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Abstract The circadian system coordinates mammalian
physiology and behavior with the environmental light–dark
cycle. It allocates sleep to the inactivity phase using various
mechanisms involving neurotransmitters, nuclear receptors,
and protein kinases. These pathways are related to
metabolism, indicating that the circadian system and sleep
are connected via metabolic parameters. This suggests that
organs other than the brain may “sleep.” A hypothetic view
on this aspect is presented providing a different perspective
on sleep regulation.
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Introduction

Life on earth has been exposed to a periodic occurrence of
light and darkness during its evolution. This steady change
of light and darkness has been incorporated in the form of a
circadian rhythm in order to schedule biochemical and
physiological processes to their optimal phase during the
24 h of a day (for the molecular makeup, see [66], this
issue). In mammals, a day can roughly be divided into an

activity phase, during which physical activity is predomi-
nant, and a rest phase, during which repair mechanisms
become active and brain function alters into a state of sleep.
Hence, sleep is a periodically occurring state of rest and
lack of interaction with the environment. However, sleep
appears to be more than simply switching off wakefulness;
it appears to be a highly regulated process involving mainly
two mechanisms: (1) a homeostatic process regulating the
increase for readiness to fall asleep during wakefulness and
the decrease of sleep intensity during sleep and (2) a
circadian process that schedules sleep and wakefulness to
the appropriate times within 1 day and is mostly independent
of previous sleep/wake episodes [9].

These two mechanisms describe sleep at the systemic
level. However, in the last decade, the circadian system
could be analyzed in a very systematic manner due to the
identification of genes making up transcriptional–translational
autoregulatory feedback loops building the base for a clock
mechanism at the cellular level. This has paved the way to
analyze mice with mutations in specific clock genes and their
effect on sleep parameters [58, 66]. Circadian parameters
were most of the time affected; however, homeostatic
parameters, such as delta power, have been affected only in
a few cases [21, 79]. This indicates that at the molecular
level, additional mechanisms determine the homeostatic
contribution to sleep.

Deciphering the molecular base of sleep has been very
difficult. This may have several reasons. First, it is very
likely that the homeostatic and circadian processes are
interlaced to some degree, which makes it difficult to
clearly separate the two processes and the mechanisms
involved. Second, the definition of sleep is focused on the
brain and its activity, since lack of sleep manifests first in
lack of interaction with the environment due to changes in
brain activity. However, due to the reasons mentioned
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above, the influence of the circadian component on sleep is
becoming better understood. The influence of circadian
rhythms on neurotransmitter expression and their action on
sleep via their receptors is an emerging topic [71].
Regulation of neurotransmitter expression directly via clock
components binding to E-boxes in promoters of the
corresponding genes [35] as well as indirect regulation via
nuclear receptors modulated by clock components such as
PER2 [63] may shed new light on the interaction between
circadian rhythms and sleep. Furthermore, binding of
neurotransmitters to their receptors uncovers a variety of
signaling pathways that are potentially involved in the
activation of genes important for sleep regulation such as,
for example, metabolic regulators (adenosine) and regulators
of neuronal plasticity [2].

Neurotransmitters, sleep, and circadian rhythms

Neurotransmitters serve to modulate brain activity in either
a positive or negative manner. There are two main groups
of neurotransmitters, those that facilitate sleep and those
that facilitate arousal.

Excitatory neurotransmitters such as noradrenaline,
serotonin, histamine, acetylcholine, and orexin are released
during wake from their respective neurons in the locus
ceruleus, dorsal raphe/thalamus, tuberomammillary nucleus/
posterior hypothalamus, basal forebrain/lateral tegmentum,
and lateral hypothalamus, respectively. At the same time, the
release of inhibitory neurotransmitters such as gamma-
aminobutyric acid (GABA) and galanin from the ventro-
lateral preoptic nucleus (VLPO) is suppressed to favor
the state of wakefulness.

