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Abstract The aim of this study was to assess the genetic
basis of rust mite (Aculus schlechtendali) resistance in
apple (Malus × domestica). A. schlechtendali infestation of
apple trees has increased as a consequence of reduced side
effects of modern fungicides on rust mites. An analysis of
quantitative trait loci (QTLs) was carried out using linkage
map data available for F1 progeny plants of the cultivars
‘Fiesta’ × ‘Discovery’. Apple trees representing 160
different genotypes were surveyed for rust mite infestation,
each at three different sites in two consecutive years. The
distribution of rust mites on the individual apple genotypes
was aggregated and significantly affected by apple geno-
type and site. We identified two QTLs for A. schlechtendali
resistance on linkage group 7 of ‘Fiesta’. The AFLP marker
E35M42-0146 (20.2 cM) and the RAPD marker AE10-400
(45.8 cM) were closest positioned to the QTLs and
explained between 11.0% and 16.6% of the phenotypic
variability. Additionally, putative QTLs on the ‘Discovery’

chromosomes 4, 5 and 8 were detected. The SSR marker
Hi03a10 identified to be associated to one of the QTLs
(AFLP marker E35M42-0146) was traced back in the
‘Fiesta’ pedigree to the apple cultivar ‘Wagener’. This
marker may facilitate the breeding of resistant apple
cultivars by marker assisted selection. Furthermore, the
genetic background of rust mite resistance in existing
cultivars can be evaluated by testing them for the identified
SSR marker.

Keywords Quantitative trait loci . AppleMalus ×
domestica . Rust mite resistance

Introduction

The apple rust mite (Aculus schlechtendali Nalepa) is a
serious pest in many apple growing regions of the world
(Easterbrook and Palmer 1996). A. schlechtendali infestation
of apple trees (Malus × domestica Borkh.) has increased
along with changes from broad-spectrum to non-acaricidal
fungicides (Easterbrook 1984). Many formerly applied
sulfur-containing products for disease control and also
products for pest control exhibited side effects on rust mites
and other non-target organisms, and have now been replaced
by selective compounds devoid of such effects (Spieser et al.
1998). High numbers of A. schlechtendali cause browning of
leaf undersides and early defoliation (Easterbrook and Fuller
1986), which result in a reduced CO2 exchange and
transpiration rate, and negatively affect yield, fruit quality
and tree growth (Spieser et al. 1998). In addition, feeding A.
schlechtendali can initiate russet formation, rendering fruits
unmarketable (Easterbrook and Fuller 1986).

The use of resistant cultivars is an important component
of integrated pest management (IPM) (Frei et al. 2005),
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which combines resistant plants with chemical, biological
and cultural control methods to reduce plant damage and
minimize pesticide applications (Kellerhals et al. 2004;
Mody et al. 2008). The potential influence of the apple
cultivar on A. schlechtendali resistance has been reported
by several studies (Downing and Moilliet 1967; Herbert
1974; Höhn and Höpli 1990; Easterbrook and Palmer 1996;
Graf et al. 1998; Spieser et al. 1998; Duso et al. 2003).
However, the resistance of these apple cultivars was scored
by phenotypic evaluation, and no information on the
genetic basis of A. schlechtendali resistance is yet available.
Consequently, the applicability of such cultivars for
resistance breeding in apple is limited. Phenotypic evalua-
tion is either unreliable, or substantial resources are needed
for additional, complex field trials (Brown and Maloney
2003; Francia et al. 2005).

