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between wild and domestic ungulates: two experiments
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Abstract Wild ungulates often adjust spatial behaviour
where they coexist with livestock. In European mountains,
chamois Rupicapra rupicapra or R. pyrenaica commonly
avoid alpine pastures used by domestic sheep. Mechanisms
leading to competitive losing out of the wild species are not
well understood, but mostly, resource competition is inferred
and sometimes demonstrated. We hypothesised that chamois
need to minimise the risk of intestinal parasite uptake and
therefore would avoid pastures contaminated with sheep
dung. We tested this in two experiments by contaminating
feeding patches of wild and captive chamois with (parasite-
free) sheep faeces. Wild chamois did not avoid grazing sites
or plots on which sheep dung had been placed at a (low)
density representing the commonly encountered situation in
the Swiss Alps. Captive chamois strongly reduced browsing
time on small trees given for food when the surroundings of

the trees were sprayed with a watery faecal solution. We
concluded that the odour signalled a potential high risk of
parasite infection to the captive chamois, whereas the density
of sheep dung on the grazing site of wild chamois was not
high enough to be perceived as a risk. The need to minimise
endoparasite uptake from faeces may therefore play a role in
driving spatial behaviour of wild ungulates and could result in
competitive imbalance between wild and domestic ungulates.
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Introduction

Where livestock and wild ungulates share a common range,
they tend to segregate at small spatial or temporal scales.
This is often a one-sided process in that only the wild
species adjust habitat use or feeding behaviour, while the
domestic species remain indifferent to their wild counter-
parts (Loft et al. 1993; Fritz et al. 1996; Stewart et al. 2002;
Acevedo et al. 2007). The result may be seen as an indirect
displacement of wild by domestic ungulates and thus as a
competitive losing out by the wild species (Voeten and
Prins 1999; Stewart et al. 2002). Mechanisms underlying
such processes have rarely been investigated in detail. Food
limitation through intensive grazing by the domestic species
was repeatedly found or inferred, and the nature of the
interaction has then been explained as resource competition
(Baldi et al. 2001; Mishra et al. 2004). The common situation
reported in most studies is that one or several domestic
species strongly outnumber the wild ungulates (e.g., Baldi
et al. 2001). As often domestic cattle are involved (Loft et al.
1991, 1993; Jenks et al. 1996; Kie 1996; Mishra et al. 2004),
the domestic species is usually also superior in body size.
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However, outright scramble competition involving aggres-
sive interactions does not seem to be common, and
displacement of wild species has often been treated as some
sort of interference competition to which the wild species
seem to be more susceptible. Beyond proximate explana-
tions, however, there must be ultimate reasons, and it has
been suggested that spatial avoidance of domestic herbivores
may be linked to the need of the wild species to avoid
transmission of disease or parasites (Moore 2002). Obvious-
ly, the different explanations involving resource limitation
and sanitary considerations need not be mutually exclusive.

Endoparasites, in particular generalist species, can have
profound effects on ruminant populations, such as reducing
reproductive success, growth rate and survival (Hart 1990),
even at subclinical levels where signs of disease might not
be apparent (Zaffaroni et al. 1997; Gunn and Irvine 2003).
Ruminants therefore have evolved behavioural strategies to
reduce the impact of parasite load, among them adaptations
to minimise the uptake of parasites while feeding (Hart 1990;
Lozano 1991). One way to achieve this goal is by avoiding
the swards around dung heaps because eggs of intestinal
parasites are excreted with faeces, and after hatching, larvae
spread into the surroundings (Sykes and Coop 1977; Sykes
1987; Hart 1990; Smith et al. 2006). Most studies of parasite
effects refer to domestic ruminants, but consequences for wild
ungulates are known to be similar (van der Wal et al. 2000;
Gunn and Irvine 2003), as wild and domestic species can
suffer from the same viral and bacterial infectious diseases
(Nicolet and Freundt 1975; Mayer et al. 1996) and can host
the same parasites (Kutzer 1988; Roberts et al. 2002).
However, dung avoidance behaviour has rarely been studied
in wild ungulates (van der Wal et al. 2000; Ezenwa 2004).

