, X1

t,2, X2
t,2 ∈ R

m̃ . The slow component of the system will thus be X1
t,1 and the

fast one X1
t,2. Therefore we obtain for the mean-square error in position

(
E

[‖X1
n − X1

nh‖2])1/2 =
(
E

[‖X1
n,1 − X1

nh,1‖2] + E
[‖X1

n,2 − X1
nh,2‖2])1/2 ≤ Ch

and similarly for the velocity component

(
E

[‖X2
n − X2

nh‖2])1/2 ≤ CT 1/2.

For the errors in the second moment, we get

|E[‖X1
n‖2] − E

[‖X1
nh‖2]| ≤ Ch, |E[‖X2

n‖2] − E
[‖X2

nh‖2]| ≤ CT .
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For our numerical experiments, we will take 2m̃ = 6 mass points, a spring constant
ω = 50, and we will consider

x1(0) = 1, y1(0) = 1, x4(0) = ω−1, y4(0) = 1

and zero for the remaining initial values. For the stochastic term we choose

B = (0 1 0.5 5 0 0.01)T .

We finally want to note that all the expected values are computed numerically using
sample averages. In order to make these approximations as accurate as necessary, we
took enough sample paths in all our numerical experiments.

Figure 1 displays the linear growth rate of the expectation of the energy along the
numerical solution of the stochastic trigonometric method (3) with filters given in
Example 3 and along the numerical solution given by the Euler–Maruyama scheme.
The growth rate given by Theorem 4 is observed and on the contrary, if we solve (15)
by the Euler–Maruyama method, the expectation of the total energy of the system
grows exponentially.

In Fig. 2 we notice a linear growth of the total oscillatory energy in the stochastic
case. As a comparison, we plot the oscillatory energy of the deterministic FPU prob-
lem. Both in the deterministic and in the stochastic case, there is an exchange of energy
between the stiff springs.

The convergence behaviour of the method is illustrated in Figs. 3 and 4. We
calculated M = 20,000 sample paths for the mean-square convergence and for the
convergence in the second moment. For the error in the second moment in the velocity
component we chose ω = 10 in order to avoid the large number of samples that would
be required for ω = 50.

Finally, in order to illustrate the fact that our error bounds are independent of the
large parameter ω, we chose ω = 500 in Fig. 5 and observe the same orders of
convergence for the position component as for smaller ω.
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Stochastic Trigonometric Method

0 2 4 6 8 10
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500
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Time

E
[H
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Euler−Maruyama

Fig. 1 The stochastic trigonometric method (3) with step size h = 0.1 and M = 10,000 sample paths
reproduces the linear growth of the energy almost exactly (left picture), while the numerical energy obtained
by the Euler–Maruyama method with step size h = 10−4 and M = 10,000 sample paths grows exponen-
tially (right picture)
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Fig. 2 In the deterministic case the total oscillatory energy is almost conserved, while the stiff springs
exchange energy among each other (left picture). In the stochastic case there is also an exchange of energy
between the stiff springs, but the expected value of the total oscillatory energy obtained by method (3) with
step size h = 0.01 and M = 10,000 sample paths grows linearly (right picture)
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Fig. 3 Mean-square error in the position (left picture) and in the velocity (right picture) for the stochastic
FPU problem (15). The dashed lines have slope one
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Fig. 4 Error in the second moment for the position (left picture) and for the velocity (right picture)
component for the stochastic FPU problem (15). The dashed lines have slope one
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Fig. 5 Mean-square error (left picture) and error in the second moment (right picture) for the position
component for the stochastic FPU problem (15) with ω = 500. The dashed lines have slope one

6.2 Semi-discretisation of a semi-linear stochastic wave equation

As a final example, we consider the pseudo-spectral semi-discretisation (using the
eigenfunctions en(x) = √

2/π sin(nx)) of the semi-linear stochastic wave equation
from [15]:

utt (x, t) = σ 2uxx (x, t)+ (a0 − a2|u(x, t)|2L2)u(x, t)+ bξ,

where (x, t) ∈ (0, π) × (0,∞) and ξ is white in time and spatially correlated. We
impose homogeneous boundary conditions u(0, t) = u(π, t) = 0. This gives us the
following system of SDEs for the Fourier coefficients cn = cn(t):

c̈n + (σ 2n2 − a0)cn + a2

( ∞∑
m=1

c2
m

)
cn = bnẆn .

Truncating this system at N F Fourier modes, we end up with a system of the form (1).
To illustrate the excellent long-time behaviour of the stochastic trigonometric

scheme (3) with filter functions given by Example 3, we compute the expected energy
from Theorem 4, i.e. the trace formula in [15]:

E

⎡
⎣ 1

2

N F∑
n=1

(
vn(t)

2 + (σ 2n2 − a0)cn(t)
2) + a2

4

(
N F∑
n=1

cn(t)
2

)2⎤
⎦

= 1

2

N F∑
n=1

(
vn(0)

2 + (σ 2n2 − a0)cn(0)
2) + a2

4

(
N F∑
n=1

cn(0)
2

)2

+
N F∑
n=1

b2
n

t

2
,

where N F is the number of Fourier modes and vn(t) = ċn(t). Figure 6 shows the
expected value of the energy for the following parameters: N F = 1024 Fourier-
modes, σ = 1, a0 = 0.5, a2 = 0.2, bn = 1, M = 1000 samples, h = 0.2 time step
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Fig. 6 Linear growth rate in the energy of the stochastic wave equation along the numerical solution given
by (3) (left). One sample numerical trajectory (right)

and initial values cn(0) = 0 and vn(0) = 0 except for the first 500 Fourier modes,
where we set cn(0) = 0.01. The time interval ranges from T = 0 to T = 100. We
also display one sample trajectory of the numerical solution to the wave equation. A
detailed analysis of the good behaviour of the stochastic trigonometric methods for the
time discretisation of the stochastic wave equation will be presented in a forthcoming
publication.

