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Abstract We prove a Penrose-like inequality for the mass of a large class of constant
mean curvature (CMC) asymptotically flat n-dimensional spin manifolds which sat-
isfy the dominant energy condition and have a future converging, or past converging
compact and connected boundary of non-positive mean curvature and of positive
Yamabe invariant. We prove that for every n ≥ 3 the mass is bounded from below
by an expression involving the norm of the linear momentum, the volume of the
boundary, dimensionless geometric constants and some normalized Sobolev ratio.

Keywords Penrose inequality · Asymptotically flat manifolds · Mass · Linear
momentum · Conformal methods · Dirac operator · Spinors

1 Introduction

The energy–momentum is a global Riemannian invariant of asymptotically flat man-
ifolds which was defined by physicists in the General Relativity context [33]. The
positive mass conjecture is one of the most important issues involving the energy–
momentum and has been proved by Schoen and Yau [29–31] (for dimension 3 ≤ n ≤ 7)
with minimal surface arguments, and also by Witten [35] (cf. also Parker and Taubes’
proof [27]) in any dimension on spin manifolds.

In 1973, Penrose [28] stated a refinement of the positive mass conjecture for Rie-
mannian asymptotically flat 3-manifolds (without extrinsic curvature).

Riemannian Penrose inequality Let (M, g) be a 3-dimensional asymptotically flat
Riemannian manifold with a compact, connected, outermost minimal boundary ∂M
(which is a topological 2-sphere). Suppose also that the scalar curvature of (M, g) is
non-negative. Then its mass m, if defined, satisfies
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m ≥ 1
4

√
Area(∂M, g)

π
,

and equality is achieved if and only if (M, g) is a spacelike Schwarzschild metric.

The Riemannian Penrose Inequality [10] has been proved, in dimension 3, by Hu-
isken and Ilmanen [20,21] using the inverse mean curvature flow, and independently
by Bray [9] using the positive mass theorem. In [16], Herzlich proved, still in dimen-
sion 3, an optimal Penrose-like inequality (with a constant) involving the area of the
boundary ∂M and some normalized Sobolev ratio. He recently improved this result
[17] in higher dimensions for asymptotically flat spin manifolds that have a compact
and connected boundary of positive Yamabe invariant, which is mainly the case for
outer apparent horizons, according to a new result of Galloway and Schoen [14] (their
result generalizes Hawking’s one to higher dimensions).

Now, a natural idea is to extend the statement of the Riemannian Penrose Inequal-
ity in the context of asymptotically flat spin n-manifolds (M, g, k) (n ≥ 3) endowed
with a non-zero extrinsic curvature tensor k [24]. One of the difficulties of this issue
is to formulate a plausible conjecture. The fact that the extrinsic curvature k is non-
zero, and considering higher dimensions make the context of the Penrose inequality
almost unknown at the time of writing of this work. However, this question seems to
be of physical great interest according to the existence of a counterexample of the
Riemannian Penrose inequality with charge [34] in dimension 3.

The aim of the present paper is to prove a Penrose-like inequality for a large class of
CMC asymptotically flat, n-dimensional and spin manifolds with boundary (M, g, k),
which generalizes Herzlich’s one [16,17]. More precisely, (M, g, k) is asymptotically
flat if there exist some compact K, a positive number R and a diffeomorphism called
a chart at infinity M � K −→ R

n
� B(0, R) such that in this chart we have

e := g − b ∈ C2,α
β , k ∈ C1,α

−1+β ,

where b denotes the Euclidean background metric and Ck,α
β are the weighted Hölder

spaces (of functions, tensors or spinors according to the context) defined by

Ck,α
β =

⎧⎨
⎩w ∈ Ck,α

loc ,
∥∥∥(1 + r)−β+α+k[Dkw]α

∥∥∥
C0

+
k∑

p=0

∥∥(1 + r)−β+pDpw
∥∥

C0 < ∞
⎫⎬
⎭ .

In this definition, D denotes the flat Levi–Civita connection and

[Dkw]α := sup
|z−z′|≤1

{∣∣z − z′∣∣−α ∣∣∣Dkw(z)− Dkw(z′)
∣∣∣}

for z = (zi) any system of coordinates at infinity (r = |z|). In this situation, (M, g, k)
will be said to be Ck,α

β -asymptotically flat. Analogously, (M, g, k) is Ws,p
β -asymptotically

flat, s ∈ N, p ≥ 2, if

e := g − b ∈ Ws,p
β , k ∈ Ws,p

−1+β ,

where Ws,p
β are the Sobolev spaces (of functions, tensors or spinors according to the

context) defined by

Ws,p
β =

{
w ∈ Ws,p

loc, (1 + r)−β− n
p +jDjw ∈ Lp ∀j ≤ s

}
.
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The weighted indexing convention is convenient for the Sobolev spaces since the value
of β gives the asymptotic behaviour at infinity. We will refer to [2] for basic properties
of these spaces. In the remainder of the paper we will use the usual equivalent norm
on the Sobolev function space W1,2

− (n−2)
2

given by
∫

M |dw|2.

Let us assume furthermore that β < − (n−2)
2 and the constraints

�(g, k) :=
(

Scalg + (trgk
)2 − |k|2g

2
(
δgk + dtrgk

)
)

∈ L1(M, dVolg),

where δg is the g-divergence (with a − sign in front of it). Then pµ ∈ R
n,1 the energy–

momentum of (g, k) is (well-) defined [2] as

m = p0 = 1
16π

lim
r→∞

∫
Sr(b)

(δg + dtrg)(νr)dVolSr(b),

pi = 1
8π

lim
r→∞

∫
Sr(b)

(k(νr, ei)− g(νr, ei)trk)dVolSr(b),

where δ is the b-divergence (with a − sign in front of it), traces are taken with respect
to b, Sr(b) is a b-geodesic sphere of radius r and νr its pointing toward infinity unit
normal. The positive energy theorem proved in [18] (the proof is in dimension n = 3
but it can be extended with no difficulty to higher dimensions under the condition that
the manifold is spin) asserts that if (Mn, g, k) satisfies the dominant energy condition

Scalg + (trgk
)2 − |k|2g ≥ 2

∣∣δgk + dtrgk
∣∣
g ,

and if ∂M is composed with a finite number of either past or future trapped closed
(n−1)-manifolds then pµ is causal positively oriented. If we are in the border line case
where pµ is null then (cf. [7,13]) (M, g, k) is isometrically embeddable in Minkowski
space–time.

We introduce additional definitions and notations for later use. Let (Nn+1, γ ) be
a Lorentzian manifold of signature (−, +, . . . , +). (Mn, g, k) is assumed to be a spin
(in dimension 3 this only means orientable) Riemannian hypersurface whose induced
metric is g and second fundamental form (extrinsic curvature) is k. We will work
with the complex spinor [22] bundle of N restricted to the hypersurface M, that is to
say 	 := 	(N)|M which is given by the choice of a unit normal e0 of M in N. More
precisely, if one denotes by PSpin(n,1)(N) the bundle of Spin(n, 1)-frames on N, and
by ρn,1 the standard representation of Spin(n, 1) then

	(N) := PSpin(n,1)(N)×ρn,1 C
[(n+1)/2].

Now the choice of unit normal e0 of M in N induces a natural inclusion of Lie groups
Spin(n) ⊂ Spin(n, 1) and so we can define

	 := PSpin(n,1)(N)×(ρn,1)|Spin(n) C
[(n+1)/2].

	 naturally carries two sesquilinear inner products: the first one denoted by (∗, ∗)
which is Spin(n, 1)-invariant (it is not necessary positive); the second one denoted
by 〈∗, ∗〉 := (e0 · ∗, ∗) which is Spin(n)-invariant and Hermitian definite positive (· is
the Clifford action with respect to the metric γ ). The Hermitian or anti-Hermitian
character of the Clifford multiplication by vectors differs if we consider (∗, ∗) or 〈∗, ∗〉
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and is described in [23], for instance.	 is also endowed with two different connections
∇γ , ∇g which are respectively the Levi–Civita connections of γ and g. Let us take a
spinor field ψ ∈ �(	) and a vector field X ∈ �(TM), then our conventions are

∇γ

Xψ = ∇g
Xψ − 1

2
k(X) · e0 · ψ ,

〈k(X), Y〉γ = 〈∇γ

XY, e0
〉
γ

.

