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A la mémoire de mon père.

Abstract. Let p be a prime number, let K be a field of characteristic not p,
containing the p-th roots of unity, and let r ≥ 1 be an integer. We compute
the essential dimension of Z/pr

Z over K (Theorem 4.1). In particular,

i) We have edQ(Z/8Z) = 4, a result which was conjectured by Buhler and
Reichstein in 1995 (unpublished).

ii) We have edQ(Z/pr
Z) ≥ pr−1.
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1. Introduction

The notion of essential dimension was first introduced by Buhler and Reich-
stein for finite groups in [BR]. It was later generalized by Reichstein to arbi-
trary linear algebraic groups [Re]. Throughout this paper, we shall assume
that the reader is somewhat familiar with this concept. A convenient and
comprehensive reference on this subject is [BF].

Definition 1.1. Let k be a field, and G a (smooth) linear algebraic k-group.
Let K/k be a field extension, and let T be a GK -torsor. The essential
dimension of T (over k), denoted by edk(T ), is the smallest nonnegative
integer n with the following property.

� The author gratefully acknowledges support from the Swiss National Science Fundation,
grant no. 200020-109174/1 (project leader: E. Bayer-Fluckiger)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/159151909?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


176 M. Florence

There exists a subfield K ′ of K, containing k, and a GK ′-torsor T ′ −→
Spec(K ′), such that

i) The GK -torsors T and T ′
K are isomorphic.

ii) The transcendence degree of K ′/k is n.

The essential dimension of G over k, which we denote by edk(G), is the
maximal value of edk(T ), where K/k ranges through all field extensions,
and T ranges through all GK -torsors.

Thus, edk(G) is the smallest number of algebraically independent param-
eters required to define G-torsors. It is finite, as it readily follows from the
existence of versal (or classifying) torsors (see [BF, Definition 6.1]). More
precisely, edk(G) = edk(T ), where T/K is any versal G-torsor. It turned
out that essential dimension, even in apparently simple cases, is extremely
difficult to compute. Focusing on finite abelian groups, let us mention some
known results. Over fields containing all roots of unity, the essential dimen-
sion of a finite abelian group G equals its rank (i.e. the minimal cardinality
of a set of generators of G), at least if the characteristic does not divide
the order of the group under consideration ([BR, Theorem 6.1]). Note that
the inequality edk(G) ≤ rank(G) follows at once from Kummer theory.
Over general fields, the answer was known only for cyclic groups of small
order. To the author’s knowledge, the results obtained so far over the field of
rational numbers may be summarized as follows. The number edQ(Z/nZ)
equals 1 for n = 2, 3 (easy exercise); it is 2 for n = 4 (Lenstra, Serre, see
also [BF, Theorem 7.6] for an alternate proof); it is 2 for n = 5 ([JLY],
see also [BF, Corollary 7.9]); it is 2 for n = 7 ([Le]). For n odd, Jensen,
Ledet and Yui proved that edQ(Z/2nZ) = 1 + edQ(Z/nZ) ([JLY]). This
settles the cases n = 6, 10 and 14. Let us also mention the following result
of Rost ([Ros]): let k be a field of characteristic not 2, and G/k a linear
algebraic group, geometrically isomorphic to µ4. Then edk(G) = 1 if G
is isomorphic to µ4, and edk(G) = 2 otherwise. For arbitrary n ≥ 4, it
seems that the best known lower bound for edQ(Z/nZ) is 2 (this follows
from the fact that a finite group of essential dimension 1 is isomorphic to
a subgroup of PGL2, see [BF], Proposition 6.21). The best upper bound is
given by a result of Ledet ([Le], see also [FF], Theorem 4.1): for a prime
number p and a positive integer r, we have edQ(Z/pr

Z) ≤ φ(p − 1)pr−1,
where φ denotes Euler’s function. A major part of the proof of this theorem
consists in finding a k-torus T , of minimal possible dimension, together
with an injection Z/pr

Z −→ T , factoring through a quasi-trivial torus
(in other words, a torus whose character module admits a Galois stable
Z-basis). The less precise bound edQ(Z/pr

Z) ≤ φ(pr) may be obtained
quickly as follows: consider the torus T = RQ(µpr )/Q(Gm) (Weil scalar
restriction). The choice of a primitive pr -th root of 1 in Q(µpr ) gives an
injection Z/pr

Z −→ T . Hilbert’s theorem 90 now implies that T has triv-
ial H1, hence the quotient map T −→ T/(Z/pr

Z) is a versal Z/pr
Z-torsor.