Orexin-A and orexin-B (hypocretin-1 and hypocretin-2)
are excitatory neuropeptide hormones that stimulate wake-
fulness and energy expenditure and are thought to stimulate
food intake [17, 60]. Interestingly, orexin immunoreactivity
shows diurnal variation in the rat central nervous system
[72] and in cerebrospinal fluid of humans [26, 61]
suggesting that this peptide may be regulated by the
circadian clock mechanism or mechanisms for clock
adaptation. This is supported by the findings that dark
pulses activate orexin neurons [47]. Hence, there may be a
reciprocal relationship between circadian cues and arousal-
promoting signals arising from orexin neurons. However, it
remains to be seen whether the orexin promoter can be
modulated by clock components providing a direct link
between circadian and arousal-promoting signals.

Sleep-promoting signals such as melatonin, glycine,
GABA, and adenosine are released from the pineal gland,
the spinal cord, and the VLPO or accumulate in the basal
forebrain in the case of adenosine. This happens in an
ordered fashion. First, all aminergic and cholinergic neuro-

transmitters and orexin (see above) are inhibited through
VLPO-mediated GABA and galanin release. This decreases
arousal. Then, acetylcholine originating from neurons in
the brainstem, midbrain, and basal forebrain is released
as well as orexin. GABA and galanin that are released
from the brainstem and VLPO act to inhibit the aminergic
brainstem neurons (for detailed mechanism of sleep state
switching, see [62]).

The switch from wake to sleep appears to correlate with
the accumulation of the ATP breakdown product adenosine
during wakefulness [6]. This occurs especially in the basal
forebrain and correlates with sleep pressure. Adenosine
inhibits GABAergic basal forebrain neurons, which act to
inhibit the sleep-promoting neurons of the VLPO. Disinhibi-
tion of the VLPO promotes release of GABA and galanin,
which in turn inhibit the arousal-promoting system in the
brainstem, midbrain, and basal forebrain, thereby initiating
sleep. Hence, it appears that sleep may have a metabolic
function to avoid buildup of metabolic waste that may be
harmful for the cell (see below). Of note here is that metabolic
parameters also intersect with circadian rhythms [27].

In the pineal gland, melatonin production rises after the
activity period via activation of pineal beta-adrenergic
receptors activated by noradrenaline. This results in
elevation of adenosine monophosphate (5′-AMP) and
increases the synthesis of the rate-limiting enzyme of
melatonin synthesis, the arylalkylamine-N-acetyltransferase
(Aanat) (reviewed in [32]). There is evidence that the
synthesis of Aanat mRNA is regulated by the circadian
clock by translational mechanisms [38]. Direct interaction
of clock components with the E-box present in the
promoter of the Aanat gene appears to modulate its
expression also transcriptionally in a time-dependent fashion
[29]. This highlights additional interactions between
circadian rhythms and sleep regulation. Taken together,
it appears that several neurotransmitters involved in the
regulation of sleep are directly regulated by clock components
and hence represent intersections between circadian
rhythms and sleep.

Nuclear receptors, sleep, and circadian rhythms

Nuclear receptors are proteins that bind organic compounds
such as hormones and translocate upon ligand binding into
the nucleus of a cell. There they directly bind to DNA and
regulate expression of genes and therefore are classified as
transcription factors. The heme binding nuclear receptor
REV-ERBα (NR1D1) [82] is part of the circadian clock
machinery [55] and may influence sleep patterns via
alterations in the circadian component of sleep. However,
animals lacking this nuclear receptor have not been tested
for sleep parameters.
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Since nuclear receptors are transcription factors, there is
the possibility that they may affect expression of important
neurotransmitters affecting sleep. Recently, the nuclear
receptor germ cell nuclear factor (aka NR6A1) was
identified to regulate orexin transcription [73]. However,
whether absence of NR6A1 in the brain affects sleep
remains to be demonstrated. The levels of non-peptide
neurotransmitters such as dopamine and serotonin may
be modulated by nuclear receptors via transcriptional
regulation of rate-limiting enzymes responsible for their
synthesis and/or degradation. Nurr1 (NR4A2) directly
transactivates the promoter of the tyrosine hydroxylase
gene (TH), which encodes for the rate-limiting enzyme in
dopamine synthesis [37]. Interestingly, this nuclear recep-
tor interacts with the clock protein PER2 [63], which
modulates NR4A2 activity [59]. Hence, TH expression
may be affected by the circadian clock. Furthermore, it
appears that clock components regulate the promoter of
the Maoa gene [28], which encodes for the rate-limiting
enzyme for dopamine degradation. This may be one of the
reasons why mice with mutations in clock genes display
alterations in sleep parameters [20, 22, 39, 44]. The
regulation of dopamine by nuclear receptors may also
affect noradrenaline synthesis, since this molecule is synthe-
sized from dopamine by the enzyme dopamine β-hydrolase.
The synthesis of the other catecholamine that affects sleep,
serotonin, is controlled by tryptophan hydroxylase-2 in the
brain [84]. This enzyme is regulated by the estrogen receptor
beta (NR3A2) within serotonergic neurons of the dorsal
raphe nuclei [19] indicating the involvement of nuclear
receptors in regulation of production of this neurotrans-
mitter. Interestingly, it appears that under certain condi-
tions the estrogen receptor beta (NR3A2) may interact
with PER2 [24], and therefore, its activity is possibly
influenced by the clock mechanism.