In these formulae · denotes the Clifford action with respect to the metric γ . We will
suppose that M has a compact and connected boundary ∂M whose induced metric,
Levi–Civita connection and second fundamental form are respectively denoted by

, ∇
, θ . Our conventions are

∇g
XY = ∇


XY − θ(X, Y)ν,

∇g
Xψ = ∇


Xψ − 1
2
θ(X) · ν · ψ ,

where ν is the unit normal to ∂M pointing toward infinity (that is to say pointing inside
M), and · still denotes the Clifford action with respect to the metric γ .

We define the Yamabe invariant of the boundary ∂M by

Y = Y (∂M, 
) := inf

̄∈[
]

{∫
∂M Scal
̄dVol
̄

Vol(∂M, 
̄)
n−3
n−1

}
,

where [
] is the conformal class of the boundary metric 
. It will also be convenient

to set Cn := 4
(

n−1
n−2

)
. The first result of this paper is a positive energy theorem

[15] for asymptotically flat (in the Sobolev classes) spin n-manifolds with compact,
connected boundary (which is an analogous version of Theorem 11.4 of [4]) using a
spectral boundary condition. Note that the following result is true even for non-CMC
manifolds.

Theorem 1.1 (Positive Energy) Let (Mn, g, k) be a complete, spin, W2,2
β -asymptotically

flat manifold, β < − (n−2)
2 , n ≥ 3, with Y (∂M, 
) > 0, satisfying the dominant energy

condition and the boundary condition

tr
θ +
⎛
⎝(k(ν, ν)− trgk)2 +

n∑
j=2

k(ν, ej)
2

⎞
⎠

1/2

≤ 1
2

Vol(∂M, 
)
−1

n−1
√

CnY (∂M, 
).

Assume furthermore that the constraints �(g, k) are L1(M, dVolg).
Then the energy-momentum pµ of (g, k) is causal and future oriented.

In the remainder of this introduction, we will make the CMC assumption (trgk
is a constant), which in asymptotically flat geometry reduces to trgk = 0. Since the
manifold (M, g, k) is thought as an isometrically embedded space–like hypersurface
in a Lorentzian manifold (N, γ ), then the CMC assumption gives the maximality
of (M, g, k) as Riemannian hypersurface of this Lorentzian manifold (see [3,5] for
existence results of maximal hypersurfaces in asymptotically flat space–times).
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The compact and connected boundary ∂M is supposed to be a weakly future trapped
(respectively weakly past trapped) (n − 1)-manifold which means that its mean curva-
ture vector is causal and past (resp. future) pointing (cf. [26] for a precise definition).
In our conventions, it can be expressed by the relation

trgk − k(ν, ν) = −k(ν, ν) ≥ |tr
θ |
(

resp. − trgk + k(ν, ν) = k(ν, ν) ≥ |tr
θ |
)

.

∂M is also assumed to have non-positive mean curvature tr
θ ≤ 0. This assumption is
motivated by the fact that an apparent horizon has non-positive mean curvature since
it satisfies the more restrictive conditions

trgk − k(ν, ν) = −k(ν, ν) ≥ tr
θ , trgk − k(ν, ν) = −k(ν, ν) = −tr
θ .

We also set k(ν) =∑n
j=1 k(ν, ej)ej for any local orthonormal frame (ej)

n
j=1, and

V := Vol(∂M, 
), � := V
1

n−1 sup
∂M

{
tr
θ + |k(ν)|g

}
,

The normalized Sobolev ratio is finally defined by

S := CnV
1

n−1 inf
W1,2

− (n−2)
2

{∫
M |∇f |2∫
∂M f 2

}
.

We can now state the main results of this paper.

Theorem 1.2 Let (M, g, k) be a n-dimensional, complete, C2,α
τ -asymptotically flat(

τ < −n−2
2 , n ≥ 3

)
, CMC and spin manifold with constraints satisfying the domi-

nant energy condition and �(g, k) ∈ L1(M, dVolg). Suppose furthermore that M has a
compact, connected and weakly future (resp. past) trapped boundary ∂M of positive
Yamabe invariant and of non-positive mean curvature satisfying

� <
1
2

√
CnY .

Then there exists (an explicit definition will be given in Sect. 4) a small positive constant
ζ0 = ζ0(M, g), such that pµ = (m, pi) the energy–momentum of (g, k) satisfies

m ≥ ζ0

√√√√ n∑
i=1

(pi)2 + S
(√

Y Cn − 2�
)

S + (√Y Cn − 2�
)
(

V
4

Cn

16π

)
. (1)

Remark 1.3

1. It would be nice to prove (1) with ζ0 = 1 in order to obtain a Lorentzian-
looking inequality that would clearly be a refinement of the positive energy theo-
rem for manifolds with boundary and so be a relevant conjecture for the Penrose
inequality in case of k �= 0.

2. The dominant energy condition and the L1 character of the constraints can be
replaced by the more restrictive condition: (M, g, k) is an initial data set, that is to
say �(g, k) = 0.

3. (M, g, k) clearly satisfies the assumptions of Theorem 1.1.
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Under the CMC assumption, the constant � of our theorem is non-negative since
the fact that the boundary ∂M is weakly future (resp. past) trapped ensures the non-
negativity of the function trgθ + |k(ν)|g along ∂M. It is also important to notice the
scale-invariance of the constant � (this is also the case of the constant ζ0(M, g) which
will be defined in Sect. 4). More precisely, if one considers the harmless rescaling of
initial data sets which are given by the conformal transformation�t : (g, k) �→ (t2g, tk),
for any constant and positive real parameter t, then� is invariant under each�t. Sur-
prisingly, one can find some triple (M, g, k) with k �= 0, satisfying the assumptions of
Theorem 1.2 and� = 0 (It is sufficient to construct suitable traceless transverse tensor
k with the good boundary conditions. See [25] for a precise discussion of this point).
This is the reason why Theorem 1.2 can be considered as a refinement of the Penrose-
like inequality of [16,17] for a class of non-zero extrinsic curvature asymptotically flat
manifolds.

Theorem 1.4 Suppose that the following conditions are satisfied:

1. The assumptions of Theorem 1.2 hold,
2. g and k are smooth,
3. Additional technical assumption: the symmetric 2-tensor k restricted to T∂M

vanishes, namely k∂M = 0.

If equality is achieved in (1), then k = 0 on the whole manifold M, and (M, g) is iso-
metric to the standard spacelike n-slice in the exterior Schwarzschild metric of mass m,
M = R

n \ B(0, R) with

R =
(

4πm
(n − 1)ωn−1

) 1
n−2

and g =
(

1 +
(

R
r

)n−2
) 4

n−2

eucl.

It is quite satisfactory that we recover the same conclusion as in [16,17] when
equality is achieved, even if we have to make assumption 3. This means that our
Penrose-like inequality is somehow optimal in the non-empty (this point will be shown
in the appendix) class of CMC asymptotically flat spin manifolds under consideration.

In dimension 3, the Yamabe number of the closed surface ∂M reduces to a topo-
logical invariant because of the Gauss-Bonnet formula which relates the total scalar
curvature to the Euler class. More precisely, Theorem 1.2 becomes in dimension 3.

Theorem 1.5 Let (M, g, k) be a 3-dimensional, complete, C2,α
τ -asymptotically flat(

τ < − 1
2

)
, CMC and orientable manifold with constraints satisfying the dominant

energy condition and�(g, k) ∈ L1(M, dVolg). Suppose furthermore that M has a com-
pact, connected and weakly future (resp. past) trapped boundary ∂M of non-positive
mean curvature, which satisfies in addition � < 4

√
π .