Genetic linkage maps allow the identification of quan-
titative trait loci (QTLs), which can indicate chromosomal
regions controlling phenotypic traits (Collard et al. 2005).
Such a linkage map should be densely covered with
molecular markers, in order to obtain the maximum
probability to identify QTLs (Silfverberg-Dilworth et al.
2006). The saturation of the apple linkage map with random
amplified polymorphic DNA (RAPD), amplified fragment
length polymorphism (AFLP), and simple sequence repeat
(SSR) markers was strongly improved within the last years
(Liebhard et al. 2003a; Silfverberg-Dilworth et al. 2006).
Time- and cost-efficient molecular techniques, as for
example multiplex-polymerase chain reaction (PCR)-based
methods (Frey et al. 2004), accelerated the development of
genetic maps. Knowledge about the underlying genetics of
resistance may facilitate the efficient breeding of pest-
resistant apple cultivars. Molecular markers can be used to
select apple cultivars based on their genome (MAS; Brown
and Maloney 2003; Francia et al. 2005), even at the
seedling stage (Mohan et al. 1997). Furthermore, MAS
facilitates the combination of resistances to serious diseases
and pests, and of high fruit quality (Fischer 1994; Mohan et
al. 1997; Varshney et al. 2004), and it offers the possibility
to pyramid two or more resistance genes promoting durable
resistance (Mohan et al. 1997; Kellerhals et al. 2004). In the
apple system, there was a focus on plant diseases, and QTL
studies were carried out for resistance to apple scab
[Venturia inaequalis (Cke.) Wint] (e.g. Liebhard et al.
2003b; Calenge et al. 2004), mildew [Podosphaera
leucotricha Ellis and Everh.] (Calenge and Durel 2006),
and fire blight [Erwinia amylovora (Burrill) Winslow et al.]
(Calenge et al. 2005; Khan et al. 2006). Information on
QTLs for tree growth and fruit quality traits is also
available (Conner et al. 1998; King et al. 2000; Liebhard
et al. 2003c; Segura et al. 2006). Recently, some basic
information about markers associated to pest resistance was
provided for three aphid species, namely the leaf-curling

aphids (Dysaphis cf. devecta Wlk., species complex), the
rosy apple aphids (Dysaphis plantaginea Pass.), and the
woolly apple aphids (Eriosoma lanigerum Hausm.) (Roche
et al. 1997; Bus et al. 2008; Stoeckli et al. 2008a). Evidence
for a genetic basis of pest resistance in apple was given for
several other herbivore species, for example for the brown-
headed leafroller (Ctenopseustis obliquana Wlk.) (Wearing
et al. 2003), the European red mite (Panonychus ulmi
Koch) (Goonewardene et al. 1982), but information on the
genetic basis of arthropod resistance in apple is still scarce.
No gene region for A. schlechtendali resistance is known so
far, and the present study is the first report of a QTL
analysis for A. schlechtendali resistance in apple.

The aim of this study was to assess the genetic basis of
resistance in apple to A. schlechtendali. Apple trees
representing 160 different progeny genotypes were surveyed
for rust mite infestation at each of three different study sites.
Based on rust mite infestation, a QTL analysis was carried
out using linkage map data available for a segregating F1-
cross of the apple cultivars ‘Fiesta’ × ‘Discovery’ (Liebhard
et al. 2003a). Host-plant resistance to A. schlechtendali has
been reported based on phenotypic evidence for ‘Cox’s
Orange Pippin’, the mother cultivar of ‘Fiesta’ (Easterbrook
and Palmer 1996), which highlights the potential to identify
QTLs for A. schlechtendali resistance in the ‘Cox’s Orange
Pippin’ pedigree. Effects of environmental variability on
A. schlechtendali infestation, which may impede the detec-
tion of the genetic basis of resistance, were assessed by
considering (1) climatic conditions, (2) the relationship of
A. schlechtendali to other herbivores, and (3) the spatial
variability of A. schlechtendali infestation at the different
sites.

