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Abstract. On a hyperbolic Riemann surface, given two simple closed geodesics that inter-
sect n times, we address the question of a sharp lower bound Ln on the length attained by the
longest of the two geodesics. We show the existence of a surface Sn on which there exists
two simple closed geodesics of length Ln intersecting n times and explicitly find Ln for
n ≤ 3.

1. Introduction

Extremal hyperbolic Riemann surfaces for a variety of geometric quantities are
objects of active research. Well known cases include the study of surfaces with
maximum size systoles [2, 4, 16], surfaces with largest embedded disk ([3, 10])
or more classically surfaces with maximum number of automorphisms (the study
of Hurwitz surfaces and related topics). These subjects are related to the study of
the simple length spectrum of a surface S, denoted �0(S), which is the ordered set
of lengths of (non-oriented, primitive) simple closed geodesics (with multiplicity).
The question of interpreting the geometry of the surface through the values found
in the simple length spectrum seems to be a very difficult subject. In particular, it is
not clear whether the simple length spectrum determines a surface up to isometry.

One of the major tools used to approach these problems is the collar theorem,
and in particular a corollary which states that two short simple closed geodesics (of
length less than 2 arcsinh(1)) cannot intersect (see [7]). The bound is sharp because
it can be realized on a particular torus with a cusp. The bound is never reached for
a closed surface, but for any genus, is realized in the compactification of its Moduli
space.

The goal of this article is to generalize this result by studying the relationship
between the number of intersection points between two simple closed geodesics
and the length of the geodesics. The surfaces we consider lie in the Moduli space of
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surfaces with boundary Mg,k , where g is the genus and k is the number of simple
closed boundary geodesics which we allow to be cusps (geodesics of length 0). The
foundation of our study is found in the following theorem (Sect. 2).

Theorem 1.1. On a hyperbolic Riemann surface S, let α and β be simple closed
geodesics that intersect n times. Then there exists a universal constant Ln such that
max{�(α), �(β)} ≥ Ln and Ln −→ ∞ when n −→ ∞. Furthermore, a surface
Sn realizing the bound exists.

By realizing the bound, we mean that on Sn there are two simple closed geo-
desics of length Ln that intersect n times. We further investigate the asymptotic
behavior of Ln in the following proposition where we prove:

Proposition 1.2. Let ln be the positive solution of the equation

ln = 2n arcsinh

(
1

sinh(ln/2)

)
.

Then

ln ≤ Ln < 2ln .

We are able to describe the surfaces explicitly for n ∈ {2, 3}, which gives us
the following result.

Theorem 1.3. The surfaces S2 and S3 are once-punctured tori and

L2 = 2 arccosh(2), L3 = 2 arccosh

(√
1
2

(
7 + 11

3

√
11
3

) )
.

As mentioned earlier, L1 = 2 arcsinh1 and note that the value for L2 was pre-
viously proved in [9] but the proof presented here is new. The surfaces S1, S2 and
S3 are all once-punctured tori (S1 = S2 �= S3). We show that they have non-trivial
isometry groups. (A once-punctured torus is necessarily hyperelliptic, so by non-
trivial isometry group we mean an isometry group not isomorphic to Z2). It seems
reasonable to conjecture that for all n, Sn is also a once-punctured torus with a
non-trivial isometry group.

This article is organized as follows. Section 2 is devoted to preliminaries and
the proof of Theorem 1.1 and Proposition 1.2. The next two sections concern the
exact values of L2 and L3 and are similar in nature. The final section discusses
possible future directions for related questions.

2. Preliminaries and groundwork

We will be considering hyperbolic Riemann surfaces of finite area, with or with-
out boundary. We allow boundary to be either cusps or simple closed geodesics.
A surface will always designate a surface of this type. The signature of a surface
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will be denoted (g, k) where g is the genus and k the number of boundary geo-
desics (or cusps). A surface of signature (0, 3) is called a pair of pants, a surface
of signature (1, 1) a one-holed torus, and a surface of signature (0, 4) a four-holed
sphere. We reserve the term punctures for cusps, and holes can be cusps as well as
boundary geodesics. The Moduli space of surfaces with boundary will be denoted
Mg,k .

The set of interior simple closed geodesics of a surface S will be denoted
G(S). The length of a simple closed geodesic α will be denoted �(α), although
a geodesic and its length might not be distinguished. The term geodesic will
sometimes be used instead of simple closed geodesic, but only if it is obvious
in the context. Closed geodesics will be considered to be non-oriented (unless
specified) and primitive, meaning that a closed geodesic cannot be written as
the k-fold iterate of another closed geodesic. Seen this way, geodesics are point
sets independent of parametrization. We denote int(α, β) the number of transver-
sal intersection points between two simple closed geodesics α and β. We define
the simple length spectrum �0(S) as the ordered set of lengths of all interior
simple closed geodesics. Notice that our definition takes into account multiplic-
ity, namely that if there are n distinct simple closed geodesics of S with equal
length �, then the value � will appear n times in �0(S). Consider two surfaces
S and S̃ with simple length spectra �0(S) = {�1 ≤ �2 ≤ · · · } and �0(S̃) =
{�̃1 ≤ �̃2 ≤ · · · }. The notation �0(S) < �0(S̃) is an abbreviation for �i < �̃i

for all i ∈ N
∗.