Then there exists a small positive constant ζ0 = ζ0(M, g), such that pµ = (m, pi) the
energy–momentum of (g, k) satisfies

m ≥ ζ0

√√√√ 3∑
i=1

(pi)2 + S
(
8
√
π − 2�

)
S + (8√

π − 2�
)
(√

A
16π

)
. (2)

In the context of the generalized Penrose inequality, it seems to be of interest to
insist on the following straightforward consequence.
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Corollary 1.6 For any manifolds (Mn, g, k) satisfying the assumptions of Theorem 1.2,
the mass, if defined, satisfies

m ≥ S
(√

Y Cn − 2�
)

S + (√Y Cn − 2�
)
(

V
4

Cn

16π

)
. (3)

This paper is organized as follows: In Sect. 2, we give the proof of the positive
energy Theorem 1.1 for (not necessary CMC) asymptotically flat spin manifolds with
boundary which mainly relies on recent results of [4]. In Sect. 3 we make a conformal
change of metric and second fundamental form à la Choquet Bruhat-Lichnerowicz-
York [6,12,25] in order to solve some differential equations and obtain the conditions
of application of the positivity result of the previous section. We give the last steps of
the proof of Theorems 1.2 and 1.4 in Sect. 4. The last section is an appendix where
we show, by constructing an example, that the class of asymptotically flat manifolds
under consideration in this paper is non-empty.

2 Positive energy theorem for manifolds with boundary

The aim of this section is to prove the positive energy Theorem 1.1 for asymptotically
flat manifolds (in the Sobolev classes) with compact connected boundary (which is an
analogous version of Theorem 11.4 of [4]) using a spectral boundary condition. Note
that the following result holds even for non-CMC manifolds.

Theorem 1.1 (Positive Energy) Let (Mn, g, k) be a complete, spin, W2,2
β -asymptoti-

cally flat manifold, β < − (n−2)
2 , with Y (∂M, 
) > 0, satisfying the dominant energy

condition and the boundary condition

tr
θ +
⎛
⎝(k(ν, ν)− trgk)2 +

n∑
j=2

k(ν, ej)
2

⎞
⎠

1/2

≤ 1
2

Vol(∂M, 
)
−1

n−1
√

CnY (∂M, 
).

Assume furthermore that the constraints �(g, k) are L1(M, dVolg).
Then the energy–momentum pµ of (g, k) is causal and positively oriented.

Proof Let (ek)
n
k=0 is an orthonormal basis at the point with respect to the metric γ .

We define respectively the Dirac–Witten operator of M and the Dirac operator of ∂M

Dγ ψ =
n∑

k=1

ek ·N ∇γ
ekψ , D
ψ =

n∑
k=2

ek ·∂M ∇

ek
ψ .,

where ·N = ·, ·M and ·∂M respectively denote the Clifford actions of respectively γ , g
and 
. The Bochner–Lichnerowicz–Weitzenbock–Witten formula is(

Dγ
)∗

Dγ = (Dγ
)2 = (∇γ

)∗ ∇γ + R,

where R := 1
4

(
Scalγ + 4Ricγ (e0, e0)+ 2e0 · Ricγ (e0)

)
. As usual we derive an integra-

tion by parts formula∫
Mr

∣∣Dγ ψ
∣∣2 =

∫
Mr

(∣∣∇γ ψ
∣∣2 + 〈Rψ ,ψ〉

)
+
∫
∂M

〈∇γ
ν ψ + ν·Dγ ψ ,ψ

〉
dVol∂M

−
∫

Sr

〈∇γ
νr
ψ + νr·Dγ ψ ,ψ

〉
dVolSr(g).
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Now expressing ∇γ in term of the (n − 1)-dimensional connection and second form,
and the n-dimensional second form, one gets for any ψ ∈ �(	|∂M)

∇γ
ν ψ + ν · Dγ ψ = −D
ψ + 1

2
e0 ·
⎧⎨
⎩−(tr
θ)e0 + (k(ν, ν)− trgk)ν +

n∑
j=2

k(ν, ej)ej

⎫⎬
⎭ · ψ ,

where we have used the following isomorphisms X ·∂M ψ = X ·M ν ·M ψ , and
X ·M ψ=iX ·N e0 ·N ψ , so as to identify D
. It is then natural to define the vector
field k ∈ �(TN|M) by

k := −(tr
θ)e0 + (k(ν, ν)− trgk)ν +
n∑

j=2

k(ν, ej)ej.

For any smooth and compactly supported spinor ψ we have then
∫

M

∣∣Dγ ψ
∣∣2 =

∫
M

(∣∣∇γ ψ
∣∣2 + 〈Rψ ,ψ〉

)
+
∫
∂M

〈
−D
ψ + 1

2
e0 · k · ψ ,ψ

〉
.

As in [16], we denote by P± the L2-orthogonal projections on the spaces of eigenvec-
tors of positive (respectively negative) eigenvalues of D
 on ∂M. We also define the
Hilbert space

H =
{
ψ ∈ W1,2

− (n−2)
2
(	), P+ψ = 0

}
.

Let us take ψ ∈ C∞
c (which is dense in W1,2

− (n−2)
2

) such that P+ψ = 0 and compute

∫
∂M

〈∇γ
ν ψ + ν · Dγ ψ ,ψ

〉
dVol∂M =

∑
m<0

∫
∂M

〈(
−λm + 1

2
e0 · k·

)
ψm,ψm

〉
,

where (λm,ψm)m∈Z∗ are the eigenvalues and eigenspinors of D
 (with the convention
that λm < 0 if and only if m < 0). But −2λm + e0 · k· is a spinorial endomorphism
which is non-negative if and only if the vector field (k − 2λme0) is causal future i.e.

−2λm ≥ tr
θ +
⎛
⎝(k(ν, ν)− trgk)2 +

n∑
j=2

k(ν, ej)
2

⎞
⎠

1/2

.

As a consequence, using the estimate of Bär and Hijazi [1, 19] this boundary integral
is non-negative as soon as

tr
θ +
⎛
⎝(k(ν, ν)− trgk)2 +

n∑
j=2

k(ν, ej)
2

⎞
⎠

1/2

≤ 1
2

Vol(∂M, g)
−1

n−1
√

CnY (∂M, 
)

≤ 2λ := 2 inf
m<0

{−λm} .

Now the sesquilinear form
∫

M 〈Dγ ∗, Dγ ∗〉 is clearly coercive on C∞
c (because of the

dominant energy condition and the estimate above) and also on H (≡ HP+ in the
notation of [4]) according to Lemma 11.1 and Theorem 11.4 of [4]. Consider now a
smooth spinor field ψ0 which is constant around infinity (in some chart at infinity)
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and satisfies P+ψ0 = 0. Using the coercivity, we can find (cf. also Theorem 8.8 of [4])
a ψ ∈ H so that Dγ (ψ + ψ0) = 0, and P+(ψ + ψ0) = 0. Thereby one obtains

4π 〈ψ0, e0 · p · ψ0〉 = lim
r→∞

∫
Sr(b)

〈∇γ
νr
(ψ0 + ψ)+ νr · Dγ (ψ0 + ψ),ψ0 + ψ)

〉 ≥ 0,

which implies that the energy–momentum pµ is causal and positively oriented. ��

3 Conformal changes

In this section, we consider a complete, CMC, C2,α
τ -asymptotically flat spin manifold

(Mn, g, k), with τ < − (n−2)
2 . We assume that the dominant energy condition is satisfied

and the constraints�(g, k) ∈ L1(M, dVolg). The boundary ∂M is supposed to be a com-
pact, connected future (resp. past) converging (n − 1)-manifold of non-positive mean
curvature which satisfies in addition � < 1

2

√
CnY . Notice that the CMC assumption

simplifies the expression of the vector field k which becomes k = −(tr
θ)e0 + k(ν).
We will make some conformal change of metric and second fundamental form à la

Choquet Bruhat-Lichnerowicz-York. The first step is to find a background conformal
factor that we will denote by u and that will be used in order to study the Choquet
Bruhat-Lichnerowicz-York conformal change.