Therefore, edk(Z/pr
Z) ≤ dim(T/(Z/pr

Z)) = φ(pr).
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In the present paper, we compute the essential dimension of cyclic
p-groups, over fields of characteristic not p containing the p-th roots of
unity (with an extra condition on the field if p = 2).

This paper is organized as follows. The second paragraph contains ma-
terial about generically free representations and essential dimension. The
process of twisting varieties by torsors, and its functorial properties, are
also recalled. In the third paragraph, we prove two theorems which are key
ingredients in the proof of our main result: a theorem of Karpenko about
Severi–Brauer varieties (Theorem 3.2), which we derive here from Rost’s
degree formula, and Theorem 3.6, which generalizes the construction, due
to Brauer and Rowen, of ‘generic’ division algebras. The last paragraph is
devoted to the proof of our main theorem.

In the sequel, the letter k will denote an arbitrary field. We adopt the
following conventions: a k-variety is a k-scheme which is separated and of
finite type. An algebraic k-group is a smooth k-variety endowed with the
structure of a k-group scheme (the smoothness assumption may be dropped
in most of the general results we will state; however, we will always assume
it for simplicity). Unless otherwise stated, all torsors are right torsors.

2. Some auxiliary results

Let us briefly recall the notion of friendly open subset (cf. [BF], Defin-
ition 4.8).

Let G/k be an algebraic group, and X/k an integral G-variety, on
which G acts generically freely (on the right), in the sense that there is
a G-invariant dense open subvariety V ⊂ X such that the scheme-theoretic
stabilizer of any point of V is trivial. By a theorem of Gabriel, there exists
a G-invariant dense open subset U ⊂ X such that the categorical quo-
tient U −→ U/G exists, and is a G-torsor for the fppf topology (loc. cit.,
Theorem 4.7).

Definition 2.1. Such an open subset U ⊂ X is called a friendly open subset
(for the action of G on X).

In the sequel, we will often consider G-equivariant rational maps between
integral G-varieties. The following lemma asserts that, under some hypoth-
esis, the induced quotient rational map is then well-defined.

Lemma 2.2. Let G/k be an algebraic group (not necessarily linear). Let S
be a k-variety, and let T

π−→ S be a G-torsor. We assume that T (and
hence S) is an integral k-variety. Let X be a k-variety on which G acts
trivially. Then, given a rational G-equivariant map φ : T ����� X , there
exists a unique rational map ψ : S ����� X such that φ = ψ ◦ π. It is
regular if φ is regular.

Proof. Let T̃ ⊂ T be the maximal open subset on which φ is defined. It
is not hard to see that T̃ is G-invariant; this follows from the fact that φ is
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G-equivariant. Note that π is an open morphism, since it is flat and of finite
type. We can therefore speak about the open subvariety S̃ := π(T̃ ) ⊂ S.
Consider the pullback

S̃ ×S T

��

�� T

��

S̃ �� S.

We have a canonical morphism T̃
i−→ S̃ ×S T arising from the open

immersion T̃ −→ T and the morphism π|T̃ : T̃ −→ S̃. The projection
S̃ ×S T −→ T and the composite T̃

i−→ S̃ ×S T −→ T are both open im-
mersions, hence i is also an open immersion. Moreover, each fiber of the
G-torsor S̃ ×S T −→ S̃ contains a point of T̃ , which is G-stable. There-
fore, i is in fact an isomorphism. Replacing T −→ S by T̃ −→ S̃, we may
therefore assume that φ is regular. The existence and uniqueness of ψ is then
obvious if the G-torsor T −→ S is trivial. The general case now follows
from faithfully flat descent theory (for morphisms). ��
Definition 2.3. Let V be a finite-dimensional vector space over k. We denote
by Ak(V ) the k-variety representing the functor A 	→ V ⊗k A where A runs
through all k-algebras.

Definition 2.4. Let X be an integral k-variety and Y a k-variety. Let
φ : X ����� Y be a k-rational map. Let η be the generic point of X. We
denote by φ(X) the closure of φ(η), together with its (reduced) induced
scheme structure. It is an integral subvariety of Y.

The following proposition seems to be well known; as we lack a suitable
reference, we include a proof.

Proposition 2.5. Let G/k be a linear algebraic group and V a generically
free finite-dimensional representation of G over k. Let U ⊂ Ak(V ) be
a friendly open subset. We then have

edk(G) + dim(G) = min(dim(φ(U))),

where φ runs through all G-equivariant rational maps U ����� U.
In particular, if every such φ is dominant, we have edk(G) = dim(V )−

dim(G).