In European mountains, wild chamois (Rupicapra
rupicapra) or isard (R. pyrenaica) coexist over wide areas
with domestic sheep (Ovis aries) kept on alpine pastures
during summer. There are some 430,000 sheep pastured in
the Swiss Alps, and they outnumber chamois by almost five
to one on average, while locally the ratio may still be con-
siderably higher. Spatial segregation between the two species
at the expense of chamois was noted by several authors
(Rebollo et al. 1993; R. Fankhauser et al., unpublished data),
but underlying mechanisms have been little studied, although
avoiding the risk of infectious disease transmission has been
suggested (Ryser-DeGiorgis et al. 2002). Nematode parasite
communities are known to be quite similar in chamois and
domestic sheep and include Telodorsagia circumcincta, an
abomasal nematode species potentially pathogenic with a
high prevalence in both chamois and sheep (Balbo et al.
1978; Zaffaroni et al. 1996, 2000; Roberts et al. 2002).
Feeding on pastures littered with sheep dung in high density
may thus pose a serious risk to chamois of becoming infected
with potentially harmful parasites. We hypothesised that
chamois would exhibit similar avoidance behaviour towards

sheep dung as shown by the domestic ruminants. To test this
idea, we conducted two experiments. In the first experiment,
we contaminated natural feeding sites of wild chamois with
sheep faeces and ‘dummy’ dung in densities comparable to
those normally found on sheep pastures and recorded
behavioural responses of the chamois. In the second exper-
iment, we used captive chamois and sprayed a watery dung
solution at their feeding site to simulate stronger contamina-
tion, although we did not apply it to the food directly. We
again recorded behavioural responses of chamois to different
treatments.

Materials and methods

Experiment 1

The experiment was performed in a game reserve (20 km2) at
mount Augstmatthorn (2,137 m elevation) in the Bernese
Alps, Switzerland (46°44′32″, 7°55′43″), where hunting has
been prohibited since 1909. Present chamois densities are
high (e.g., 230–290 individuals were counted on 600 ha in
the central part of the reserve in 1994/1995, R. Francheschina,
personal communication). The reserve also holds some 50
Alpine ibex (Capra ibex), but the two species tend to be
spatially segregated. There are no domestic sheep kept in the
study area.

The experimental site was established in the central part
of the north-facing slope of mount Augstmatthorn at
1,600 m. The slope is evenly steep and predominantly
covered by a mosaic of subalpine meadows, boulders and
scree. In its lowest part, there is sparse coniferous wood
growth. The site was within the home range of a group of
about 30 female chamois and their kids and a few young
males. Their daily routine was to spend the night on the
south-facing slope of mount Augstmatthorn but to move to
the north-facing slope to feed during the day. While
foraging, they descended through the experimental site to
the foot of the slope and, later in the day, slowly ascended
through the experimental site again and returned to the
south slope for the night. During rainy weather, they tended
to remain on the south slope.

The experiment addressed two aspects of the hypothesis
that contamination of food patches with sheep faeces affects
feeding by chamois, on two spatial scales each. First, we
tested whether there was an effect on the numbers of
chamois present, either in the entire experimental site
(larger scale) or only on the treated plots (smaller scale).
Second, as dung might affect grazing behaviour rather than
overall numbers present, we compared proportions of types
of behaviour between the two periods, hypothesising that
the proportion of grazing would decrease after contamina-
tion. Again, we compared data for the entire experimental
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site and for the different plot treatments separately,
alternatively hypothesising that chamois might respond to
contamination only at a small scale by avoiding just the
immediate surroundings of dung.