In order to describe the pasting of a simple closed geodesic, one generally uses
twist parameters. The only use we will have of twist parameters is to describe what
we call without twist or zero-twist and half-twist. Recall that a pair of pants has three
disjoint unique simple geodesic paths between distinct boundary geodesics, called
perpendiculars, which decompose the pair of pants into two isometric hyperbolic
right-angled hexagons. If two pairs of pants are pasted along a geodesic α such
that the endpoints of the perpendiculars coincide, then we refer to a pasting with
zero-twist or without twist. The terminology is slightly different for one-holed tori.
Consider a pair of pants with two boundary geodesics α1 and α2 of equal length,
and paste α1 and α2 together in order to obtain a one-holed torus. If the common
perpendicular a between α1 and α2 has its endpoints that coincide, then we refer
to a pasting with zero-twist or without twist. If the endpoints of a are diametrically
opposite on the geodesic formally known as α1 or α2, then we refer to a half-
twist. Finally, if an interior simple closed geodesic α is said to be pasted with a
half-twist, then we mean that it has been obtained from the construction described
above.

A function fα : Mg,k −→ R
+ that associates to a closed geodesic α its length

depending on the choice of metric is generally referred to as a length function.
Length functions are well known to be analytic (one way of seeing this is via
Fricke trace calculus, see for instance [1]). What is interesting to us is that the func-
tion of an interior closed geodesic remains continuous, even if boundary length
goes to 0.

The collar theorem (i.e. [11, 6, 15]) gives a very precise description of the
geometry of surfaces around simple closed geodesics.
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Theorem 2.1. Let γ1 and γ2 be non-intersecting simple closed geodesics on S.
Then the collars

C(γi ) = {p ∈ S | dS(p, γi ) ≤ w(γi )}
of widths

w(γi ) = arcsinh

(
1/ sinh

�(γi )

2

)

are pairwise disjoint for i = 1, 2. Furthermore, each C(γi ) is isometric to the
cylinder [−w(γi ), w(γi )] × S

1 with the metric ds2 = dρ2 + �(γi )
2 cosh2ρ dt2.

This implies that a geodesic α that transversally intersects n times another
geodesic β satisfies �(α) ≥ 2n w(β).

Corollary 2.2. If α and β are two simple closed geodesics such that

�(α) ≤ �(β) ≤ 2 arcsinh1,

then they do not intersect.

We shall also use the following result found in [14].

Theorem 2.3. Let S be a surface of signature (g, k) with k > 0. Let γ1, . . . , γk be
the boundary geodesics of S. For (ε1, . . . , εk) ∈ (R+)k with at least one εi �= 0,
and ε j ≤ �(γ j ) for all j , there exists a surface S̃ with boundary geodesics of length
�(γ1) − ε1, . . . , �(γk) − εk such that all corresponding simple closed geodesics in
S̃ are of length strictly less than those of S(�0(S̃) < �0(S)).

There is an immediate corollary to this result which is very useful to our study.

Corollary 2.4. If α and β are two simple closed geodesics that intersect n times on
a surface with non-empty boundary and with at least one boundary geodesic not a
cusp, then there exists a surface of same signature, with only cusps as boundary,
containing two simple closed geodesics α̃ and β̃ which intersect n times and such
that �(α̃) < �(α) and �(β̃) < �(β).

This corollary implies that we can limit ourselves to studying surfaces with
cusp boundary.

We need to introduce the notion of a minimally embedded surface around two
simple closed geodesics. Let α and β be two simple closed geodesics that intersect
on a surface S. We define Sα,β to be the unique subsurface of S constructed as
follows. For ε < min{w(α),w(β)}, consider the ε-tubular neighborhood of the set
α ∪ β. Its boundary consists of a set of disjoint simple closed curves whose unique
geodesic representatives we shall denote γi , i = 1, . . . , m. Note that the γi may
not all be distinct and that a γi may be the empty set if the curve it is representing
is null-homotopic. Only one of the connected components obtained by cutting S
along the set {γi }m

i=1 contains α and β and it is this one that we denote Sα,β . The
collar theorem implies that any simple closed geodesic γ of S that does not cross
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α or β is either a boundary geodesic of Sα,β or satisfies γ ∩ Sα,β = ∅, i.e., the
complement of α ∪ β on Sα,β is a set of topological disks and cylinders. Each
of the cylinders has one of the boundary curves of Sα,β as base. We refer to Sα,β

as the geodesic subsurface filled by α and β, or simply the geodesic subsurface
Sα,β . The surface Sα,β has a certain signature (g, k). Note, as an example, that if α

and β intersect once, then Sα,β is necessarily of signature (1, 1). In general, there
is a relationship, which we give in the following lemma, between the number of
intersection points between the two geodesics and the signature of their associated
geodesic subsurface.