Retinoids (including vitamin A) appear to modulate
sleep regulation probably by affecting the homeostatic
component of sleep (reviewed in [65]). Sleep deprivation
(SD) leads to changes in gene expression in the brain. One
gene that is significantly affected by SD is transthyretin
[65], a critical transporter protein for retinol. Genetic
linkage analysis in various mouse strains with varying slow
wave sleep (SWS) revealed that retinoic acid receptor beta
(RARB aka NR1B2) may be linked to changes in SWS.
Analysis of mice mutant in the Rarb1 gene revealed that
this is indeed the case [46]. Hence, it appears that retinoic
acid-mediated transcriptional events affect cortical syn-
chrony during sleep. Consistent with this finding is the
observation that a vitamin A-deficient diet causes
attenuation of delta oscillations, a correlate of sleep
depth and sleep need in the electroencephalogram (EEG)
of SWS [65]. In conclusion, it appears that RARB and its
ligand are modulating the homeostatic component of

sleep. Of note is that RARB receptors have been
hypothesized to play an important role in the mesolimbic
dopaminergic pathway [40], which is involved in addic-
tion processes and regulation of mood [50]. The other
receptor that can bind retinoids, retinoic X receptor alpha
(NR2B1), heterodimerizes with Nurr1 (NR4A2) and
NGFI-B (Nur77 aka NR4A1) [53]. Since Nurr1 regulates
TH, retinoids may affect the synthesis of dopamine [42].
Hence, retinoids may affect sleep via regulation of
dopamine production. How the Nurr1 interacting clock
gene PER2 is involved in this process remains to be
determined.

Protein kinases, sleep, and circadian rhythms

Protein kinases play an important role in the circadian clock
mechanism [76]. A mutation in casein kinase I δ (CKI δ)
leads to familial advanced sleep phase syndrome [80], by
affecting phosphorylation of a specific serine residue in the
clock protein PER2 and hence disturbing the circadian
component of sleep.

The light-mediated resetting mechanism of the circadian
clock involves a number of kinases, including CKI. There
is genetic evidence that cGMP-dependent protein kinase II
(PKGII) modulates the size of resetting in response to light
[51]. In contrast, cGMP-dependent protein kinase I (PKGI)
regulates the timing and quality of sleep and wakefulness
but not resetting of the circadian clock [43]. Interestingly,
the Caenorhabditis elegans homolog of PKGI appears to
influence lethargus, a sleep-like state in these animals
[57]. Since cGMP-dependent protein kinases can mediate
nitric oxide (NO) signaling in the nervous system, NO
may influence parameters of sleep. In accordance with this
hypothesis is the observation that NO affects recovery
sleep [36].