The layout consisted of a grid of 18 adjacent plots (50×
50 m each) in three rows and six columns, laid out on a
subalpine meadow with an average of 10–15 cm sward
height. The corners of the plots were marked with 1-m
long posts carrying coloured tags that identified the
plots individually. We applied the scan sampling method
(Altmann 1974) with an observation interval of 15 min to
record chamois numbers and their behaviours (grazing,
lying, walking and standing) in each plot (=behavioural
records). The 18 plots were left untreated during the first
observation period (=control period, 9–27 July 2001). In
the second period (=trial period, 6 August–3 September
2001), one of three treatments was randomly assigned to
each plot: six plots were contaminated with sheep faeces,
six plots received pine tree bark to serve as ‘dummy’ faeces
and six plots were left untreated. The density of sheep and
‘dummy’ faeces were kept at one dung heap per square
meter so as to mimick the normal level on alpine sheep
pastures away from latrine areas (R. Fankhauser and S.
Schlatter, unpublished data). On each dung plot, a total of
17 kg (7 g/m2) of fresh sheep dung was deployed. The dung
was obtained from two organic farms where the sheep were
practically parasite-free. For ‘dummy’ faeces, we used pine
tree bark that was similar to sheep dung in size, colouration,
texture and form but was much lighter. When fresh, it
possessed a resinous smell, and we exposed it to the
weather during several weeks before the experiment until it
had lost its odour (at least to the human nose!). About 6 kg
of dry weight was deployed on each ‘dummy’ plot to
produce the same density as on the dung plots.

We calculated the sum of animals per scan and type of
behaviour for each plot in both periods. To account for
unequal period lengths and hence numbers of scan samples,
we used proportions of behaviour types to test for differ-
ences between plots according to treatments and periods.
We applied Kruskal–Wallis and chi-square tests using SPSS
11.0 for Windows (Norusis 2002).

Experiment 2

The second experiment was carried out in Goldau Zoo, an
animal park at Arth Goldau, central Switzerland that

specialises in displaying native species. There were five
chamois kept in one enclosure (two adult females, two kids
and one yearling). The experiment took place in late
autumn (November/December 2001) and built upon the
normal routine of how the animals were being fed. Because
at this time of the year there was little ground vegetation
left in the enclosure, the chamois were offered a small
portion of pellets every morning and late afternoon.
Additionally, with the morning feeding, they received a
fresh, small silver fir tree (Abies alba), which was mounted
on an old tree stump in the enclosure to be browsed by the
chamois during the day.

For this experiment, we hypothesised that a sufficiently
strong contamination with faeces would prompt the
chamois to avoid a feeding patch and tested whether the
contamination would be recognised by olfactory cues
(Hutchings et al. 1998; Cooper et al. 2000). We used a
watery solution of sheep faeces to produce such contami-
nation. As a control, we first applied pure water each
morning on 5 days (15, 16, 19, 20, and 22 November 2001)
before the faecal solution was brought out on another
5 days (26, 27, 28, 30 November and 3 December 2001).
Both water and solution were sprayed only to the tree
stump below the small fir tree, thus treating only the
surroundings and not the food itself. Due to sanitary
requirements by the animal park, all sheep faeces used
had been tested for parasites before application, and only
parasite-free sheep dung was used. During the ten trial
days, total time spent browsing on the silver fir tree was
recorded for each individual chamois by continuously
watching the animals. Differences between the treatments
were tested using the Wilcoxon test.

Results

Experiment 1

Because of inclement weather with many rainy, foggy or
cold days, chamois were present on the experimental site on
only 11 days during the control (19 days, without dung) and
trial periods (29 days, with dung). Total watch duration on
these 11 days was 84 h during the control and 73 h during
the trial period, producing 2,085 and 1,492 behavioural
records, respectively (Table 1). The difference was rela-
tively larger for behavioural records than for observation

Table 1 Types of behaviour
shown by chamois during con-
trol and trial periods

Time=total observation time in
hours, n=sum of behavioural
records, %=proportion of type
of behaviour in %

Period Time (h) Grazing Lying Walking Standing Total

n % n % n % n % n

Control 84 545 26 1,059 51 178 9 303 14 2,085
Trial 73 586 39 669 45 99 7 138 9 1,492
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hours due to the higher number of chamois present during
the control period.