Lemma 2.5. Let α and β be two simple closed geodesics that intersect n times on
a surface, and suppose their associated geodesic subsurface Sα,β has signature
(g, k).

Then the inequality n ≥ 2g + k − 2 holds.

Proof. The complement of α ∪ β on Sα,β is a set of k topological cylinders and p
disks.

If we replace these k topological cylinders on Sα,β by topological disks, we
get a closed topological surface Sg of genus g whose Euler characteristic is χ =
2 − 2g. We can also calculate its Euler characteristic using the polyhedral formula
χ = V − E + F with E = 2n edges (the arcs of α and β between intersection
points), V = n vertices (the intersection points of α and β), and F = p + k faces.
Thus, we get the equality 2 − 2g = p + k − n, which implies n ≥ 2g + k − 2. ��
Theorem 2.6. There exists a universal constant Ln such that max{�(α), �(β)} ≥
Ln for any two simple closed geodesics α and β that intersect n times on a hyper-
bolic compact Riemann surface. Furthermore, a surface Sn realizing the bound
exists. Finally, Ln −→ ∞ when n −→ ∞.

Proof. The idea of the proof is to show that, for every n, we are evaluating a contin-
uous function on a finite set of compact sets. The function is the one that associates
to a surface S the following value:

f (S) = min
{α,β∈G(S)|int(α,β)=n}

max{�(α), �(β)}.

For a given signature (g, k), f : Mg,k −→ R
+, is obviously continuous and

bounded. (Mind that for certain signatures, f may not be defined, for instance on
surfaces of signature (0, 4), there are no pairs of simple closed geodesics that inter-
sect an odd number of times.) Suppose α and β are two simple closed geodesics
on a surface S that intersect n times. Consider the geodesic subsurface Sα,β filled
by α and β. By lemma 2.5, the signature (g, k) of Sα,β is universally bounded by
a function of n (g ≤ n+2

2 , k ≤ n + 2). There are thus a finite number of possible
signatures for Sα,β , which we shall denote (g1, k1), . . . , (gm, km). As any interior
simple closed geodesic of Sα,β intersects either α or β, and as we are trying to
minimize the lengths, the collar theorem ensures that the length of the systole of
Sα,β is bounded from below (otherwise the maximum length of α and β would be
unbounded). Denote by εn this lower bound. By corollary 2.4, as we are searching
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for a minimal value among all surfaces, we can limit ourselves to searching among
surfaces with all boundary geodesics being cusps. Denote by M0

g,k the restricted

set of surfaces of signature (g, k) with cusp boundary. Further denote by M0
(g,k),εn

the subset of M0
g,k with systole bounded below by εn . We are now searching among

a finite set of such sets, namely for each (g j , k j ), j ∈ {1, . . . , m}, we need to study
the set M0

(g j ,k j ),εn
. These sets are well-known to be compact (for surfaces without

boundary see [13], and with boundary see [12]). As f is a continuous function
that we allow to cover a finite number of compact sets, it follows that f admits a
minimum, and the value of f in this point we denote Ln . A point in Moduli space
which reaches the minimum is denoted Sn .

We now need to show that Ln −→ ∞ when n −→ ∞. Suppose this is not
the case, meaning there exists some L such that Ln < L for all n. This would
mean that for any n, there exist two simple closed geodesics αn and βn on some
surface S that intersect n times such that �(αn) ≤ �(βn) ≤ L . By the collar theorem
�(βn) ≥ 2n arcsinh( 1

arcsinh(L/2)
). But this is a contradiction, because for any L , n

can be chosen so that this is not the case. The theorem is now proven. ��
To study the asymptotic behavior of Ln , we shall use the quantity ln defined in

the following proposition.

Proposition 2.7. For n ∈ N, let ln be the positive solution of the equation

ln = 2n arcsinh

(
1

sinh(ln/2)

)
.

Then ln is strictly increasing in n.

Proof. The equation ln = 2n arcsinh( 1
sinh(ln/2)

) is equivalent to sinh( ln
2n ) sinh( ln

2 ) =
1. Suppose now that there is an n ∈ N such that ln ≥ ln+1. Then sinh( ln

2 ) ≥
sinh(

ln+1
2 ) which implies therefore that sinh( ln

2n ) ≤ sinh(
ln+1

2n+2 ).

But ln
2n ≤ ln+1

2n+2 implies ln < ln+1 which leads to a contradiction. ��
Now the asymptotic behavior of Ln can be expressed as follows.

Proposition 2.8. ln ≤ Ln < 2ln .

Proof. Let us begin by showing ln ≤ Ln .
If a simple closed geodesic α of length ln intersects a simple closed geodesic

β n times, then β is at least as long as 2n times the width of the collar of α. Thus
�(β) ≥ ln . The width of the collar of α increases when α gets shorter, thus ln ≤ Ln .