Proof. Throughout this proof, the action of G on V will be written on the
right. By [BF, Proposition 4.11], we know that the G-torsor U −→ U/G
is versal. Let K be the function field of U/G, and T = U ×U/G Spec(K ).
Assume there exists a k-subfield K ′ of K , of transcendence degree n over k,
and a GK ′-torsor T ′ such that T is GK -isomorphic to T ′

K . By the definition
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of a versal torsor, T ′ is isomorphic to the pullback of U −→ U/G by
a K ′-point of U/G. The situation can then be summarized by the following
commutative diagram:

U

��

Too
prU

��

��
f

T ′ ��
f ′

��

U

��

U/G Spec(K )oo �� Spec(K ′) �� U/G,

where the maps on the second line are k-morphisms, and the squares are pull-
backs. Since U/k is of finite type, there exists a unique G-equivariant rational
map φ : U ����� U such that f ′ ◦ f equals the composite
T

prU−→ U ��
φ
��� U. Indeed, this is the geometric translation of the fol-

lowing algebraic fact: let U ′ be a nonempty affine open subvariety of U ,
and let A be the ring of regular functions on U ′. It is a k-algebra of finite
type. Hence the functor B 	→ Homk(A, B), from the category of k-algebras
to the category of sets, commutes with filtered direct limits.

One easily checks that dim(φ(U)) ≤ n + dim(G). Taking the min-
imal values of both sides yields the inequality edk(G) + dim(G) ≥
min(dim(φ(U))).

Let us prove the converse inequality. Let φ : U ����� U be a G-equi-
variant rational map. We have a commutative square

U

��

��
φ

���� U

��

U/G ��
ψ

��� U/G.

Indeed, consider the composite U ��
φ

��� U �� U/G. It is a rational
G-equivariant map (G acting trivially on U/G). Therefore (see Lemma 2.2),
it factors uniquely through the quotient map U −→ U/G, whence the
existence of ψ. Let K ′ be the function field of ψ(U/G); it is a subfield
of K of transcendence degree n := dim(ψ(U/G)). The preceding diagram
implies that T is GK -isomorphic to a torsor obtained from a GK ′-torsor
by base change. Hence edk(G) ≤ n, i.e. dim(φ(U)) = n + dim(G) ≥
edk(G) + dim(G). ��

Our next goal is to show that we may restrict our attention to a particular
type of G-equivariant rational maps; namely, homogeneous ones. This is
the content of Lemma 2.11. Its proof will require two definitions and an
elementary general lemma.

Let V and W be two finite-dimensional vector spaces over k, and
φ : Ak(V ) ����� Ak(W ) be a nonzero rational map. Let n ∈ Z be an
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integer. Consider the rational map

Hn(φ) : Ak(V ) × A1
k

����� Ak(W ),

(v, t) 	−→ tnφ

(
v

t

)
.

Then, for n big enough, Hn(φ) is defined at the generic point of the hyper-
plane t = 0 of Ak(V ) × A1

k .

Definition 2.6. Let V , W, φ and Hn(φ) be as above. We denote by n0 =
n0(φ) the smallest integer such that Hn(φ) is defined at the generic point of
the hyperplane t = 0 of Ak(V ) × A1

k . We denote by H(φ) the rational map
Ak(V ) ����� Ak(W ) defined by the formula

H(φ)(v) = Hn0(φ)(v, 0).

Example 2.7. Let W = k, and let φ be regular. Then n0 is the degree of φ,
and H(φ) is the nonzero homogeneous component of degree n0 of φ.

Remark 2.8. More generally, H(φ) can be described concretely as follows.
Identify Ak(V ) (resp. Ak(W )) with An (resp. Am) by choosing a basis of V
(resp. of W). Write φ = ( P1

Q1
, . . . , Pm

Qm
), where the Pi’s and the Qi’s are

polynomials in n variables. Set

d := max{deg(Pi) − deg(Qi), i = 1, . . . , m},
the degree of the zero polynomial being −∞. Denote by pi (resp. qi) the
homogeneous component of highest degree of Pi (resp. Qi). Then n0 = d
and H(φ) = (r1, . . . , rn), where ri = pi/qi if deg(Pi) − deg(Qi) = d, and
ri = 0 otherwise. This description shows that n0 > −∞ and that H(φ) is
nonzero, but has the disadvantage of being non-canonical.

Definition 2.9. Let V, W be two finite-dimensional vector spaces over k,
and d an integer. A nonzero rational map Ak(V ) ��

φ
��� Ak(W ) is said to

be d-homogeneous if the following diagram commutes:

Gm × Ak(V )

��

Id×φ
�

�

�

��
(λ,v) 	→λv

Ak(V )

��

φ
�

�

�

Gm × Ak(W ) ��
(λ,v) 	→λdv

Ak(W ).