Materials and methods

Orchard characteristics and plant material

Apple rust mite (A. schlechtendali) abundance on apple trees
was surveyed in Switzerland at the sites Zurich (Wadenswil; at
47°13′20″N, 8°40′05″E, 455 m altitude), Valais (Conthey; at
46°12′30″N, 7°18′15″E, 478 m altitude), and Ticino (Cade-
nazzo; at 46°09′35″N, 8°56′00″E, 203 m altitude), during two
consecutive years, 2005 and 2006 (=Year 1 and Year 2).
Climate data from March to August during the two consecu-
tive years, and standard climate values (1960–1990) were
retrieved from MeteoSwiss (http://www.meteoschweiz.ch).
Highest mean temperatures (March to August) were mea-
sured at the Ticino site (16.8°C), followed by the Valais
(15.2°C), and the Zurich site (13.8°C; Table S1). At the
Valais site, the measured sum of rainfall (March to August;
300–400 mm) was half of the amount at the other sites
(700–800 mm). Temperature was 1–2°C higher conferred to
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standard temperature values, and at the Ticino site the
measured sum of rainfall was 60–70% of the standard value
(Table S1).

The studied apple trees represent F1 progeny plants of
the cultivars ‘Fiesta’ × ‘Discovery’ (Malus × domestica
Borkh.). They were bud-grafted on M27 rootstocks in
summer 1998 and planted in winter 1998/1999 at the three
sites (Liebhard et al. 2003b). Tree-to-tree distance was
0.5 m (Zurich and Valais) and 1.25 m (Ticino), respectively.
Rows were planted 3.5 m apart. The maximum number of
genotypes present at all three sites was 160, and was lower
for some analysis, as some trees died since plantation
establishment. Orchards were treated with fertilizers and
herbicides, but no insecticides, fungicides, and acaricides
were applied.

Assessment of mites and other herbivores

In Year 1, the abundance of A. schlechtendali on each
studied apple tree was quantified by (a) counting the
number of all rusty leaves per tree and by (b) evaluating
the number of mites per leaf extracted by filtration from a
sample of 24 leaves per tree. In Year 2, the filtration method
was applied only as the results of both methods were
comparable. For the filtration method, the tree was divided
into eight sectors (north, south, west, east; each bottom and
top) and three leaves were sampled randomly from each
sector to obtain a measure of mite abundance representing
the whole tree and not only a tree part (Stoeckli et al.
2008b). Young leaves (the top three to five leaves of a
shoot) were sampled as they generally show the highest A.
schlechtendali infestation (Easterbrook and Palmer 1996).
The leaves were suspended in 200 ml of a 0.1% Etalfix
solution (surface-active agent; gvz-rossat, Otelfingen, Swit-
zerland). After 5–7 h, the Etalfix solution was filtrated,
using a multibranch filter system consisting of three filter
holder support bases (Sartorius AG, Biotechnology Divi-
sion, Dietikon, Switzerland), equipped with ‘Biosart 250’
funnels (250 ml, polypropylene material) and cellulose
nitrate filters (diameter: 46 mm, pore size: 8 μm, white with
black lines; Sartorius AG, Switzerland). A. schlechtendali
on the filters were counted with a binocular. To assess a
possible relationship between the number of mites per leaf
and the leaf area (sum of the 24 collected leaves per tree),
leaves from the Ticino site in Year 1 were exemplarily
photographed with a digital camera (Nikon, Coolpix 990)
together with a reference area of 1 cm2, and total leaf area
was determined using the software Adobe Photoshop CS2
for Mac OS X (following the method described in Mody
and Linsenmair 2004).

To study the relationship between A. schlechtendali and
different herbivore species, the abundance of three aphid
and of two moth species was quantified for the same apple

trees that were considered for rust mite assessments. The
number of rosy apple aphid (Dysaphis plantaginea Pass.)
colonies, the number of red-curled leaves caused by leaf-
curling aphids (D. cf. devecta Wlk., species complex), and
the number of green apple aphids (Aphis pomi De Geer),
were counted three to four times from May to July at the
three sites in the two consecutive years. The number of
codling moth (Cydia pomonella L.) larval penetrations and
the number of mines caused by the apple leaf miner
(Lyonetia clerkella L.) were assessed in July and August
(C. pomonella) and July (L. clerkella), at the Ticino and
Valais site (C. pomonella) and at all three sites (L.
clerkella), in Year 1 (L. clerkella) or the two consecutive
years (C. pomonella).