It remains to show that Ln < 2ln .
For n ∈ N, let Y be a pair of pants whose boundary consists of a cusp and two

boundary geodesics, α1 and α2, both of length ln . Let us paste these two geodesics
together (denote the resulting geodesic α) without twist. The common perpendic-
ular between α1 and α2 is now a simple closed geodesic, which we shall denote
δ. Notice that �(δ) = ln/n. For a given primitive parametrization of α and δ, con-
sider the simple closed curve β̃ = δnα and its unique geodesic representative β.
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Fig. 1 Surface S1 with geodesics in bold

By construction, �(β) < �(β̃) = ln + n(ln/n) = 2ln . We have thus constructed a
once-punctured torus with two interior geodesics α and β that satisfy int(α, β) = n
and max{�(α), �(β)} < 2ln . It follows that Ln < 2ln . ��

Finally, as an illustration of our investigation, let us give the value for L1
and describe the surface S1. Corollary 2.2 implies that L1 ≥ 2 arcsinh1. In fact,
L1 = 2 arcsinh1, and this can be shown by constructing the surface S1 which
realizes the bound L1. Consider, in the hyperbolic plane, a quadrilateral with three
right angles and one zero angle (a point at infinity). This quadrilateral can be chosen
such that the two finite length adjacent sides are of length arcsinh1. By taking four
copies of this quadrilateral, and pasting them together as in Fig. 1, one obtains a
once-punctured torus with two simple closed geodesics of length 2 arcsinh1 that
intersect once.

This once-punctured torus is the only surface on which two intersecting geode-
sics can have length L1. It is worth mentioning that this torus has other remarkable
properties: it is the only once-punctured torus with an automorphism of order 4.

3. Finding S2 and calculating L2

Let us consider two simple closed geodesics α and β on a surface S that intersect
twice in points A and B, and the geodesic subsurface Sα,β . In order to distinguish
possible signatures for the surface Sα,β , let us give α and β orientations. Let Cβ

be a collar around β. The ordered pair of simple closed oriented geodesics (α, β)

induces an orientation on Cβ in both A and B. These orientations are either opposite
(case 1) or the same (case 2). This is illustrated in Fig. 2.

In case 1, Sα,β is a surface of signature (0, 4) obtained by cutting along the
simple closed geodesics ε1, ε2, ε3 and ε4 homotopic to the simple closed curves
ε̃1, ε̃2, ε̃3 and ε̃4 shown in Fig. 3.

In case 2, there are two possible signatures for the surface Sα,β . Indeed, con-
sider the simple closed curves ε̃1 and ε̃2 shown in Fig. 4. One of these curves may
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αα

β β

A B A B

case 1 case 2

Fig. 2 The two cases for n = 2

α αε̃4

ε̃3

ε̃2ε̃2
β
ε̃1ε̃1

Fig. 3 The simple closed curves ε̃1, ε̃2, ε̃3 and ε̃4 in case 1

? ?

α α

β

ε̃1 ε̃2

A

B

A

BA

B

Fig. 4 The simple closed curves ε̃1 and ε̃2 in case 2

be null-homotopic, but not both because otherwise the surface would be a torus
without holes, which of course cannot admit a hyperbolic metric.

If only one curve is not null-homotopic, say ε̃1, we cut the surface S along the
geodesic that is homotopic to ε̃1 to obtain a surface of signature (1, 1). If neither
curve is null-homotopic, we cut the surface S along the two geodesics homotopic
to ε̃1 and ε̃2 to obtain a surface of signature (1, 2).

Therefore, in view of Corollary 2.4, S2 is a sphere with four cusps, a torus with
one cusp or a torus with two cusps.

First let us investigate geodesics intersecting twice on a four-holed sphere.

Proposition 3.1. Let X be a four-holed sphere (where we allow the boundary
geodesics to be cusps). Let α and β be distinct interior simple closed geodesics of
X. Then

max{�(α), �(β)} ≥ 4 arcsinh1 = 2 arccosh3.
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Furthermore equality holds for a sphere with four cusps obtained by gluing
two pairs of pants with two cusps and third boundary geodesic of length 2 arccosh3
without twist.

Proof. By corollary 2.4 it suffices to show the result for X a sphere with four cusps.
Suppose �(α) ≥ �(β). Now suppose by contradiction that �(α) < 4 arcsinh1. On a
four-holed sphere, distinct interior simple closed geodesics cross at least twice. By
the collar theorem, the length of any other interior simple closed geodesic must be
strictly greater than four times the width w(α) of the half-collar around α, which
by 2.1 is w(α) ≥ arcsinh( 1

sinh(2 arcsinh1/2)
) = arcsinh1. Thus �(β) > 4 arcsinh1,

a contradiction. Thus equality can only be attained if both α and β are of length
4 arcsinh1. It follows that a surface on which equality is reached has a simple closed
geodesic α of length 4 arcsinh1. If there is any twist around this geodesic, then all
simple closed geodesics crossing α are of length strictly superior to 4 arcsinh1
which concludes the argument. ��

Let us now consider the case of two geodesics that intersect twice on a one-
holed torus. We recall that one-holed tori are hyperelliptic, and we shall refer to the
three interior fixed points of the hyperelliptic involution as the Weierstrass points.