The MAP-kinase signaling pathway is involved in the
resetting of the circadian clock machinery in response to
light (reviewed in [31]) and also appears to affect sleep. For
example, selective increase of rapid eye movement (REM)
sleep in HIV-infected subjects can be prevented by an
inhibitor of the ERK activating enzyme MEK [18]. Hence,
the MAP-kinase pathway appears to be involved in REMS
regulation. Additionally, there is genetic evidence that
protein kinase A (PKA) signaling plays a role in the
maintenance of sleep [30]. This is also supported by the
finding of a single nucleotide polymorphism in the phos-
phodiesterase 4D (PDE4D) gene that is associated with
sleepiness in humans [25]. PDE4D reduces cAMP levels
and thereby reduces PKA activity. REM sleep deprivation
leads to activation of PKA in the pedunculopontine
tegmental nucleus [16], a critical area of the brainstem
for the regulation of REM sleep. Hence, activation of PKA
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seems to be a critical step for the homeostatic regulation of
REM sleep.

Glycogen synthase kinase 3 β (GSK3β) phosphorylates
and stabilizes the clock component and nuclear receptor
Rev-erbα [81]. This may be linked to the observation that
transgenic mice overexpressing GSK3β exhibit severe
fragmentation of the sleep–wake cycle without showing
deviancy in total duration of vigilance states [1]. In
humans, a single nucleotide polymorphism in the promoter
of GSK3β is associated with response to total sleep
deprivation in bipolar depression [5]. Taken together, it
appears that GSK3β may modulate sleep–wake organiza-
tion and recovery sleep. However, a mechanistic chain of
events is still lacking.

Calcium/calmodulin-dependent protein kinase IV (CaM-
KIV), which is involved in synaptic plasticity [78], synaptic
homeostasis [33], and learning and memory [23], is up-
regulated following sleep [13]. Overexpression of CaMKIV
in mice selectively enhances 4–7.5 Hz oscillation power
during trace fear learning and 1–4 Hz delta oscillations
during subsequent sleep [67]. This emphasizes a role for
CaMKIV in the control of learning and sleep-related EEG
oscillations.

The mRNA of another calcium/calmodulin-dependent
protein kinase, CaMKK2, is increased after 6 h of SD. This
kinase is an activator of adenosine monophosphate (AMP)-
activated protein kinase (AMPK), a sensor and central
mediator of metabolic signals. Consequently, AMPK is
phosphorylated, and p-AMPK is increased after SD [12]
and hence leads to higher AMPK activity. Pharmacological
treatment of mice with AMPK inhibitor and activator
modulated EEG delta power indicating that AMPK is
involved in the regulation of sleep depth and sleep
homeostasis [12]. Recent investigations also point to an
involvement of AMPK in the regulation of the circadian
oscillator. The clock protein CRY1 is phosphorylated and
destabilized by AMPK [41] affecting the oscillator mecha-
nism of the clock. Also, CKIε is activated by AMPK, which
leads to PER2 degradation and phase advance in the
circadian expression of clock genes [75]. Deletion of AMPK
leads to changes of circadian rhythms in a tissue- and
isoform-specific manner [74]. Since AMPK is a nutrient
sensor, it appears that metabolic status may affect the
circadian component of sleep via CRY1 and PER2 phos-
phorylation linking metabolism and sleep.

Adenosine plays an important role in sleep regulation
[6, 56]. Extracellular ATP is rapidly degraded by ectonucleo-
tidases [85], some of which are expressed in a time-
dependent fashion [83]. The resulting adenosine accumulates
in the extracellular space and is taken up by astrocytes via
equilibrative nucleoside transporters [4]. Inside the cell,
adenosine is phosphorylated by adenosine kinase (ADK) to
5′-AMP. Hence, ADK drives the influx of adenosine into the

astrocytes and regulates the abundance of extracellular
adenosine, and therefore, ADK is the primary enzyme
regulating adenosine metabolism in rodents [8, 48]. In
accordance with the notion of adenosine being an
important sleep regulator, overexpression of the cytoplas-
mic isoform of ADK altered sleep physiology in mice
[52]. Interestingly, however, reduced expression had no
major effect on sleep [52].

Taken together, the above illustrates the importance of
protein kinases in sleep and circadian clock regulation.
Most likely, more protein kinases and phosphatases, the
counterplayers of kinases, are involved in the regulation
of sleep.

Metabolism, an intersection between the circadian
and the homeostatic process of sleep?