QTL analysis

Abundance data of A. schlechtendali infestation were not
normally distributed and a log10(x+1) transformation was
applied to normalize error distribution. QTL analyses of the
number of rusty leaves per tree and the number of mites per
leaf were carried out separately for each site and year using
the software MapQTL® 4.0 (van Ooijen et al. 2002). The
genetic linkage maps for both ‘Fiesta’ and ‘Discovery’
(single parent maps), used in QTL analysis, were already
published (Liebhard et al. 2003a). Kruskal–Wallis tests and
interval mapping (IM) were used for QTL analysis.
Logarithm of odds (LOD) threshold values were deter-
mined by 1,000-fold permutation tests (MapQTL® 4.0) at a
significance level of 95% (genome-wide; King et al. 2000).
The 2-LOD support interval was calculated to estimate the
position of significant QTLs with 95% confidence (King et
al. 2000). Possible QTL interactions were tested by
multiple QTL mapping (MQM) for QTLs with LOD scores
exceeding the LOD threshold values in IM. The proportion
of variation in mite infestation that can be explained by the
genetic variation among the apple progenies was analyzed
by broad-sense heritability, which was estimated by the
formula H2 ¼ s2

g=s
2
p and s2

p ¼ ð½s2
g þ s2

e �=nÞ, where s2
g is

the genetic variance, s2
p is the phenotypic variance, s2

e is
the environmental variance and n is the number of
replicates per genotype (Lauter and Doebley 2002). The
outcome of the QTL analysis was confirmed by comparing
A. schlechtendali abundance on apple genotypes amplifying
the marker closest positioned to a QTL and genotypes not
amplifying the specific markers (Mann–Whitney U-test).
The SSR marker Hi03a10 (Silfverberg-Dilworth et al.
2006) was used to carry out a pedigree analysis of the
identified QTL for rust mite resistance on the ‘Fiesta’
linkage group 7. PCR amplifications were performed in a
10 μl volume containing 5 μl of a DNA solution (1 ng/μl),
1× reaction buffer (Amersham Pharmacia, Dübendorf,
Switzerland), 0.1 mM of each dNTP, 0.2 μM of dye-
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labeled forward primer and 0.2 μM of reverse primer, and
0.7 U of Taq Polymerase (Amersham Pharmacia, Düben-
dorf, Switzerland) per reaction. PCRs were performed in a
Gene Amp PCR system 9600 (Perkin Elmer, Foster City,
CA), and microsatellite fragment lengths were scored with
Genotyper 3.6 (Applied Biosystems).

Data analysis

Effect of genotype, site and year on A. schlechtendali
infestation was assessed by a three factor mixed model
ANOVA (number of mites per leaf), with year as within-
subject effect, and genotype and site as between-subjects
fixed effects. A one-way ANOVA was carried out to
analyze the number of rusty leaves per tree, with genotype
and site as fixed factors. Spearman’s rank tests were applied
to assess the relationship of (1) A. schlechtendali abundance
between different sites and years, and of (2) A. schlechten-
dali number on the two neighbor trees (sum) on mite
number on the specific individual trees. Only those trees
were included in this analysis that had direct neighbor trees
(a dead or missing tree was not regarded as neighbor tree).
When multiple correlation tests were carried out the
Benjamini–Hochberg procedure was applied to correct for
false discovery rates (type I errors; Verhoeven et al. 2005).
The distribution of A. schlechtendali on individual apple
trees was analyzed by the index of dispersion (ID; South-
wood and Henderson 2000) using BiodiversityPro 1997
(Neil McAleece, P.J.D. Lambshead and G.L.J. Paterson;
The Natural History Museum, London). ID values signifi-
cantly greater than the χ2 statistic (0.025 probability level)
indicate an aggregated distribution of the studied species
(Ludwig and Reynolds 1988) in our study of A. schlech-
tendali on individual trees (some trees were strongly
infested, whereas other trees were not infested at all).
Potential effects of the spatial position of trees in the study
sites on A. schlechtendali infestation were inferred from
analyses of spatial autocorrelation, computing Moran’s I
(Legendre and Legendre 1998) and corresponding z values