3.1 A background conformal factor

Consider the Lagrangian on W1,2
− (n−2)

2
defined by

Q(f ) = 1
2

∫
M

|∇f |2 + 1
2Cn

∫
M

Scalg(1 + f )2 − 1
Cn

∫
∂M

tr
θ(1 + f )2

+1
2

√
Y

Cn
‖1 + f‖2

L
Cn
2 (∂M)

,

which is non-negative, since tr
θ ≤ 0 on the boundary ∂M. In the same way as in [16],
we can prove the

Proposition 3.1 There exists some u ∈ W1,2
− (n−2)

2
such that Q(u) = min Q. Moreover, the

function u satisfies 0 < 1 + u ≤ 1.

Proof The non-negativity of Q implies that

0 ≤ inf
W1,2

− (n−2)
2

Q < +∞.

Let us consider (ui)i∈N a minimizing sequence. It is clear that Q is coercive in W1,2
− (n−2)

2
,

so that (ui)i∈N is bounded in W1,2
− (n−2)

2
. Since W1,2

− (n−2)
2

↪→ L2(∂M) and W1,2
− (n−2)

2
↪→

L2
η− (n−2)

2
(M) with η > 0 are compact injections, there exists a sub-sequence (still

denoted by (ui)i) that converges strongly in L2
η− (n−2)

2
(M) and in L2(∂M) towards
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some u ∈ W1,2
− (n−2)

2
(remark that the convergence can be supposed pointwise almost

everywhere as well). Using Fatou’s lemma, we obtain

Q(u) ≤ lim inf
i

Q(ui) = inf
W1,2

− (n−2)
2

Q = min
W1,2

− (n−2)
2

Q.

Following the arguments of [16,17], we can prove by contradiction that the function
u cannot be identically −1 on the boundary. So assume it is the case, and consider the

solution h ∈ W2,p
α

(
with − (n−2)

2 − 1 < α ≤ − (n−2)
2

)
of the boundary problem

�h + 1
Cn

hScalg = 0 on M,

dh(ν) = −1 on ∂M,

where� denotes the positive Laplace operator with respect to g. We know that h is a
positive function and has the following asymptotic expansion h = κ

r(n−2) + h1, where

κ > 0 and h1 = o
(

1
r(n−2)

)
. Let us take ε > 0 and compute

Q(u + εh)− Q(u) = ε

{∫
M
(1 + u)

(
�gh + 1

Cn
Scalgh

)
+ lim∞

∫
Sr(b)

dh(νr)

}
+ O(ε2)

= −ε(n − 2)κVol
(
S

n−1, g
Sn−1

)
+ O(ε2),

where Vol
(
S

n−1, g
Sn−1
)

denotes the volume of the round sphere of radius 1. Conse-
quently for small positive values of ε, one gets Q(u + εh) − Q(u) < 0 which is in
contradiction with the minimizing character of u in W1,2

− (n−2)
2

.

As a matter of fact, since it is not identically −1 on the boundary, our minimizer
u ∈ W1,2

− (n−2)
2

satisfies the Euler–Lagrange equations associated to Q that is to say

�gu + 1
Cn

Scalg(1 + u) = 0 on M,

du(ν) =
√

Y

Cn
‖1 + u‖− 2

n−2

L
Cn
2 (∂M)

(1 + u)
n

n−2 − 2
Cn

tr
θ(1 + u) on ∂M.

Since the function u is superharmonic in a neighborhood of its minimum, this one is
consequently achieved on the boundary. Then suppose there exists some point y ∈ ∂M
such that u(y) ≤ −1. Using the boundary equation satisfied by u one gets, at the
point y

du(ν) =
√

Y

Cn
‖1 + u‖− 2

n−2

L
Cn
2 (∂M)

(1 + u)
n

n−2 − 2
Cn

tr
θ(1 + u) ≤ 0,

which is in contradiction with the maximum principle.
We have to prove now that u ≤ 0. Let us consider again ε > 0 small enough and

define uε = (u − ε)+ = max {0, u − ε} ≥ 0. Since u tends to 0 at infinity, we know
that uε is compactly supported on M, and on Suppuε we clearly have uε = u − ε and
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∇uε = ∇u. Then we compute, using Stokes’ theorem
∫

M
|∇uε|2 =

∫
M

〈∇uε, ∇u〉

=
∫

M
uε�gu −

∫
∂M

uεdu(ν)

≤ 0,

since �gu ≤ 0 on M, and du(ν) ≥ 0 on ∂M. Since M is connected, we obtain the
vanishing of uε which means u ≤ ε for every ε > 0 small enough. We can conclude
that u ≤ 0 by sending ε to 0.

In the remainder of this text, we consider some positive number p satisfying the
inequality max

{
2, n

2

}
< p ≤ n in order to obtain the continuous injection W2,p

τ ⊂ C0,α
τ .

Then u is actually W2,p
τ ′ for some τ < τ ′ < − (n−2)

2 , because of the elliptic regularity of

the Laplace operator, since the metric satisfies (g − b) ∈ C2,α
τ ⊂ W2,p

τ . This is obtained
with local inequalities, Bartnik’s scaling argument (cf. Proposition 1.15 of [2]) and the
use of relevant cutoff functions. Thereby u is C0,α

τ ′ and so C2,α
τ ′′ because of the elliptic

regularity of the Laplace operator in the Hölder classes, where τ ′ < τ ′′ < − (n−2)
2 . ��

3.2 A modified conformal change

Let us consider the conformally modified couple of metric and second fundamental
form (ḡ, k̄) = (ϕ4/(n−2)g, ζϕ−2k) where ϕ = 1 + v, v ∈ W2,p

β , β < − (n−2)
2 . In this sec-

tion, the constant ζ only satisfies the condition ζ > 0. Some transformation formulae
are collected in the

Lemma 3.2 If (ḡ, k̄) = (ϕ4/(n−2)g, ζϕ−2k) then

�(ḡ, k̄) =
(
ϕ− n+2

n−2 (Cn�gϕ + Scalgϕ)− ζ 2ϕ− 4n
n−2 |k|2g

2ζϕ− 2n
n−2 δgk

)

tr
̄θ̄ = ϕ− 2
n−2 tr
θ +

(
Cn

2

)
ϕ− n

n−2 dϕ(ν)
∣∣∣k̄(ν̄)

∣∣∣
ḡ

= ζϕ− 2n
n−2 |k(ν)|g

m = m − Cn

16π
lim∞

∫
Sr(b)

dv(νr)dVolSr(b)

pi = ζpi.

Proof Cf. [6,8,12,25] for the conformal transformation of the constraints. The trans-
formation formula for m has been proved in [16,17] and the one for pi is straightfor-
ward since v ∈ W2,p

β , and β < − (n−2)
2 . ��

We are interested in the following problem (P): finding some v ∈ W2,p
− (n−2)

2
such that

�gv + 1
Cn

Scalg(1 + v)− ζ 2

Cn
|k|2g (1 + v)−

3n−2
n−2 = 2ζ

Cn
(1 + v)−

n
n−2
∣∣δgk
∣∣
g on M,

tr
̄θ̄ +
∣∣∣k̄(ν̄)

∣∣∣
ḡ

= 1
2 Vol(∂M, ḡ)

−1
n−1
√

CnY (∂M, 
̄) on ∂M.