We shall also say that φ is homogeneous if it is d-homogeneous for some
d ∈ Z. The integer d is then well defined.

Lemma 2.10. Notation being as in Definition 2.6, the map H(φ) is nonzero
and n0-homogeneous. Furthermore, for f ∈ GLk(V ) and g ∈ GLk(W ), we
have H(g ◦ φ ◦ f ) = g ◦ H(φ) ◦ f .
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Proof. It is not hard to see that H(φ) is nonzero (see for instance the remark
above). We now compute, for (v, t) ∈ Ak(V ) × A1

k in general position:

Hn0(φ)(λv, t) = tn0φ

(
λv

t

)
= λn0

(
t

λ

)n0

φ

(
v
λ

t

)
= λn0 Hn0(φ)

(
v,

t

λ

)
.

Equality must then hold also for t = 0, whence the homogeneity of H(φ).
The last assertion is proved in the same way. Indeed, we have that
Hn0(g ◦ φ ◦ f ) = g ◦ Hn0(φ) ◦ f . ��
Lemma 2.11. Let G/k be a linear algebraic group, and V a finite-dimen-
sional linear representation of G over k. Assume there exists a G-equi-
variant rational map Ak(V ) ��

φ
��� Ak(V ) which is not dominant and non-

zero. Then there exists a homogeneous rational map Ak(V ) ��
ψ
��� Ak(V )

with the same properties.

Proof. Set ψ = H(φ). By the first (resp. second) part of Lemma 2.10, it
is an n0-homogeneous (resp. G-equivariant) nonzero rational map. Let us
show that φ is not dominant. By assumption, there exists a nonconstant
polynomial map f : Ak(V ) −→ A

1
k such that f ◦ φ = 0. Assume first

that n0 ≥ 0. Define a nonconstant polynomial map g : Ak(V ) ×A1
k −→ A

1
k

by the formula g(v, t) = tn0d f( v
tn0 ), where d is the degree of f . For (v, t)

in general position, we find that g(Hn0(φ)(v, t), t) = tn0d f(φ(v
t )) = 0.

Hence equality also holds for t = 0. Setting h(v) = g(v, 0), this means
that h ◦ ψ = 0. But h is a nonzero polynomial map: it is the homogeneous
component of degree d of f if n0 ≥ 1; it is the polynomial f if n0 = 0.
The case n0 ≤ 0 is dealt with along similar lines, replacing d by the lowest
degree of a nonzero homogeneous component of f . ��

In the sequel, we will repeatedly use an important process from descent
theory: twisting varieties by torsors. Let us recall its definition.

Proposition 2.12. Let X/k be a quasiprojective variety. Let G/k be an
algebraic group (not necessarily linear). Assume we are given an action
of G on X (on the left). Let P be a G-torsor over k. Let G act on the product
P×k X by the formula (p, x).g = (pg, g−1x). Then the categorical quotient
(P ×k X)/G exists in the category of k-varieties. It is called the twist of X
by P, denoted by PX. Furthermore, the formation of P X commutes with
base field extension, and PX is canonically isomorphic to X if P = G is the
trivial G-torsor.

Proof. Existence (and of course uniqueness) is obvious if P is trivial. The
general case now follows from faithfully flat descent theory for schemes,
which is possible here since X is quasiprojective (see for instance
[Se, Chap. V, §4.20, Corollary 2]). The proof of the last assertion is straight-
forward. ��
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Remark 2.13. The quotient map (P ×k X) −→ PX is in fact a G-torsor.
This follows from descent theory, since it is obviously true when P is trivial.

Twisting by torsors is functorial, in the sense of the next lemma.

Lemma 2.14. Let X and Y be quasiprojective integral k-varieties, both
endowed with a left action of an algebraic group G/k. Let P be a G-
torsor, and let φ : X ����� Y be a G-equivariant rational map. Then there
exists a canonical rational map Pφ : PX ����� PY satisfying the following
properties:

i) If Z is another quasiprojective integral G-variety, and φ′ : Y ����� Z
is a G-equivariant rational map such that φ and φ′ are composable,
then so are Pφ and Pφ′, and P(φ′ ◦ φ) = Pφ′ ◦ Pφ.

ii) The formation of Pφ commutes with base field extension.
iii) If P = G is the trivial G-torsor, then Pφ = φ.

Proof. Consider the induced rational map ψ : P ×k X ��
Id×φ

��� P ×kY. Let G
act on both sides as in Proposition 2.12. Then ψ is G-equivariant. Consider
the composite map

P ×k X ��
ψ

��� P ×k Y �� (P ×k Y )/G = PY.