Definition 3.2. Let T be a one-holed torus and let α be an interior simple closed
geodesic of T . We denote hα the unique simple geodesic path which goes from
boundary to boundary and intersects boundary at two right angles and does not
cross α. We will refer to the geodesic path hα as the height associated to α (see
Fig. 5).

By using hyperbolic trigonometry, one can prove the following result (for a
proof, see for instance [16]).

Lemma 3.3. Let T be a one-holed torus. Let γ be an interior simple closed geodesic
of T and denote its associated height hγ . Then γ passes through exactly two of the
three Weierstrass points and the remaining Weierstrass point is the midpoint of hγ .
Furthermore, the length of γ is directly proportional to the length of hγ .

α

hα

Fig. 5 The height hα associated to α
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The following proposition, slightly more general than what we require, has an
interest in its own right.

Proposition 3.4. Let T be a one-holed torus (where the boundary geodesic ε is
allowed to be a cusp). Let α be an interior simple closed geodesic and let β be any
other interior simple closed geodesic that intersects α twice. Then

�(β) ≥ 2 arccosh


1 + cosh �(ε)

2 + 1

2
(

cosh �(α)
2 − 1

)

 .

Furthermore equality holds only when T is obtained by pasting α with a half-
twist and β is the shortest simple closed geodesic that intersects α twice.

Proof. For a given α and ε, let β be the shortest simple closed geodesic β that
crosses α twice. Now consider the family of tori obtained by twisting along α. The
key to the proof is showing that β is shortest when α is pasted with a half-twist. In
first instance, let us suppose that ε is not a cusp. Consider the height hβ associated
to β. By Lemma 3.3, the length of hβ is proportional to the length of β, so mini-
mizing the length of β is equivalent to minimizing the length of hβ . Denote by e1,
e2 and a the three boundary to boundary geodesic perpendicular paths of the pair
of pants (α, α, ε) as indicated on Fig. 6.

Cutting T along α and path a one obtains a one-holed hyperbolic rectangle
as in Fig. 6. (This particular way of viewing the one-holed torus is a central part
of [5].) Notice that �(e1) = �(e2), which can be seen either by using hyperbolic
trigonometry or by using the hyperelliptic involution. By cutting along paths hα ,
e1, e2 and a, one would obtain four isometric right-angled pentagons. The path hβ

intersects α twice, and thus the two subpaths of hβ between α and ε are of length
at least �(e1)(= �(e2)), and the subpath from α and back again is at least of length
�(a). Thus

�(hβ) ≥ �(e1) + �(e2) + �(a).

α

α

α

a

ε

a aε

e1 e2

e1

e2

Fig. 6 The torus T cut along α and a
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α
(α)
4

Qβ

βP

(α)
2

α

α

ε

(a)
2

(a)
2

(β)
4

(ε)
4

hα

β

Fig. 7 The polygons P and Q

Equality only holds when the path hβ is exactly the path e1 ∪ a ∪ e2. This only
occurs when the pasting is right, meaning when α is pasted with a half-twist. Now,
when ε is a cusp, we cannot immediately assume that the optimal situation is when
there is a half-twist, but this is true because of the continuity of lengths of interior
closed curves when �(ε) goes to 0.

We now need to calculate the length of β when α is pasted with a half-twist. For
this we shall use the well known formulas for different types of hyperbolic poly-
gons (see for instance [7, p. 454]). This can be done by considering two hyperbolic
polygons inscribed in T .

The first one, denoted Q, is one of the hyperbolic quadrilaterals with three right
angles delimited by arcs of paths a, α, β and hα as in Fig. 7. The second polygon
P is one the four isometric right-angled pentagons (or quadrilaterals with a point
at infinity when �(ε) = 0) obtained by cutting T along α, a, e1, e2 and hα (see
Fig. 7). Using the formulas for a quadrilateral with three right angles, one obtains

sinh
�(β)

4
= sinh

�(a)

2
cosh

�(α)

4
.

Now using the formula for a right-angled pentagon with P we obtain

sinh
�(a)

2
sinh

�(α)

2
= cosh

�(ε)

4
.

Putting these two formulas together one obtains

sinh
�(β)

4
= cosh �(ε)

4 cosh �(α)
4

sinh �(α)
2

.

With a little manipulation one obtains

cosh
�(β)

2
= 1 + cosh �(ε)

2 + 1

2
(

cosh �(α)
2 − 1

) ,

which proves the result. ��
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δ δ

β

x

y

x

y

y

x

y

x

β

γa1

a2 a2

Fig. 8 Two intersections on a twice-punctured torus

There is an immediate corollary which gives a universal lower bound on the
greatest of two lengths of two geodesics intersecting twice on a one-holed torus.

Corollary 3.5. Let T be a one-holed torus (where the boundary geodesic ε is
allowed to be a cusp). Let α and β be two interior simple closed geodesics that
intersect twice. Then

max{�(α), �(β)} ≥ 2 arccosh2.

Furthermore equality holds for a torus T with a cusp which contains a simple
closed geodesic α of length 2 arccosh2 pasted with a half-twist, and taking β to be
the shortest simple closed geodesic which intersects α twice.