Most of the neurotransmitters, nuclear receptors, and
protein kinases that regulate sleep are involved in the
regulation of metabolism as well. Therefore, metabolism
may be the focal point between the regulation of the
circadian and homeostatic process of sleep. In 1995,
Benington and Heller [6] proposed that during wake,
metabolism is increased in the brain, leading to a rise in
adenosine levels. Adenosine is an inhibitory neuromodulator
in the central nervous system, inhibiting neuronal activity of
excitatory (e.g., cholinergic and glutamatergic) as well as
inhibitory (e.g., GABAergic) neurons [70]. The rate of
adenosine formation increases when the supply-to-demand
ratio for oxygen is decreasing. In other words, if more
oxygen is needed than can be supplied as observed in
hypoxia, neuronal activity is shut down (for review, see
[54]). This may be important to protect neurons from self-
destruction and to minimize cell damage [15]. Interestingly,
adenosine levels increase during SD in the basal forebrain of
rats, but not in the thalamus, dorsal raphe nucleus,
pedunculopontine tegmental nucleus, and preoptic area
(for review, see [54]). This regionally specific rise in
adenosine in response to SD supports the hypothesis that
adenosine promotes sleep via modulation of neuronal
activity in the basal forebrain.

However, it is not clear how extracellular ATP levels are
regulated. The ATP produced in mitochondria leads to a
steady-state cytosolic concentration of ATP of about
10 mM. Extracellular ATP is approximately 10 nM under
basal conditions. Hence, the ATP gradient for ATP secretion
or efflux is about 106-fold. Interestingly, this gradient is 100
times greater, yet opposite, to the gradient for calcium entry
into cells. Therefore, if a pathway is activated or a channel
opened for ATP release, ATP would exit the cell down a
very favorable gradient. It should be emphasized, however,
that only 1% or less of the intracellular ATP pool is
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necessary to activate its own or its derivative's receptors.
Thus, extracellular ATP signaling can occur without
compromising cellular metabolism or essential enzymatic
reactions (reviewed in [64]).

After conversion of ATP to adenosine and uptake of
adenosine into the cell, ADK phosphorylates adenosine to
5′-AMP (see above). 5′-AMP signals to the cell that energy
should be mobilized from the organism's storage sites. This
molecule allosterically regulates the following key meta-
bolic, (catabolic and anabolic) enzymes. On the catabolic
side, AMPK is activated by 5′-AMP, which leads to
increase in nicotinamide phosphoribosyl transferase, and
intracellular NAD+ levels rise. This enhances SIRT1
activity leading to deacetylation of its targets such as
PGC-1α [10, 11] to increase fatty acid oxidation. The rate-
limiting enzyme of glycolysis, phosphofructokinase, is
positively regulated by 5′-AMP dictating the catabolism
of glucose. Glycogen catabolism is also positively regulated
by 5′-AMP via activation of the rate-limiting enzyme
glycogen phosphorylase, which liberates glucose from
glycogen. Anabolic reactions such as gluconeogenesis,
however, are inhibited by 5′-AMP by negative regulation
of fructose-1,6-diphosphatase (reviewed in [45]). Taken
together, 5′-AMP activates catabolic pathways and inhibits
anabolic pathways. This is in line with the view that
adenosine promotes sleep. During inactivity, energy will be
supplied by the body's stores, and hence, catabolic path-
ways need to be activated. Interestingly, many of the
enzymes highlighted here are involved in the regulation of
the circadian system.

The liver is the central organ for metabolic regulation.
Patients with liver cirrhosis display fragmented sleep,
delayed sleep habits, take longer to fall asleep, and nap
frequently during the day [7, 14]. The pathophysiology of
these abnormalities is unknown, but patients with liver
cirrhosis might be interesting to study from the point of
view of a disturbed circadian system. Under the assumption
that cirrhotic patients do not have a circadian rhythmically
active liver, these patients model a clock system with
disturbance of peripheral but not central clocks. Hence, the
importance of peripheral circadian liver metabolic rhythms
can be studied in terms of their relevance for sleep. In this
context, the metabolism of melatonin, a sleep-promoting
molecule, synthesized in the pineal gland has been studied.
Melatonin is transformed to 6-sulphatoxymelatonin (aMT6s)
in the liver [3, 34] and is excreted in the urine. Abnormalities
in the rhythm of both plasma melatonin and urinary
aMT6s have been observed in patients with cirrhosis, and
this may contribute to sleep disturbances [68, 69]. A
significant association has been observed between aMT6s
profiles and delayed sleep timing in patients with cirrhosis
[49] indicating at least a disturbance of the circadian
component of sleep in these patients.