It is G-equivariant, G acting trivially on PY . Lemma 2.2 (together with
Remark 2.13) implies that it factors uniquely through the quotient
P ×k X −→ PX , giving rise to a commutative diagram:

P ×k X

��

��
ψ

��� P ×k Y

��
P X ��

Pφ
����� PY .

This proves the existence of Pφ. The assertions i), ii) and iii) obviously
follow from the definition. ��

3. Central simple algebras and Severi–Brauer varieties

Let A/k be a central simple algebra of degree n. Recall that the functor

R 	→
{

I ⊂ A ⊗k R, I is a left ideal of A ⊗k R such that (A ⊗k R)/I
is a projective R-module of constant rank n

}
,

from the category of k-algebras to the category of sets, is representable by
a projective k-variety, called the Severi–Brauer variety associated to A, and
which we denote by SB(A). If A = Endk(V ) for some k-vector space V
of dimension n, then SB(A) is canonically isomorphic to the projective
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space Pk(V ). On the level of k-points, a line l in V corresponds to the ideal
I = { f ∈ Endk(V ) such that f(l) = 0}. The following elementary lemma
will be useful in the sequel.

Lemma 3.1. Let V be a finite-dimensional k-vector space. We let the group
PGLk(V ) act on Pk(V ) in the obvious way, and on Endk(V ) by inner
conjugation. Let P be a PGLk(V )-torsor defined over k. Then the twist
of Pk(V ) by P is canonically isomorphic to the Severi–Brauer variety
associated to the central simple k-algebra obtained by twisting Endk(V )
by P.

Proof. Let G = PGLk(V ). Assume first that P is trivial. Choose p ∈ P(k).
Consider the morphism

Φp : P ×k Pk(V ) −→ Pk(V )

defined as follows: for any k-algebra R, and points g ∈ G(R), v ∈ Pk(V )(R),
we have

Φp(pg, v) = gv.

The map Φp factors through the quotient P ×k Pk(V ) −→ P
Pk(V ) (here

we do not need to use Lemma 2.2 since P is assumed to be trivial), giving
rise to an isomorphism

φp : P
Pk(V ) −→ Pk(V ).

Similarly, we define an isomorphism

ψp : SB
(

PEndk(V )
) −→ SB(Endk(V )).

For g ∈ G(k), we have that φpg = g−1φp and ψpg = g−1ψp. Let
f : Pk(V ) −→ SB(Endk(V )) be the canonical G-equivariant isomorph-
ism. The isomorphism

ψ−1
p ◦ f ◦ φp : P

Pk(V ) −→ SB
(

PEndk(V )
)

is independent of the choice of p. The case of an arbitrary P now follows
from faithfully flat descent theory. ��

The following theorem, due to Karpenko, plays a key rôle in the proof
of our main theorem. It can be viewed as a consequence of Rost’s degree
formula. For the convenience of the reader, we outline such a proof below.
It is not stated by Karpenko as it is here; however, it is straightforward to
deduce it from [Ka, Theorem 2.1]. Note that Karpenko’s proof does not
make use of Rost’s degree formula.

Theorem 3.2 [Ka]. Let k be a field, p a prime number, and A/k a central
division algebra of index pn for some n ≥ 1. Then any k-rational map
SB(A) ��

f
��� SB(A) is dominant.
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Proof. Let SB(A) ��
f
��� SB(A) be a rational map. We want to apply

Rost’s rational degree formula ([Me], Theorem 3.3). To this end, we have
to compute the numbers I(SB(A)) and ηp(SB(A)) (cf. [Me] for the defin-
ition of these numbers). The first one is easily seen to be pn , as A is
a division algebra. By [Me], Remark 6.5, the number ηp(SB(A)) ∈ Z/pn

Z

equals pn−1. Hence, Rost’s degree formula yields pn−1 = deg( f )pn−1

mod pn . In particular, deg( f ) is nonzero; that is to say, f is dominant. ��
From now on, p will be a prime number. We shall use the following

notation. The letter K will denote a field of characteristic not p, and K̄
a separable closure of K . For any n ≥ 1, let Gn = µpn (K̄ ) (viewed as
a finite abstract group) and Kn = K(µpn (K̄ )).

Definition 3.3. Notation being as above, we set

s(K ) = max{n ∈ N, such that K = Kn}.
If the dependence in K is clear from the context, we will denote s(K ) simply
by s.