Proof. Suppose that �(α) < 2 arccosh2. By Proposition 3.4, �(β) > 2 arccosh2.
Now if �(α) = 2 arccosh2, by proposition 3.4, �(β) = 2 arccosh2 if and only if
�(ε) = 0 and T is obtained by pasting α with a half-twist. ��

Note that the torus described in Corollary 3.5 is the same torus as S1. To see
this, we shall find two simple closed geodesics that intersect once, and both of
length 2 arccosh

√
2 = 2 arcsinh1. Consider the quadrilateral Q in Fig. 7 and in

particular the diagonal of Q from top left to bottom right. Now consider the diag-
onals of each one of the four isometric copies of Q. Together these four geodesic
paths form two simple closed geodesics, say γ1 and γ2, of equal length that inter-
sect once. When �(ε) = 0 and �(α) = 2 arccosh2, a quick calculation shows that
�(γ1) = �(γ2) = 2 arccosh

√
2. As S1 is unique up to isometry, the two tori are the

same.

Theorem 3.6. The surface S2 is the one-holed torus described in Corollary 3.5 and
L2 = 2 arccosh(2).

Proof. In view of Proposition 3.1 and Corollary 3.5, we now know that S2 is a
torus with one or two punctures. Suppose S2 is a torus with two punctures, i.e., the
curves labeled ε̃1 and ε̃2 on Fig. 4 are homotopic to cusps.

Now suppose we have two simple closed geodesics α and β that intersect twice,
with �(α) ≥ �(β) and �(α) ≤ 2 arccosh2. (If this is not possible, then necessarily
S2 is the once punctured torus of corollary 3.5.) The geodesic α is cut into two
arcs by β, say a1 and a2. Suppose �(a1) ≥ �(a2). Consider the geodesic curves γ

and δ as in Fig. 8. γ is the separating curve that intersects a1 twice but doesn’t
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intersect a2 or β, and δ is the curve that intersects β twice but doesn’t intersect γ

or α. Consider the lengths x, x ′, y, y′ of the different arcs of β as labeled on Fig. 8.
We have �(δ) < x + �(a2) + y + x ′ + �(a2) + y′ ≤ �(α) + �(β) ≤ 2�(α). Notice
that this implies the width of the collar around δ satisfies

w(δ) > arcsinh

(
1

sinh �(α)

)
.

We can now apply the collar theorem to β, using the fact that β intersects both
α and δ twice and α and δ do not intersect. The collar theorem 2.1 implies that the
length of β satisfies the following inequality:

�(β) ≥ 4w(α) + 4w(δ) > 2 arccosh2 ≥ �(α).

This proves the result. ��

4. Finding S3 and calculating L3

Let α and β be two simple closed geodesics on a Riemann surface that intersect
three times. Name the intersection points A, B and C and orient α and β such that
A, B and C come in that order on α and on β. As in the case of two intersections,
we consider a collar around β and the orientations induced on it in the different
intersection points by the ordered pair of simple closed oriented geodesics (α, β).
We distinguish two situations:

1. (α, β) induces opposite orientations in two of the three intersection points (with-
out loss of generality we can assume that (α, β) induces opposite orientations
in A and in B),

2. (α, β) induces the same orientation in A, in B and in C .

In the first situation, Lemma 4.1 will show that max{�(α), �(β)} ≥ 2 arccosh(3).
In the second situation, we will show that the optimal surface is a torus with

a cusp containing two simple closed geodesics of lengths approximately 2 arccosh
(2.648) intersecting one another three times.

Lemma 4.1. Let α and β be two simple closed oriented geodesics on a Riemann
surface that intersect three times in A, B and C, such that A, B, C are consecutive
on both α and β.

If the ordered pair (α, β) induces opposite orientations on the surface in A and
in B, then max{�(α), �(β)} ≥ 2 arccosh(3).

Proof. Without loss of generality, we can assume, that the ordered pair (α, β)

induces the same orientation on the surface in B and in C (cyclicly rename A, B
and C , if needed). Comparing the lengths of the arcs between B and C , there are
two possible situations:

1. The length BCα of the oriented geodesic arc from B to C on the geodesic α is
smaller then BCβ , the length of the oriented geodesic arc from B to C on the
geodesic β.
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? ? ?

α α α

β

A

B

A

BC

B

A

C

ε̃1 ε̃2 ε̃3

Fig. 9 The simple closed curves ε̃1, ε̃2 and ε̃3

2. This is not the case, meaning BCα ≥ BCβ .

We now build the oriented closed curves γ̃ and δ̃:

• In situation 1, we set γ̃ = α; in situation 2, γ̃ is obtained following α from A to
B, then β from B to C and again α from C to A.

• In situation 1, δ̃ is obtained following β from A to B, then α from B to C and
again β from C to A; in situation 2, we set δ̃ = β.