At the scale of the entire experimental site, there was no
evidence that chamois presence differed between control
and trial period. The number of animals per hour and plot
ranged from 0.021 to 1.086 (mean, 0.345) in the control
period and from 0.034 to 1.052 (mean, 0.285) in the trial
period and did not significantly differ between the two
periods (Kruskal–Wallis test, n=18, U=144, z=−0.57, p=
0.569). There was also no sign that chamois redistributed
within the experimental site after dung deployment, as plot
use by treatment did not differ between periods, showing
strong individual variability (Fig. 1).

Grazing intensity on the entire site also did not decrease
after dung was brought in. Although the proportions of
behaviour types (“grazing”, “lying”, “walking” and “stand-
ing”; Table 1) significantly differed between control and
trial periods (chi-square test, p<0.001), changes were in
fact to the opposite than expected. “Grazing” was more
frequent in the trial (39%) than in the control period (26%;
chi-square test for “grazing” and “lying/walking/standing”,

p<0.001). There were also no differences on the plot scale
according to plot treatment. Proportions of grazing were
similarly higher in the trial than in the control period for
dung, dummy and control treatments, whereas proportions
of the other behaviour types mostly decreased to a similar
extent between treatments (Table 2). This resulted in
frequency distributions by treatments that were not different
between periods for all four behaviour types (chi-square,
p ranging from 0.484 to 0.751, N=18, Table 2).

Experiment 2

In the first period, when only water was applied to the tree
stump, the five chamois together browsed on average
25.5 min per hour on the silver fir. In the second period,
when a watery solution of sheep faeces was applied to the tree
stump, the animals together spent only an average of 4.7 min
per hour browsing on the silver fir. All five individuals
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Fig. 1 Numbers of chamois recorded per hour and plot according to
treatment, during the control and trial periods

Table 2 Proportion of types of behaviour (%) according to different treatments in control and trial periods and test statistics for each behaviour
type compared between trial and control periods

Period Grazing (%) Lying (%) Walking (%) Standing (%)

f d u f d u f d u f d u

Control 17 45 33 63 29 40 5 13 13 15 14 15
Trial 29 56 48 56 32 33 5 8 9 11 4 11
Chi2 1.39 0.71 0.57 1.45
p 0.50 0.70 0.75 0.48

Chi-square test on the original frequencies, n=18 plots, df=2
f Faeces, d dummy, u untreated
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Fig. 2 Mean hourly browsing times (and standard deviations; n=
5 days with 5.5 h of observation per period) of the captive chamois
feeding on the silver fir tree when water (control period), and a watery
solution of sheep faeces (trial period) was sprayed to the supporting
tree stump
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reduced their browsing time significantly during the con-
tamination period (Fig. 2; Wilcoxon test, N=25, Z=−4.345,
p<0.001).

Discussion

Anti-parasitic behaviour in animals includes a variety of
adaptations and strategies, the primary one being simply to
avoid food items that are a source of parasites (Hart 1990;
Lozano 1991). Grazing ungulates face the risk of ingesting
larval endoparasites that develop in faeces deposited by the
ungulates themselves, and they should therefore ignore
swards next to fresh droppings. Such avoidance behaviour
is known to occur in domestic ruminants (Pain et al. 1974;
Hart 1990; Bao et al. 1998; Cooper et al. 2000; Gunn and
Irvine 2003) and has recently also been found in wild
ungulates (van der Wal et al. 2000; Ezenwa 2004). How-
ever, mechanisms of faecal–oral parasite transmission in
free-ranging ruminants are not well understood, and
important questions remain largely unanswered, e.g. how
the infection risk varies with spatial and temporal patterns
of dung accumulation and decomposition, or how animals
are able to assess the risk and integrate it in foraging
decision trade-offs (Hutchings et al. 2006).