The hourglass and “sleeping” cells

The circadian as well as the homeostatic component of
sleep are related to metabolism. This is probably one of
the reasons why the two processes cannot be clearly
separated from each other. In contrast to the circadian
component, the mechanistic workings of the homeostatic
component are far from understood. The following
hypothesis may aid in better understanding and investi-
gating the homeostat in the future. The homeostat may
be viewed as a counter of the filling state of a metabolic
trash bin. During the active phase, metabolism is mainly
running in one direction, and toxic products such as, for
example, peroxides may accumulate. Under normal
conditions, the circadian component will signal the
appropriate time for the organism to inverse the bio-
chemical pathways and regenerate its enzymes and
detoxify the cells which have accumulated toxic products
(e.g., peroxides). This will put the cell back to its initial
metabolic state in a circadian fashion (Fig. 1). However,
the circadian signal may be overruled by prolonged
activity or sleep deprivation, which may be necessary
under extreme circumstances. As a consequence, toxic
metabolic products accumulate. In other words, the trash
bin fills up over the normal levels limited by the circadian
signal. This still can be tolerated, but a safety mechanism
needs to be in place to define the maximal levels of toxic
substances allowed in the cell to protect it from destruc-
tion. Such a metabolic meter will ultimately force the cell
to go into the “regenerative” state, irrespective of other
signals. The initial state of the cell will be reached via
such an hourglass mechanism-like process (Fig. 1). This
may happen in all cell types. However, neurons are

Fig. 1 A circadian and a homeostatic component regulate sleep in
mammals. The circadian component corresponds to a chronometer
(left) whereas the homeostatic component corresponds to a metabolic
meter with an hourglass-like mechanism. The two components interact
but can be uncoupled by sleep deprivation
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somewhat special in this respect, because they are more
sensitive to toxic substances than other cell types. This may be
the reason why this effect is seen first in the brain in the form
of shutting down the awake state of brain activity.

Recently, “local” sleep in the brain of rats was observed
[77]. After a long period of awake state, cortical neurons
were observed to go briefly “offline” accompanied by slow
wave sleep in the local EEG. The switch to go “offline”
appeared to affect only some areas in the brain but not
others at a given time, indicating the existence of “local
sleep.” The incidence of this process appeared to increase
with the duration of the awake state, and animals showed
an overall “awake” EEG. Hence, local populations of
neurons may fall asleep without affecting the awake
appearance of the animal, although impairing its motor
performance slightly. This local regulation of sleep in
individual neurons will allow the animal to have some
neuronal circuits still running while others are idling. This
would help the animal to perform task important for
survival for a longer period than predicted by the circadian
timer. These observations are in line with the view
presented above to rest “tired” metabolically exhausted
neurons and allow them to regenerate, avoiding accumula-
tion of cytotoxic substances. It remains to be seen whether
such neurons die, when not allowed to rest, which would be
a prediction of the model postulated above.

The model presented above would also predict that basically
all cells and organs have the potential to sleep. However, the
central position of the brain allows it to regulate the function of
other organs via neuronal and hormonal signaling. Therefore,
the brain may be communicating “sleep” to organs before they
are instructed by their own metabolic meter to go into a
“regenerative” state. Hence, sleep may not be observed in
organs under normal circumstances. Under stressful conditions,
however, when cells in peripheral organs are “overused” and
not allowed to regenerate (e.g., liver cirrhosis), cells will die as a
consequence. These cells will then be replaced with newly
differentiated cells originating form local progenitor cells. This
process is less efficient in the brain and hence, metabolic
control is more stringent in this tissue. Although the hypothesis
described here has many appealing facets, it is certainly
simplistic. Nevertheless, the view presented here may be useful
to look at sleep from a different perspective.
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