These two curves γ̃ and δ̃ are thus homotopic to two simple closed oriented
geodesics γ and δ intersecting one another twice such that

max{�(α), �(β)} ≥ max{�(γ ), �(δ)}.
Furthermore, the ordered pair (γ, δ) induces opposite orientations in its two

intersection points. Therefore max{�(γ ), �(δ)} ≥ 2 arccosh(3) by Proposition
3.1. ��
Lemma 4.2. Let S be a Riemann surface and let α and β be two oriented simple
closed geodesics on S intersecting one another three times such that the ordered
pair (α, β) induces the same orientation on S in every intersection. Name the
intersections A, B, C such that they are consecutive on α. If A, B, C are also
consecutive on β, then there is a torus with one cusp or a torus with two cusps
containing two simple closed geodesics γ and δ which satisfy int(γ, δ) = 3 and
max{�(α), �(β)} ≥ max{�(γ ), �(δ)}.
Proof. The surface Sα,β is of signature (1, 3), (1, 2) or (1, 1), as can easily be seen
by considering whether the simple closed curves ε̃1, ε̃2 and ε̃3 (shown in Fig. 9)
are null-homotopic or not.

If one of the curves ε̃1, ε̃2 or ε̃3 is null-homotopic, corollary 2.4 proves the
lemma. Otherwise, the optimal topological situation is a torus with three cusps
(again due to corollary 2.4). On this surface, there is a simple closed geodesic η

dividing the surface into Xη, a sphere with three cusps and boundary geodesic η,
and Tη, a surface of signature (1, 1). Notice that β is entirely contained in Tη as
can be seen in Fig. 10.

The intersection points between α and η will be denoted U , V , W and Y as in
Fig. 10. First consider the geodesic arc of α from Y to W . There is a dividing geo-
desic ε on Xη, that does not intersect this arc. Cutting Xη along ε, we get a surface
of signature (0, 3). We can now diminish the length of ε in order to get another
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Fig. 10 Three intersections on a torus with three cusps

cusp. This surface of signature (0, 3) with two cusps and the boundary geodesic η

contains a geodesic arc from Y to W that is shorter than the original arc from Y to
W on Xη (this is part of the statement of the technical lemma used in [14] in order
to show Theorem 2.3).

Note the geodesic arc joining U and V intersects ε and its length goes thus to
infinity during this process. Nevertheless, if we do the analogous process to reduce
the length of the geodesic arc joining U and V , we get another surface of signature
(0, 3) with two cusps and a boundary geodesic of length �(η) containing a geodesic
arc from U to V that is shorter than the original arc from U to V on Xη. As a surface
Yη of signature (0, 3) with two cusps and a boundary geodesic of length �(η) is
unique up to isometry, we can paste Yη to Tη such that there are two geodesic arcs,
one joining Y and W and the other U and V , that are each shorter than the original
ones on Xη. The pasted surface is a torus with two cusps that contains a geodesic β

and a curve α̃ that intersect three times and such that �(α) ≥ �(α̃). Therefore, the
geodesic γ that is homotopic to α̃ intersects the geodesic β (that we rename to δ)
three times and max{�(α), �(β)} ≥ max{�(γ ), �(δ)}. ��
Lemma 4.3. If α and β are two simple closed geodesics on a one-holed torus
satisfying int(α, β) = 3, then

max{�(α), �(β)} ≥ 2 arccosh

(√
1
2

(
7 + 11

3

√
11
3

) )
.

This bound is sharp and is reached by a unique once-punctured torus up to
isometry.
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Proof. We shall use the parameters for the set of isometry classes of one-holed tori
found in [5]. Let (r, s, t) be a set of these parameters such that 1 < r ≤ s ≤ t ≤ rs
where r , s and t are the half-traces (hyperbolic cosines of half of the lengths) of
the shortest three geodesics �, σ and τ = (�σ)−1. (In [5], half-traces are denoted
traces, but we shall continue to use the term half-traces as it is more standard.)
Then, the geodesics α = �σ−1 and β = τ�−1 intersect three times and α is the
forth shortest simple closed geodesic (see [5] for details). The half-traces of α and
β are a = 2rs − t and b = 2r t − s.

For a fixed r , max{a, b} = b = 2r t − s is therefore minimal if s = t . In this
case 0 = 2rst − r2 − s2 − t2 = 2s2(r − 1)− r2 and therefore b2 = s2(2r − 1)2 =
r2(2r−1)2

2(r−1)
.

But for r > 1, this last quantity is minimal for

d

dr

r2(2r − 1)2

2(r − 1)
= 0 ⇐⇒ r(2r − 1)(6r2 − 9r + 2)

2(r − 1)2 = 0,

i.e., r = 1
4

(
3 +

√
11
3

)
. Therefore b2 = s2(2r − 1)2 ≥ 1

2

(
7 + 11

3

√
11
3

)
.