402 Ann Glob Anal Geom (2007) 32:391–414

This problem is quite natural since it consists on taking the equality cases of respec-
tively the dominant energy condition (remark nonetheless that we do not solve the
constraints equations) and the boundary condition of Theorem 1.1 with respect to the
couple (ḡ, k̄). According to the formulae of Lemma 3.2 and in virtue of the conformal
invariance of the Yamabe number Y , (P) is equivalent to

�gv + 1
Cn

Scalg(1 + v)− 2ζ
Cn

∣∣δgk
∣∣
g (1 + v)−

n
n−2 − ζ 2

Cn
|k|2g (1 + v)−

3n−2
n−2 = 0,

dv(ν) =
√

Y
Cn

‖1 + v‖− 2
n−2

L
Cn
2 (∂M)

(1 + v)
n

n−2 − 2
Cn

tr
θ(1 + v)− 2ζ
Cn

|k(ν)|g (1 + v)−
n

n−2 .

The main result of this section is the following existence theorem.

Theorem 3.3 There exists a weak solution v ∈ W1,2
− (n−2)

2
(not necessary unique) to the

problem (P), which satisfies u ≤ v ≤ 0 almost everywhere on M.

Proof We will prove the existence of a (pointwise) decreasing sequence (ui)i∈N of
W2,p

− (n−2)
2

defined by

{
u0 = 0,

∀i ∈ N
∗, ui ≥ u solution of (Pi),

where (Pi) is the following boundary problem

�gf + H(f ) = 0,

−df (ν)+ Gi(f ) = 0,

where we have set

H(f ) = 1
Cn

Scalg(1 + f )− 2ζ
Cn

∣∣δgk
∣∣
g (1 + f )−

n
n−2 − ζ 2

Cn
|k|2g (1 + f )−

3n−2
n−2 ,

Gi(f ) =
√

Y

Cn

∥∥1 + ui−1
∥∥− 2

n−2

L
Cn
2 (∂M)

(1 + f )
n

n−2 − 2
Cn

tr
θ(1 + f ),

− 2ζ
Cn

|k(ν)|g (1 + f )−
n

n−2 .

If we define the following Lagrangians

Ei(f ) = 1
2

∫
M

|∇f |2 + 1
2Cn

∫
M

Scalg(1 + f )2 + (n − 2)ζ
Cn

∫
M

∣∣δgk
∣∣
g (1 + f )−

2
n−2

+ (n − 2)ζ 2

2nCn

∫
M

|k|2g (1 + f )−
2n

n−2 + (n − 2)ζ
Cn

∫
∂M

|k(ν)|g (1 + f )−
2

n−2

− 1
Cn

∫
∂M

tr
θ(1 + f )2 + 2

√
Y

C3
n

∥∥1 + ui−1
∥∥− 2

n−2

L
Cn
2 (∂M)

∫
∂M
(1 + f )

Cn
2

on Fi :=
{

f ∈ W1,2
− (n−2)

2
/ u ≤ f ≤ ui−1

}
. Then the equations of (Pi) are the formal

Euler–Lagrange equations of Ei. Since we have assumed that tr
θ ≤ 0 we know that
each Ei is non-negative and coercive with respect to the W1,2

− (n−2)
2

-norm (nonetheless,

our assumptions do not allow us the conclusion that Ei is finite or even differentiable



Ann Glob Anal Geom (2007) 32:391–414 403

on the whole W1,2
− (n−2)

2
). However, let us suppose that u0 = 0 ≥ u1 ≥ · · · ≥ ui−1 ≥ u are

given strong solutions of respectively (P1), (P2), . . . , (Pi−1). We are going to construct
the (i+1)th term of the sequence (ui)i. We verify we can apply Theorem 1.2 of [32]. The
Hilbert space W1,2

− (n−2)
2

is reflexive and its subspace Fi is closed (for the pointwise con-

vergence) and convex (closed [for the pointwise convergence] and convex subsets of
Banach spaces are a large class of weakly closed sets which are needed for Theorem
1.2 of [32]). Since Ei is coercive, the only thing to verify is the weak lower semi-
continuity of Ei on Fi. Let us take (vm)m∈N ⊂ Fi a sequence which weakly converges
in W1,2

− (n−2)
2

to some ui ∈ Fi. Passing to a sub-sequence if necessary, we can assume

that vm
m−→ ui pointwise almost everywhere. Then using Fatou’s lemma and also the

lower semi-continuity of the W1,2
− (n−2)

2
-norm, we can conclude that

Ei(ui) ≤ lim inf
m

Ei(vm).

In virtue of Theorem 1.2 of [32], Ei is bounded on Fi and attains its infimum on Fi.
Let us denote by ui a minimizer. The harder is then to prove that ui weakly solves the
problem (Pi).
We first claim that u and ui−1 are respectively a sub-solution and a super-solution of
(Pi). Indeed we compute on one hand

(
�g + H) (u) = − ζ

Cn

∣∣δgk
∣∣
g (1 + u)−

n
n−2 − ζ 2

Cn
|k|2g (1 + u)−

3n−2
n−2

≤ 0

−du(ν)+ Gi(u) =
√

Y

Cn
(1 + u)

n
n−2

(∥∥1 + ui−1
∥∥− 2

n−2

L
Cn
2 (∂M)

− ‖1 + u‖− 2
n−2

L
Cn
2 (∂M)

)

− 2ζ
Cn

|k(ν)|g (1 + u)−
n

n−2

≤ 0,

since 1 + u > 0 and u ≤ ui−1. On the other hand we obtain(
�g + H) (ui−1) = 0

−dui−1(ν)+ Gi(ui−1) =
√

Y

Cn
(1 + ui−1)

n
n−2
∥∥1 + ui−1

∥∥− 2
n−2

L
Cn
2 (∂M)

−
√

Y

Cn
(1 + ui−1)

n
n−2 ‖1 + ui−2‖− 2

n−2

L
Cn
2 (∂M)

+ (−dui−1(ν)+ Gi−1(ui−1))︸ ︷︷ ︸
=0

≥ 0

since ui−1 is a strong solution of Pi−1, (1 + ui−1) > (1 + u) > 0, and ui−1 ≤ ui−2 by
assumption.

In the following, we denote by DEi = (DM ⊕ D∂M
)
Ei the formal derivative of Ei

whose action on any test function ϕ will be denoted by

〈ϕ, DEi(f )〉 =
〈
ϕ, DMEi(f )

〉
+
〈
ϕ, D∂MEi(f )

〉
.
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Now take some ϕ ∈ C∞
0 (M), some ε > 0 small enough, and define the function

vε = ui + εϕ − ϕε + ϕε, where

ϕε = max
{
0, ui + εϕ − ui−1

} ≥ 0 and ϕε = − min {0, ui + εϕ − u} ≥ 0

are compactly supported (actually
[
Supp(ϕε) ∪ Supp(ϕε)

] ⊂ Supp(ϕ)) functions since
u ≤ ui ≤ ui−1 by construction. We know that ui minimizes Ei in Fi so that we
have

0 ≤ 〈(vε − ui), DEi(ui)〉 = ε 〈ϕ, DEi(ui)〉 + 〈ϕε , DEi(ui)〉 − 〈ϕε, DEi(ui)
〉
,

so that

〈ϕ, DEi(ui)〉 ≥ 1
ε

( 〈
ϕε, DEi(ui)

〉− 〈ϕε , DEi(ui)〉
)

.

Since ui−1 is a super-solution of (Pi) and ϕε ≥ 0, we obtain on one hand

〈
ϕε, DEi(ui)

〉 ≥ 〈ϕε, DEi(ui)
〉−
∫

M
ϕε(�g + H)(ui−1)

−
∫
∂M
ϕε
(−dui−1(ν)+ Gi(ui−1)

)

=
∫

M

〈∇ϕε, ∇(ui − ui−1)
〉+
∫

M
ϕε
(
H(ui)− H(ui−1)

)

+
∫
∂M
ϕε
(
Gi(ui)− Gi(ui−1)

)

=
∫

M∩Supp(ϕε)

∣∣∇(ui − ui−1)
∣∣2

+
∫

M∩Supp(ϕε)
(ui − ui−1)

(
H(ui)− H(ui−1)

)

+
∫
∂M∩Supp(ϕε)

(ui − ui−1)
(
Gi(ui)− Gi(ui−1)

)

+ ε
∫

M∩Supp(ϕε)

〈∇ϕ, ∇(ui − ui−1)
〉

+ ε
∫

M∩Supp(ϕε)
ϕ
(
H(ui)− H(ui−1)

)

+ ε
∫
∂M∩Supp(ϕε)

ϕ
(
Gi(ui)− Gi(ui−1)

)

≥ o(ε).