We used parasite-free sheep faeces for our experiments
because our a priori hypothesis that dung avoidance was the
mechanism to minimise the risk of parasite uptake did not
assume that the ungulates were able to detect parasites
directly and thus distinguish between parasite-infected and
parasite-free faeces. Cooper et al. (2000) found that sheep
did not react to feeding patches experimentally infested
with nematode larvae only, and although the sheep
discriminated against patches contaminated with faeces,
they did not discern between faeces from infected and
uninfected animals. Thus, the presence of faeces rather than
the parasites themselves seems to be the primary cue for
risk assessment (Hutchings et al. 2003), but odour may
mediate the strength of the behavioural reaction (Dohi et al.
1991; Aoyama et al. 1994). Hutchings et al. (1998) found
that fresh faeces were more odoriferous and provoked
stronger rejections of contaminated swards by sheep than
older faeces.

In our experiment with wild chamois, we deployed fresh
sheep dung at a similar density (1 heap/m2) as that
produced by sheep on alpine pastures away from latrine
areas. We therefore simulated the situation commonly
encountered by chamois over much of the Alps. However,
we did not detect any avoidance behaviour by the chamois on
the two spatial levels addressed. While several studies found
that ungulates reacted to dung contamination by avoiding
entire feeding patches (Pain et al. 1974; van der Wal et al.
2000), or at least by spending less time feeding there

(Cooper et al. 2000), in other studies, no avoidance was
observed (White and Hall 1998; Daniels et al. 2001).
Ungulates often seem to react to contaminated swards at
rather small spatial scales by decreasing bite depth, bite mass
and bite frequency in swards immediately around dung
heaps (Hutchings et al. 1998, 2002). In addition, these
behavioural modifications occur only above certain thresh-
olds of faecal concentration: Hutchings et al. (1998) found
significant levels of sward rejection by sheep only from
faecal densities of 198 g/m2 upwards, much higher than the
7 g/m2, which we used to simulate realistic contamination.
Possibly, the infection risk is not high enough at such density
to trigger avoidance behaviour in chamois. However, we
cannot exclude that the chamois modified bite actions in
swards immediately around dung heaps and thus reacted to
the presence of sheep dung at a micro-scale not amenable to
observation in our field situation.

In our second experiment with captive chamois, we
found a strong avoidance reaction in all five individuals
after a watery solution of sheep faeces was sprayed on the
tree stump on which the fir tree was mounted, despite the
faeces originating from parasite-free sheep. As the solution
was not applied on the forage plant itself and also offered
no visual signal, it is most likely that the smell was the
responsive cue for the chamois to reduce foraging. These
results link to several studies that reported strong aversion
towards swards treated with manure or slurry (Pain et al.
1974; Suárez and Orihuela 2002) and that odour was the
cue used by the animals (Dohi et al. 1991; Aoyama et al.
1994). Odour may convey two slightly different types of
information: Firstly, odour intensity can be seen as a
measure of faecal density, and secondly, strong odour in
faeces could indicate reduced health and thus higher
parasite load (Bekele 2002). In both cases, however, strong
odour would be a sign of high infection risk.

Inter-specific dung avoidance has rarely been addressed
(Benham and Broom 1991; Aoyama et al. 1994; Daniels
et al. 2001) and hardly ever in a wider context of inter-
specific relationships (Gunn and Irvine 2003). Our results
suggest that competitive imbalance between wild and
domestic ungulates, particularly avoidance of feeding
patches or habitats by the wild species, should not only
be interpreted in terms of resource (or interference)
competition but should also be considered under the aspect
of different risk perception and susceptibility to infection
with parasites and other pathogens excreted in faeces.
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