There is a torus with one cusp on which there are two geodesics of lengths

2 arccosh

(√
1
2

(
7 + 11

3

√
11
3

) )
intersecting one another three times. Its half-trace

are necessarily (r, s, t) =

 1

4

(
3 +

√
11
3

)
,

√
13+7

√
11
3

8 ,

√
13+7

√
11
3

8


, up to a choice

of curves �, σ and τ . Therefore the bound is sharp and is attained by a unique once-
punctured torus up to isometry. ��

It is worth noticing the torus described in this lemma is not S1. As mentioned in

the proof, its systole length is 2 arccosh

(
1
4

(
3 +

√
11
3

))
and not 2 arccosh

√
2 =

2 arcsinh1.

Theorem 4.4. The surface S3 is the one-holed torus described in Lemma 4.3 and

L3 = 2 arccosh

(√
1
2

(
7 + 11

3

√
11
3

) )
.

Proof. By what precedes, S3 is a torus with one or two punctures. As in the proof
of theorem 3.6, let us suppose that there exists a twice-punctured torus T with
two geodesics α and β that intersect three times, and both of length less or equal

to 2 arccosh

(√
1
2

(
7 + 11

3

√
11
3

) )
. For the remainder of the proof, denote this

constant k3, as L3 would be premature.
Both α and β are separated into three paths by each other, and let us denote these

paths respectively a1, a2 and a3 for α and b1, b2 and b3 for β. The pasting condition
implies that we are now in the situation illustrated in Fig. 11. On this figure, two
additional simple closed curves have been added, and are denoted γα and γβ . The
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γαγα

Fig. 11 Three intersections on a twice-punctured torus

α
αγβ

β

Fig. 12 The geodesics α and α′

curve γα is defined as the unique separating simple closed geodesic that does not
intersect α and intersects β minimally (twice), and γβ is defined symmetrically. We
will use a rough upper-bound on the sum of their lengths. It is easy to see that

�(γα) + �(γβ) < (2�(a1) + �(a2) + �(a3) + �(b2) + �(b3))

+(�(a2) + �(a3) + 2�(b1) + �(b2) + �(b3))

= 2�(α) + 2�(β).

This implies that min{�(γα), �(γβ}) ≤ 2 max{α, β} ≤ 2k3. So far, we have
made no particular assumptions on α and β, so without loss of generality we can
suppose that α and β are such that �(γβ) ≤ 2k3.

Denote by α′ the unique simple closed geodesic of T that intersects neither α

nor γβ . Notice that α′ intersects β three times. We shall now find an upper-bound
on the length of α′. By cutting along α and α′, one obtains two (isometric) pairs of
pants. Consider one of them as in Fig. 13. We denote by hα the shortest non-trivial
path from α and back again. Notice that

�(hα) ≤ �(γβ)

2
≤ k3. (1)

Consider the lengths l and l ′ in Fig. 13. Once again, we shall make use of the
formulas for hyperbolic polygons. Using the hyperbolic trigonometry formulas for
a pentagon with right angles, we obtain

sinh
�(hα)

2
sinh l ′ = cosh

�(α′)
2

.
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hα

α
(α )
2

α l l(α)
2

(hα)
2

Fig. 13 Bounding the length of α′

Using the formulas for a quadrilateral with three right angles and one zero angle,
one obtains sinh l sinh �(hα)

2 = 1 and equation (1) leads to

l >
1

sinh k3
2

.

From these equations, and our initial hypothesis on the lengths of α and β, we
obtain the following bound on the length of α′:

�(α′) < 2 arccosh

(
sinh

k3

2
sinh

(
k3

2
− arcsinh

1

sinh k3
2

))
.

This implies that the collar width of α′ satisfies w(α′) > 0.25. As β intersects
both α and α′ three times and α and α′ are disjoint, we have that

�(β) ≥ 6w(α) + 6w(α′).

As �(α) ≤ k3 implies w(α) > 0.3, we now have �(β) > 1.5 + 1.8 > k3 which
contradicts the hypotheses. Thus S3 is a once-punctured torus and we can apply
Lemma 4.3. ��

5. Concluding remarks

The surfaces S1 = S2 and S3 are specific once-punctured tori. Both admit automor-
phisms distinct from the hyperelliptic involution. S1 admits a number of automor-
phisms both conformal and anticonformal. Using the main result of [8], S3 admits
an orientation reversing involution because it can be obtained by pasting a simple
closed geodesic with a half-twist, but does not admit a non-trivial conformal auto-
morphism. This is not so surprising seeing as there are only two isometry classes
of once-punctured tori that admit a non-trivial conformal automorphism, namely
S1 and the torus with largest automorphism group, often called the Modular torus.

Finding Sk for k ≥ 4 seems like a difficult problem, but can we say some-
thing about the set of Sk? For higher intersection number, it is not clear whether or
not Sk even has boundary (recall that two simple closed geodesics can fill closed
surfaces if they are allowed sufficiently many intersection points). In spite of this
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remark, it seems reasonable to conjecture that Sk is always a once-punctured torus.
Furthermore, due to the existence on Sk of geodesics of equal length, it also seems
reasonable to conjecture that the Sk all have non-trivial automorphism groups. Sup-
posing that the Sk are all once-punctured tori, are they all found in a finite set of
isometry classes of once-punctured tori?

Acknowledgment. The authors would like to thank Ying Zhang and the referee for their
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