Acknowledgments We greatly appreciate the referees’ comments and references on an earlier version.
We would like to thank Marcus Grote, Luc Guyot, Carlo Marinelli and Lluis Quer-Sardanyons for interesting
discussions. This work was partially supported by the Fonds National Suisse, project No. 200021_127130.
A large part of this work was carried out when one of the authors (DC) visited the Hausdorff Institute for
Mathematics in Bonn. DC would like to thank this institute for its hospitality.

References

1. Cohen, D.: On the numerical discretisation of stochastic oscillators (2010, Submitted)
2. Cohen, D., Jahnke, T., Lorenz, K., Lubich, C.: Numerical integrators for highly oscillatory Hamiltonian

systems: a review. In: Analysis, Modeling and Simulation of Multiscale Problems, pp. 553–576.
Springer, Berlin (2006)

3. Deuflhard, P.: A study of extrapolation methods based on multistep schemes without parasitic
solutions. Z. Angew. Math. Phys. 30(2), 177–189 (1979)

4. Grimm, V., Hochbruck, M.: Error analysis of exponential integrators for oscillatory second-order
differential equations. J. Phys. A 39(19), 5495–5507 (2006)

5. Hairer, E., Lubich, C., Wanner, G.: Geometric numerical integration. Structure-preserving algorithms
for ordinary differential equations. Springer Series in Computational Mathematics, vol. 31. Springer,
Berlin (2002)

6. Hochbruck, M., Lubich, C., Selhofer, H.: Exponential integrators for large systems of differential
equations. SIAM J. Sci. Comput. 19(5), 1552–1574 (1998)

7. Hochbruck, M., Ostermann, A.: Exponential integrators. Acta Numer. 19, 209–286 (2010)
8. Hong, J., Scherer, R., Wang, L.: Predictor-corrector methods for a linear stochastic oscillator with

additive noise. Math. Comput. Model. 46(5-6), 738–764 (2007)
9. Jentzen, A., Kloeden, P.E.: Overcoming the order barrier in the numerical approximation of stochastic

partial differential equations with additive space-time noise. Proc. R. Soc. Lond. Ser. A Math. Phys.
Eng. Sci. 465(2102), 649–667 (2009)

123



Trigonometric methods for stiff second-order SDEs 29

10. Kloeden, P.E., Lord, G.J., Neuenkirch, A., Shardlow, T.: The exponential integrator scheme for
stochastic partial differential equations: pathwise error bounds. J. Comput. Appl. Math. 235(5),
1245–1260 (2011)

11. Kloeden, P.E., Platen, E.: Numerical solution of stochastic differential equations. In: Applications of
Mathematics (New York), vol. 23. Springer, Berlin (1992)

12. Leimkuhler, B., Reich, S.: Simulating Hamiltonian dynamics. In: Cambridge Monographs on Applied
and Computational Mathematics, vol. 14. Cambridge University Press, Cambridge (2004)

13. Lord, G.J., Rougemont, J.: Topological and ε-entropy for large volume limits of discretized parabolic
equations. SIAM J. Numer. Anal. 40(4), 1311–1329 (2002)

14. Lord, G.J., Rougemont, J.: A numerical scheme for stochastic PDEs with Gevrey regularity. IMA
J. Numer. Anal. 24(4), 587–604 (2004)

15. Schurz, H.: Analysis and discretization of semi-linear stochastic wave equations with cubic nonlinearity
and additive space-time noise. Discrete Contin. Dyn. Syst. Ser. S 1(2), 353–363 (2008)

16. Strømmen Melbø, A.H., Higham, D.J.: Numerical simulation of a linear stochastic oscillator with
additive noise. Appl. Numer. Math. 51(1), 89–99 (2004)

17. Tao, M., Owhadi, H., Marsden, J.E.: Structure preserving stochastic impulse methods for stiff langevin
systems with a uniform global error of order 1 or 1/2 on position. arXiv:1006.4657v1 (2010)

18. Tocino, A.: On preserving long-time features of a linear stochastic oscillator. BIT 47(1), 189–196 (2007)

123


	Convergence analysis of trigonometric methods for stiff second-order stochastic differential equations
	Abstract
	1 Introduction
	2 Stochastic trigonometric methods
	3 Mean-square convergence analysis
	4 Convergence in the second moment
	5 Growth rate of the expected energy
	6 Numerical experiments
	6.1 The stochastic Fermi--Pasta--Ulam problem
	6.2 Semi-discretisation of a semi-linear stochastic wave equation

	Acknowledgments
	References