We shall always assume that s is finite; if not, the question we are
dealing with has a trivial answer. We will only consider fields K such that
the following holds:

i) We have s ≥ 1, i.e. µp(K̄ ) ⊂ K .
ii) If p = 2 and s(K ) = 1, then K2 = K3.

Remark 3.4. Let ζs be a primitive ps-th root of unity. It is easy to check
that the polynomial X pn − ζs is irreducible over K for any n ≥ 0 (in other
words, Ks+n/K is a Galois field extension, of degree pn). In particular, for
any integer s′ ≥ s(K ), we have that s′ = s(Ks′), and the field Ks′ still
satisfies the Conditions i) and ii), with s replaced by s′.

Let r ≥ 1 be any integer. Our goal is to compute the number edK (Gr) =
edK(Z/pr

Z). It is 1 if r ≤ s, so we assume r > s.
Consider PK (Kr), the projective space of Kr viewed as a K -vector space.

Multiplication by µpr (K̄ ) induces a Gr/Gs-action on PK(Kr), which is
easily seen to be faithful. We identify Gr/Gs with Gr−s using the exact
sequence

1 −→ Gs −→ Gr
θ−→ Gr−s −→ 1,

where θ(x) = x ps
.

The following lemma will be useful in the sequel.

Lemma 3.5. Let ζr ∈ K̄ be a primitive pr-th root of unity. Set ζs = ζ
pr−s

r

and ζr−s = ζ
ps

r . Let L/K be any field extension, and M/L a cyclic field
extension, with an isomorphism Gr−s � Gal(M/L). Let Lr = L ⊗K Kr.
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Then the twist of PL(Lr) by the Gr−s-torsor associated to M/L is the
Severi–Brauer variety corresponding to the cyclic algebra (M/L, σ, ζs),
where σ = ζ−1

r−s ∈ Gr−s . In other words, this algebra is generated by M
and an indeterminate X, with relations X pr−s = ζs and Xm X−1 = σ(m),
for m ∈ M.

Proof. Using Lemma 3.1, we have to describe the algebra A obtained by
twisting EndL(Lr) by the Gr−s-torsor T associated to M/L (recall that
T = Spec(M), with the obvious Gr−s-action). By definition, the inner
action of Gr−s on EndL(Lr) is given by the formula

(λ. f )(x) = λ f(λ−1x),

where λ ∈ Gr/Gs = Gr−s , f ∈ EndL(Lr) and x ∈ Lr .
Let Gr−s act on M ⊗L EndL(Lr) by the formula

g.(m ⊗ f ) = g(m) ⊗ (g. f ).

Then by definition A = (M ⊗L EndL(Lr))
Gr−s . With this description, it is

obvious that A contains Lr as a maximal étale subalgebra (indeed, Gr−s
acts trivially on Lr ⊂ EndL(Lr)). Now consider the maximal (split) étale
subalgebra E = ⊕pr−s

i=1 L of EndL(Lr) consisting of linear maps admitting

1, ζr , . . . , ζ
pr−s −1

r as eigenvectors. One easily sees that ζr−s ∈ Gr−s =
Gr/Gs acts on E by cyclic permutation of the coordinates. Hence, the twist
of E by T is a maximal subfield of A isomorphic to M. More precisely, let
e0 ∈ E be the idempotent sending 1 to 1 and ζ i

r to 0 for i = 1, . . . , pr−s − 1.
Then the map

M −→ (M ⊗ E)Gr−s ,

m 	−→
∑

g∈Gr−s

g(m) ⊗ g(e0)

is a field isomorphism. Let X = ζr ∈ Lr . For m ∈ M and e ∈ E, we have
that (1 ⊗ X)(m ⊗ e)(1 ⊗ X)−1 = m ⊗ σ−1(e) by definition of σ and of the
Gr−s-action on EndL(Lr). Via the preceding isomorphism, we see that σ
acts by conjugation by X on M. It follows that A is presented as stated in
the lemma. ��

In the proof of Theorem 4.1, we shall apply Theorem 3.2 to some
particular division algebras arising as a generalized version of the ‘generic’
division algebras of Brauer–Rowen. These algebras were first introduced by
Brauer in the important paper [Bra]. They were used to show that the only
relations between the index and the exponent of a central simple algebra are
the ‘obvious’ ones (the exponent divides the index, and they have the same
prime factors). Later, Rowen generalized Brauer’s process to obtain a wider
class of generic division algebras ([Row]). In the present paper, we shall
need a slightly more general statement than [Row, Theorem 7.3.8]. Indeed,
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we have to replace the field Q(µps) considered by Rowen by K as above.
Mutatis mutandis, the proof of the next theorem is nevertheless the same as
that of [Row, Theorem 7.3.8]. It relies on the existence of a graded order
in the central simple algebra under consideration (this order is Wn,t(K ) in
the proof); it is thus of valuative nature. We tried to harmonize our notation
with that of Rowen, with some minor changes: for instance, the letters n
and t used in [Row] correspond here to pn and pt , respectively.