The first equality is an application of Stokes’ theorem (which is authorized since ui−1 is
a W2,2

− (n−2)
2

solution of Pi−1), whereas the second one is given by the explicit expression

of ϕε on its support. The last inequality results from the increasing character of the
functionals H and Gi, and on the fact that

∣∣Supp(ϕε)
∣∣
M tends to 0 as ε −→ 0.
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On the other hand, since u is a sub–solution of (Pi) and ϕε ≥ 0, we get

−〈ϕε , DEi(ui)〉 ≥ − 〈ϕε , DEi(ui)〉 +
∫

M
ϕε(�g + H)(u)

+
∫
∂M
ϕε (−du(ν)+ Gi(u))

=
∫

M
〈∇ϕε, ∇(u − ui)〉 +

∫
M
ϕε

(
H(u)− H(ui)

)

+
∫
∂M
ϕε

(
Gi(u)− Gi(ui)

)

=
∫

M∩Supp(ϕε)
|∇(u − ui)|2

+
∫

M∩Supp(ϕε)
(u − ui)

(
H(u)− H(ui)

)

+
∫
∂M∩Supp(ϕε)

(u − ui)
(
Gi(u)− Gi(ui)

)

− ε
∫

M∩Supp(ϕε)
〈∇ϕ, ∇(u − ui)〉

− ε
∫

M∩Supp(ϕε)
ϕ
(
H(u)− H(ui)

)

− ε
∫
∂M∩Supp(ϕε)

ϕ
(
Gi(u)− Gi(ui)

)

≥ o(ε) .

The first equality is still an application of Stokes’ theorem (which is authorized as well,
since our background conformal factor u is a C2,α

τ function for some τ < − (n−2)
2 ),

whereas the second one is given by the explicit expression of ϕε on its support. The
last inequality results once again from the increasing character of the functionals H
and Gi, and on the fact that

∣∣Supp(ϕε)
∣∣
M tends to 0 as ε −→ 0.

Thereby it follows that 〈ϕ, DEi(ui)〉 ≥ o(ε)
ε

−→ 0 as ε −→ 0. Reversing the sign of
the test function ϕ we obtain

〈ϕ, DEi(ui)〉 = 0,

which exactly means that ui weakly solves (Pi). Using one more time the elliptic reg-
ularity of the Laplace operator, it can be proved that the function ui is actually W2,p

τ ′

since (g, k) satisfy (g−b) ∈ C2,α
τ ⊂ W2,p

τ , k ∈ C1,α
τ−1 ⊂ W1,p

τ−1, where τ < τ ′ < − (n−2)
2 . It

then comes out that ui is a strong solution of (Pi), and so the existence of the sequence
(ui)i∈N is finally achieved.

We will now show that the sequence (ui)i∈N is bounded in W1,2
− (n−2)

2
. Since ui

minimizes the functional Ei along the subset Fi � u we have
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Ei(ui) ≤ Ei(u)

≤ 1
2

∫
M

|∇u|2 + 1
2Cn

∫
M

Scalg(1 + u)2 + (n − 2)ζ
Cn

∫
M

∣∣δgk
∣∣
g (1 + u)−

2
n−2

+ (n − 2)ζ 2

2nCn

∫
M

|k|2g (1 + u)−
2n

n−2 + (n − 2)ζ
Cn

∫
∂M

|k(ν)|g (1 + u)−
2

n−2

− 1
Cn

∫
∂M

tr
θ(1 + u)2 + 2

√
Y

C3
n

‖1 + u‖2

L
Cn
2 (∂M)

=: K(u) < ∞,

where K(u) is finite (it is a consequence of (1 + u) ∈ C2, 0 < 1 + u ≤ 1 on M, and the
L1 character of Scalg,

∣∣δgk
∣∣
g , |k|2g) and does not depend upon i. This last inequality

gives the boundedness of (ui)i by coercivity of Ei with respect to the W1,2
− (n−2)

2
-norm.

Passing to a sub-sequence if necessary we can assume that (ui)i weakly converges in
W1,2

− (n−2)
2

towards some v. We will finally prove that v is a weak solution of (P). We

have for any test function ϕ∫
M

〈∇v, ∇ϕ〉 = lim
i−→∞

∫
M

〈∇ui, ∇ϕ〉

= lim
i−→∞

∫
M
ϕ�gui −

∫
∂M
ϕdui(ν)

= − lim
i−→∞

{∫
M
ϕH(ui)+

∫
∂M
ϕGi(ui)

}

= −
∫

M
ϕH(v)−

√
Y

Cn
‖1 + v‖− 2

n−2

L
Cn
2 (∂M)

∫
∂M
ϕ(1 + v)

n
n−2

+ 2
Cn

∫
∂M
ϕtr
θ(1 + v)− 2ζ

Cn

∫
∂M
ϕ |k(ν)|g (1 + v)−

n
n−2 .

The first equality is obvious by the definition of the weak convergence of (ui)i towards
v, and the second and third ones are clear since ui is a W2,p solution of Pi. The last
one is a consequence of Lebesgue’s theorem on dominated convergence. We then
conclude that v is a weak solution of (P). ��
Remark 3.4 Reasoning in the same way as for u with the elliptic regularity of the
Laplace operator, we can notice that v is actually W2,p

τ ′ and so C2,α
τ ′′ , for some τ <

τ ′ < τ ′′ < − (n−2)
2 , since (g, k) satisfy (g − b) ∈ C2,α

τ ⊂ W2,p
τ , k ∈ C1,α

τ−1 ⊂ W1,p
τ−1. As a

consequence the inequality −1 < u ≤ v ≤ 0 holds everywhere on M.

4 End of the proofs

We firstly give the proof of Theorem 1.2.

Theorem 1.2 Let (M, g, k) be a n-dimensional, complete, C2,α
τ -asymptotically flat(

τ < −n−2
2 , n ≥ 3

)
, CMC and spin manifold with constraints satisfying the domi-

nant energy condition and �(g, k) ∈ L1(M, dVolg). Suppose furthermore that M has a
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compact, connected and weakly future (resp. past) trapped boundary ∂M of positive
Yamabe invariant and of non-positive mean curvature satisfying

� <
1
2

√
CnY .

Then there exists (an explicit definition will be given below) a small positive constant
ζ0 = ζ0(M, g), such that pµ = (m, pi) the energy–momentum of (g, k) satisfies

m ≥ ζ0

√√√√ n∑
i=1

(pi)2 + S
(√

Y Cn − 2�
)

S + (√Y Cn − 2�
)
(

V
4

Cn

16π

)
.

Proof We have constructed, in Sect. 3, thanks to a standard conformal method

(M, ḡ, k̄) =
(

M, (1 + v)
4

n−2 g, ζ(1 + v)−2k
)

which is a C2,α
τ -asymptotically flat mani-

fold
(
τ < − (n−2)

2

)
satisfying the equality case of the dominant energy condition and

the boundary equality

tr
̄θ̄ +
∣∣∣k̄(ν̄)

∣∣∣
ḡ

= 1
2

Vol(∂M, 
̄)
−1

n−1

√
CnY (∂M, 
̄) .

Hence (M, ḡ, k̄) satisfies all the assumptions of Theorem 1.1. In this section, we will
give some restriction on the admissible positive parameter ζ by giving the definition
of the geometric positive constant ζ0(M, g).

Now, according to the conformal transformation formulae of Lemma 3.2 for the
energy–momentum and applying Theorem 1.1, one gets

m = m − Cn

16π
lim

r→∞

∫
Sr(b)

dv(νr)dVolSr(b) ≥
√√√√ n∑

i=1

(pi )2 = ζ

√√√√ n∑
i=1

(pi)2.