Theorem 3.6. Let K be a field of characteristic not p. We assume that
s = s(K ) (cf. Definition 3.3) is finite and positive. If p = 2 and s = 1,
assume moreover that K(µ4) = K(µ8). Let Et(K ) = K(x1, . . . , xpt ) be
the purely transcendental field extension of K generated by indetermin-
ates x1, . . . , xpt . Let σ be the K-automorphism of order pt of Et(K ) per-
muting the xi’s cyclically. Let Ft(K ) be the subfield of Et(K ) fixed by σ .
Then, for any primitive ps-th root of unity ζs ∈ K, the cyclic algebra
(Et(K )/Ft(K ), σ, ζs) is a division algebra.

Proof. We will prove more than the statement of the theorem. Let n be
a nonnegative integer satisfying n ≤ t, and let Kn,t be the subfield of Et(K )

fixed by σ pn
. We will prove the following:

(P (K, t, n)) Suppose s(K ) > t −n. Then, for any primitive ps-th root of
unity ζs ∈ K, the cyclic algebra Rn,t(K ) := (Kn,t/K0,t, σ, ζs) is a division
algebra.

The theorem follows by taking n = t. The proof is an induction on n.
More precisely, we assume that n ≥ 1 (indeed, it is obvious that P (K, t, 0)
is true) and that P (K ′, t, n − 1) holds for every field K ′ satisfying the
assumptions of the theorem. We now proceed to show that P (K, t, n) holds
as well.

Recall that Kn denotes the field K(µpn ). For each integer n ≥ 1, we
denote by ζn ∈ Kn a primitive pn-th root of unity, such that ζ

p
n+1 = ζn .

Let H = K [x1, . . . , xpt ] and H1 = ⊕pt

i=1 Kxi . We shall consider H as
a K [σ ]-module; the submodule H1 ⊂ H is then free of rank 1. Write
Rn,t(K ) = ⊕pn−1

i=0 Kn,t zi where zaz−1 = σ(a) for each a ∈ Kn,t and
z pn = ζs. Let Wn,t(K ) = ⊕pn−1

i=0 (H ∩ Kn,t)zi; it is an order in Rn,t(K )
since the field of fractions of H ∩ Kn,t equals Kn,t . Choose a decomposition

K [σ ] = K [X]/(X pt − 1) = L1 × . . . × Lu

(direct product of fields). Let ei ∈ K [σ ] be the idempotent correspond-
ing to Li . Let Vi = ei H1; these are simple K [σ ]-modules. Given j =
( j1, . . . , ju) ∈ Nu , put Hj = V j1

1 . . . V ju
u . We say that a ∈ Wn,t(K ) is

homogeneous if a ∈ ⊕pn−1
i=0 Hj zi for some j. Let us prove the following

two assertions:

i) Assume that s > t−n. Then, for any j = ( j1, . . . , ju), there is a nonzero
homogeneous element b ∈ H1 such that bHj ⊂ Kn−1,t .
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ii) If 0 ≤ d ≤ n, the centralizer of z pd
in Rn,t(K ) is equal to

⊕pn−1
i=0 Kd,t zi

and is isomorphic to Rd,t(Ks+n−d).

We first prove i). Let τ = σ pn−1
. Then τ is of order pt−n+1 ≤ ps .

Since µpt−n+1 ⊂ K , it follows that the action of τ on Vi is diagonalizable.
Because Vi is an irreducible K [σ ]-module, τ must act by multiplication
by some pt−n+1-th root of unity ζ(i) on the whole space Vi . Let ζ =
ζ(1) j1 . . . ζ(u) ju . Now τ acts by multiplication by ζ on Hj . One easily
sees that all pt−n+1-th roots of unity occur as eigenvalues of τ acting on
H1 (indeed, H1 is a free K [τ]-module). Hence we can pick a nonzero
homogeneous b ∈ H1 such that τ(b) = ζ−1b. It is clear that τ acts trivially
on bHj , whence the claim.