But we remark that limr→∞
∫

Sr(b)
dv(νr)= 1

2 limr→∞
∫

Sr(b)
d
(
(1 + v)2

)
(νr) since

v = o
(

r− n−2
2

)
. Then applying Stokes’ theorem, it follows

lim
r→∞

∫
Sr(b)

d
(
(1+v)2

)
(νr) =

∫
∂M

d
(
(1 + v)2

)
(ν)+2

∫
M

|∇v|2 + 2
Cn

∫
M

Scalg(1 + v)2

− 4ζ
Cn

∫
M

∣∣δgk
∣∣
g (1 + v)−

2
n−2 −2ζ 2

Cn

∫
M

|k|2g (1 + v)−
2n

n−2 ,

but we know that

2(1 + v)d(1 + v)(ν) = 2

√
Y

Cn
‖1 + v‖− 2

n−2

L
Cn
2 (∂M)

(1 + v)
Cn
2

− 4
Cn

tr
θ(1 + v)2 − 4ζ
Cn

|k(ν)|g (1 + v)−
2

n−2 ,
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which entails

lim
r→∞

∫
Sr(b)

d
(
(1+v)2

)
(νr) = 2

∫
M

|∇v|2 + 2
Cn

∫
M

Scalg(1 + v)2

− 4ζ
Cn

∫
M

∣∣δgk
∣∣
g (1 + v)−

2
n−2 − 2ζ 2

Cn

∫
M

|k|2g (1 + v)−
2n

n−2

− 4
Cn

∫
∂M

tr
θ(1 + v)2 − 4ζ
Cn

∫
∂M

|k(ν)|g (1 + v)−
2

n−2

+ 2

√
Y

Cn
‖1 + v‖2

L
Cn
2 (∂M)

.

It will be convenient to denote by F(v) the right-hand side member of the equality
above, in other words

F(v) = 2
∫

M
|∇v|2 + 2

√
Y

Cn
‖1 + v‖2

L
Cn
2 (∂M)

+ 2
Cn

∫
M
(1 + v)2

(
Scalg − 2ζ

∣∣δgk
∣∣
g (1 + v)−

Cn
2 − ζ 2 |k|2g (1 + v)−Cn

)

− 4
Cn

∫
∂M
(1 + v)2

(
tr
θ + ζ |k(ν)|g (1 + v)−

Cn
2

)
.

But now we can define the positive and scale-invariant constant ζ0 = ζ0(M, g) as

ζ0(M, g) := inf
M

{
(1 + u)

Cn
2

}
> 0,

since we proved in Proposition 3.1 that the continuous function u ∈ C2,α
τ ′′ cannot

achieve the value −1 neither on M nor on the boundary ∂M. In that case, for every
ζ ∈]0, ζ0], we have

Scalg − ζ
∣∣δgk
∣∣
g (1 + v)−

Cn
2 − ζ 2 |k|2g (1 + v)−Cn ≥ 0

tr
θ + ζ |k(ν)|g (1 + v)−
Cn
2 ≤ tr
θ + |k(ν)|g

in virtue of the dominant energy condition (Scalg − 2
∣∣δgk
∣∣
g − |k|2g ≥ 0 under the

CMC assumption) and u ≤ v. The assumption tr
θ + |k(ν)|g ≤ 1
2 Vol(∂M, 
)

−1
n−1

√
CnY

obviously implies

F(v) ≥ 2
∫

M
|∇v|2 +2

√
Y

Cn
‖1 + v‖2

L
Cn
2 (∂M)

− 4
Cn

∫
∂M
(1 + v)2

(
tr
θ+ |k(ν)|g

)

≥ 2
∫

M
|∇v|2 +

(
2

Cn

)
V

−1
n−1

(√
Y Cn − 2�

) ∫
∂M
(1 + v)2,

where we have used Hölder inequality. It follows using Young inequality:
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∀ε > 0 (1 + v)2 ≥
(

1 − 1
ε

)
+ (1 − ε)v2, that

F(v) ≥ 2
∫

M
|∇v|2 +

(
2

Cn

)
V

−1
n−1

(√
Y Cn − 2�

){(
1 − 1

ε

)
V + (1 − ε)

∫
∂M

v2
}

= 2
∫

M
|∇v|2 +

(
2

Cn

)(√
Y Cn − 2�

)(
1 − 1

ε

)
V

4
Cn

+
(

2
Cn

)
V

−1
n−1

(√
Y Cn − 2�

)
(1 − ε)

∫
∂M

v2.

Suppose now that F(v) < η
(

2
Cn

) (√
Y Cn − 2�

)
V

4
Cn where η is a positive constant.

Then we obtain

2
∫

M
|∇v|2 +

(
2

Cn

)
V

−1
n−1

(√
Y Cn − 2�

)
(1 − ε)

∫
∂M

v2

<

(
2

Cn

)(√
Y Cn − 2�

)(
η − 1 + 1

ε

)
V

4
Cn .

The left-hand side member of this inequality is non-negative if and only if

S := CnV
1

n−1 inf
W1,2

− (n−2)
2

{∫
M |∇f |2∫
∂M f 2

}
≥
(√

Y Cn − 2�
)
(ε − 1).

This condition entails η > 1 − 1
ε
. But this function of ε achieves its maximum for

εmax = 1 + S

(
√

Y Cn−2�)
and therefore η > 1 − 1

εmax
. By contraposition, if we take

η = 1 − 1
εmax

= S

S + (√Y Cn − 2�
) ,

then F(v) ≥ η

√
Y
Cn

V
4

Cn and so it comes out

m − ζ

√√√√ n∑
i=1

(pi)2 ≥ Cn

32π
F(v) ≥ S

(√
Y Cn − 2�

)
S + (√Y Cn − 2�

)
(

V
4

Cn

16π

)
,

which gives finally the desired inequality. ��
We end this section with the proof of Theorem 1.4.

Theorem 1.4 Suppose that the following conditions are satisfied:

1. The assumptions of Theorem 1.2 hold,
2. g and k are smooth,
3. Additional technical assumption: the symmetric 2–tensor k restricted to T∂M

vanishes, namely k∂M = 0.

If equality is achieved in (1), then k = 0 on the whole manifold M, and (M, g) is
isometric to the standard spacelike n-slice in the exterior Schwarzschild metric of mass
m, M = R

n \ B(0, R) with

R =
(

4πm
(n − 1)ωn−1

) 1
n−2

and g =
(

1 +
(

R
r

)n−2
) 4

n−2

eucl.
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Proof When equality is achieved in (1), we obtain the null character of (p̄µ) the
energy–momentum of (ḡ, k̄). This means that each non-negative term of the inte-
grated Bochner formula vanishes, for a certain (not for every) spinor field ψ ∈ ker Dγ

which is asymptotic to some non-zero and constant at infinity spinor ψ0

0 = 4π 〈ψ0, e0 · p̄ · ψ0〉
=
∫

M

(∣∣∣∇ γ̄ ψ

∣∣∣2 + 〈Rψ ,ψ
〉)+

∫
∂M

〈
−D
̄ψ + 1

2
e0 · k · ψ ,ψ

〉
. (4)

In particular, the boundary integral has no contribution when one computes
4π 〈ψ0, e0 · p̄ · ψ0〉. Since the manifold (M, ḡ, k̄) is asymptotically flat, there exists
a compact subset K which contains the boundary ∂M, and a chart at infinity ϒ :
M \ K −→ SR := R

n \ B(0, R) such that the energy–momentum of (SR,ϒ∗ḡ,ϒ∗k̄) is
null. But the smoothness of (g, k) implies (by bootstraping the regularity arguments
used to prove that v is C2,α

τ ) the smoothness of (ϒ∗ḡ,ϒ∗k̄) on SR. We can then apply
Theorem 3.2 of [13] which asserts that (p̄µ) vanishes.

This fact has many consequences on the whole manifold M, since (4) is now true
for a basis of spinor fields. Then there exists a basis B ⊂ (	 ∩ ker P+) of ∇ γ̄ –par-

allel spinor fields on M which satisfy in addition
〈(

−λ̄+ 1
2 e0 · k

)
· ψ ,ψ

〉
= 0, for any

ψ ∈ B. This entails the vanishing of the vector field
(−2λ̄− tr
̄θ̄

)
e0 + k̄(ν̄) on the

boundary, that is to say

tr
̄θ̄ = 2λ̄, and k̄(ν̄) = 0 .

On the other hand our conformal couple (ḡ, k̄) satisfies along ∂M

tr
̄θ̄ + |k̄(ν̄)|ḡ = 1
2

V
−1

n−1
√

CnY ≤ 2λ̄,

which means that we are in the equality case of the Bär–Hijazi estimate, and conse-
quently 
̄ is Einstein with positive scalar curvature Scal
̄ = κ2(n − 1)(n − 2). Now the
traced Gauss equation on ∂M can be written as follows

Ricḡ,∂M = Scal
̄

(n − 1)

̄− (tr
̄θ̄ )θ̄ + θ̄ ◦ θ̄ .

On the other hand, since M has a basis of ∇ γ̄ –parallel spinor fields, one can show (see
the spinorial curvature computations of [13,23]) that the curvature tensor Rγ̄ vanishes
and we get the following geometric equations

Rḡ = 1
2

k̄©∧ k̄

d∇ ḡ
k̄ = 0 .

We get by taking a trace, that Ricḡ = −(trḡk̄)k̄ + k̄ ◦ k̄ = k̄ ◦ k̄ on the whole M.
In particular, this equation leads, by restriction to ∂M,

Ricḡ,∂M = k̄∂M ◦ k̄∂M = ζ 2
0 (1 + v)−4

(
k∂M ◦ k∂M

)
= 0,

thanks to the additional assumptions 3. Since 
̄ is a Yamabe metric on ∂M, the value
of the mean cuvature is known to be tr
̄θ̄ = κ(n − 1), we then get

κ2(n − 2)
̄ = κ(n − 1)θ̄ − θ̄ ◦ θ̄ .
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We can remark that every eigenvalue µi of θ̄ ∈ S2(T∂M) is a root of the polynomial

P(X) = X2 − κ(n − 1)X + κ2(n − 2).

P has two roots κ and (n − 2)κ . In the 3-dimensional case n = 3, it is clear that the
boundary ∂M is totally umbillic in ḡ (θ̄ is proportional to 
̄). In higher dimensions,
we notice once again that the mean curvature is tr
̄θ̄ = κ(n − 1) which imposes that
every eigenvalue µi = κ , and so ∂M is totally umbillic in ḡ as well. It comes out, by
the Gauss equation

R
̄ = 1
2
κ2 (
̄©∧ 
̄) ,

that the boundary ∂M has constant sectional curvature and so is the quotient of the
round sphere S

n/�. As in [17], the Gromov–Heintze–Karcher inequality leads to the
conclusion that the group � is trivial. Now, we glue M along the boundary ∂M = S

n

with B =
(

Bn
(

0, 1
κ2

)
, geucl, k = 0

)
, the n-dimensional flat ball of radius 1

κ2 endowed

with a zero extrinsic curvature 2-tensor. This produces (M̃, g̃, k̃) a complete, CMC,
n-dimensional asymptotically flat spin manifold with zero energy–momentum. Hence,
applying [13] again, (M̃, g̃, k̃) can be isometrically embeddable in Minkowski space–
time R

n,1. But the maximal hypersurfaces in R
n,1 have automatically vanishing second

fundamental form (see the estimate of Theorem 3 of [11]) , that is to say k̃ = 0 and
so k = 0. This means that we are in the equality case of [17], so that we can conclude
that (M, g) is a spacelike n-slice of the Schwarzschild metric. ��
Remark 4.3 The technical assumption 3 could appear rather artificial and restrictive,
but it is actually natural in order to make the gluing construction with the manifold
B which is the simplest that one could imagine. Indeed it seems quite hard to find
(actually too hard for the author), for arbitrary traceless 2-tensors k, examples of
topological balls endowed with a metric and extrinsic curvature tensor which glue
well with (M, ḡ, k̄).

Acknowledgements The author is grateful to M. Herzlich for having pointed out a mistake in an
earlier version of this article, and also to P. T. Chruściel for many helpful discussions.

Appendix

The aim of this appendix is to show that the class of asymptotically flat spin manifolds
under consideration in this paper is non-empty, and even quite large. The idea is to
construct examples of couples (g, k) satisfying the assumptions of Theorem 1.2, by
deforming the Schwarzschild metric that we will denote by gS. We recall that gS is a
scalar–flat and asymptotically flat metric which lies in the conformal class of the flat
space, and has a minimal sphere as boundary. Let us take some function χ ∈ C0,α

τ ,
χ > 0 for some τ < −((n − 2)/2). The first step of our construction is to prove the
existence of a regular solution to the problem

�gSϕ = χ ,

dϕ(νgS) = 0,

where �gS and νgS are respectively the Laplace operator and boundary unit normal,
both with respect to the Schwarzschild metric. This problem can be easily solved by
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applying Lax–Milgram theorem in the Hilbert space W1,2
− (n−2)

2
to the scalar product

a defined by

a(f1, f2) :=
∫

M
〈df1, df2〉 ,

and to the continuous linear form f �−→ ∫M χf . Thanks to the elliptic regularity of the
Laplace operator in the Hölder classes, ϕ ∈ C2,α

τ ′ for some τ < τ ′ < − (n−2)
2 . We shall

prove that our solution ϕ is actually positive on M. To this end, set ϕε = min {0,ϕ + ε},
for any ε > 0. Obviously, ϕε is a compactly supported

(
since ϕ

∞−→ 0
)

non–positive

function, and a simple computation leads to
∫

M
|∇ϕε|2 =

∫
M

〈∇ϕε , ∇ϕ〉

=
∫

M
ϕεχ

≤ 0 .

Therefore ∇ϕε ≡ 0 which merely implies ϕε ≡ 0, since M is assumed to be connected.
It follows that ϕ + ε ≥ 0 for every ε > 0, and we can conclude that ϕ ≥ 0 by sending
ε to 0. We finally remark that ϕ cannot vanish because of the strong version of the
maximum principle.

Now we define the metric g := (1 + ϕ)
4

n−2 gS which, in virtue of the conformal
transformation formulae of Lemma 3.2 and of the equalities above, satisfies

Scalg = Cn(1 + ϕ)
− (n+2)
(n−2) χ

tr
θ = 0 .

We have thus constructed, by conformal deformation from the Schwarzschild metric,
another metric which has positive scalar curvature and a minimal spherical boundary.

The second step is to find a suitable extrinsic curvature tensor. We will make it by
solving the elliptic TT-tensor problem (TT) on vector field [25]

�gX = δgδ
∗
0X = 0 on M

(δ∗0X)(ν) = ων on ∂M,

whereω ∈ C0(∂M). Then (TT) has a unique solution X and we get a relevant extrinsic
curvature tensor by defining k := δ∗0X which is de facto traceless and divergence free.

The remaining question is: how can we obtain the necessary conditions

� = V
1

n−1 sup
∂M

|ω| ≤ 1
2

√
CnY (Sn−1, g

Sn−1) and Scalg ≥ |k|2g ? (5)

The ellipticity of (TT) implies a control
∥∥∥|k|2g

∥∥∥
C2,α
τ

≤ C ‖ω‖C0(∂M), and choosing

‖ω‖C0(∂M) small enough will allow us to obtain (5) since g has positive scalar curvature,
and the Yamabe number of the standard sphere is positive. Thus we have singled out
a large class of couples (g, k) satisfying all the assumptions of Theorem 1.2.
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