We now prove ii). Let R′ be the centralizer of zd in Rn,t(K ). It is clear
that R′ = ⊕pn−1

i=0 Kd,t zi since Kd,t is the subfield of Kn,t fixed by σd. The
polynomial X pn−d − ζs is irreducible in Kd,t[X]. Indeed, this is the content
of Remark 3.4, with K replaced by Kd,t (note that K is algebraically closed
in Kd,t). Therefore, it is the minimal polynomial of z pd

over Kd,t . We then
have Kd,t(z pd

) � Kd,t(ζs+n−d). We can now compute:

R′ =
pd−1⊕
i=0

Kd,t(z
pd

)zi �
pd−1⊕
i=0

Kd,t(ζs+n−d)z
i � Rd,t(Ks+n−d).

The last isomorphism follows from the fact that Kd,t(ζs+n−d) is canonically
isomorphic to K(ζs+n−d)d,t = (Ks+n−d)d,t .

With i) and ii) at our disposal, the rest of the proof is straightforward.
Since Wn,t(K ) is an order in Rn,t(K ), it suffices to show that Wn,t(K ) has no
zero-divisors. Take a, b ∈ Wn,t(K ) such that ab = 0. Considering leading
terms for the total degree on H , we may assume a, b are homogeneous (in the
sense defined above). By i) there exist nonzero homogeneous elements a′

and b′ in H such that a′a and bb′ belong to
⊕pn−1

i=0 Kn−1,t zi , which is
isomorphic to Rn−1,t(Ks+1) by ii) applied to d = n − 1, and which is
a division ring by P (Ks+1, t, n − 1) (the induction step works since we
have n − 1 ≤ t < s + 1 + n − 1). But (a′a)(bb′) = 0, so a′a = 0 or bb′ = 0,
implying a = 0 or b = 0. ��

4. The main theorem

We are now ready to prove the theorem announced in the abstract.

Theorem 4.1. Let K be a field, and p a prime number invertible in K. Let
s = max{n ∈ N, µpn ⊂ K}. We assume that s is finite and positive, and that
K(µ8) = K(µ4) if p = 2 and s = 1. Let r > s be an integer. We then have

edK (Z/pr
Z) = pr−s .

Proof. We use the notation of the preceding section. The K -vector space Kr
is a generically free representation of Gr , of dimension pr−s . Let
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AK(Kr) − {0} ��
φ
��� AK (Kr) − {0} be a Gr-equivariant rational map. By

Proposition 2.5, it is enough to show that φ is dominant. By Lemma 2.11,
we may assume that φ is d-homogeneous for some integer d. Note that d
is nonzero, since φ(tx) = tφ(x) for x in a nonempty open subset of
AK(Kr) − {0} and t ∈ Gs ⊂ Gm . Modding out by Gm , which we can
do by Lemma 2.2, we obtain a Gr−s-equivariant rational map ψ fitting into
a commutative diagram

AK (Kr) − {0}

��

��
φ
��� AK(Kr) − {0}

��

PK (Kr) ��
ψ

������ PK (Kr).

Let M = K(xg, g ∈ Gr−s) be the purely transcendental extension of
K generated by variables xg, g ∈ Gr−s . The group Gr−s acts on M in
the obvious way; let L = MGr−s . Now we extend scalars from K to L .
We get a Gr−s-equivariant rational map ψL : PL(Lr) ����� PL(Lr), where
Lr = Kr ⊗K L . Thanks to Lemma 2.14, we can twist both sides by the Gr−s-
torsor P corresponding to the cyclic extension M/L . Using Lemma 3.5, we
obtain a rational map PψL : SB(A) ����� SB(A), where A/L is the cyclic
algebra (M/L, σ, ζs), with σ = ζ−1

r−s ∈ Gr−s. Combining Theorem 3.6
(with t = r − s) and Theorem 3.2, we get that PψL is dominant. Hence
also ψ is dominant, as it easily follows from the functorial properties of
the twist (Lemma 2.14). This implies the existence of an open subset
U ⊂ AK(Kr) − {0} such that φ(AK (Kr) − {0}) intersects the Gm-orbit
of every element in U . But φ(AK (Kr) − {0}) is Gm-invariant (remember
that φ is d-homogeneous and that d is nonzero). Thus, φ itself is dominant.

��
Corollary 4.2. For any n ≥ 1, we have edQ(Z/2n

Z) = 2n−1 and
edQ(Z/3n

Z) = 3n−1.

Proof. The first equality is a special case of the theorem. Note that, by
a result of Ledet ([Le]), we have edQ(Z/pn

Z) ≤ φ(p − 1)pn−1. Hence,
edQ(Z/3n

Z) ≤ 3n−1. But, as essential dimension decreases after a field
extension, we also have edQ(Z/3n

Z) ≥ edQ(µ3)(Z/3n
Z) = 3n−1. ��
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