(significance levels) using the software CrimeStat III
(Levine 2007). Values of I greater than the expected I
indicate clustering while values of I less than the expected I
indicate dispersion. Potential spatial patterns of A. schlech-
tendali infestation within the orchard were visualized by
fitting trend surfaces on contour plots by kriging (best
unbiased generalized least squares estimation) with an
exponential covariance function (Venables and Ripley
2002). All statistical analyses were performed with SPSS
16.0 for Mac OS X (SPSS, Inc., Chicago, IL) and R 2.6.0
(R Development Core Team, Vienna).

Results

Evaluation of rust mite abundance

Highest numbers of apple rust mite (A. schlechtendali) per
leaf were found at the Zurich site in Year 2 (mean: 6.2;
Table 1), whereas lower infestation occurred at the Zurich
site in Year 1 (mean: 0.6), at the Valais site (mean; both
years: 0.6), and at the Ticino site (mean; Year 1: 1.4, Year 2:
0.3). The number of rusty leaves, caused by A. schlechten-
dali infestation in Year 1, was highest at the Zurich site
(mean: 8.5; Table 1), compared to 5.6 and 5.4 at the Valais
and Ticino site, respectively (Table 1). Maximal values
showed that some highly infested trees occurred at the Ticino
site (maximum number of mites per leaf: 84; Table 1). The
number of mites per leaf and the number of rusty leaves per
tree was significantly positively correlated (Spearman’s rank
test; Ticino, n=143, rs=0.817, P<0.0001; Valais, n=142,
rs=0.902, P<0.0001; Zurich, n=153, rs=0.585, P<0.0001).
At the Ticino and the Valais site, the number of A.
schlechtendali per leaf of the same tree genotype was
significantly correlated in the two consecutive years (Ticino,
n=143, rs=0.232, P=0.005; Valais, n=142, rs=0.180,
P=0.003), but no significant correlation was detected at the
Zurich site (n=153, rs=0.123, P=0.131). For the same tree
genotype, the number of A. schlechtendali per leaf and the

Table 1 Aculus schlechtendali infestation of progeny plants of the cross ‘Fiesta’ × ‘Discovery’ at three sites in two consecutive years

Ticino Valais Zurich

n Mean ± SE (Max) I n Mean ± SE (Max) I n Mean ± SE (Max) I

No. mites per leaf
Year 1 143 1.4±0.6 (84) 55 142 0.6±0.1 (6) 38 153 0.6±0.1 (13) 61
Year 2 143 0.3±0.1 (16) 19 142 0.6±0.2 (15) 26 153 6.2±0.8 (47) 73
No. rusty leaves
Year 1 149 5.4±1.1 (83) 41 148 5.6±0.8 (51) 45 153 8.5±0.9 (54) 67

Number of studied genotypes (n), mean infestation±standard error (SE), maximum value (Max) and incidence (I=% infested trees) are presented.
Mean and maximal values refer to the number of mites per leaf (extraction of 24 leaves per tree) in August in Year 1 and Year 2, and to the
number of rusty leaves per tree in August in Year 1
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number of rusty leaves were highly correlated in Year 1
among the Ticino and Valais sites, as well as among the
Valais and Zurich sites, but not amongst the Ticino and
Zurich sites (Table 2). No relation in the number of A.
schlechtendali per leaf among the sites was detected in Year
2 (Table 2). The number of mites per leaf and the leaf area of
the 24 assessed leaves (sum) were not significantly correlated
at the Ticino site in Year 1 (Spearman’s rank test; n=141,
rs=−0.156, P=0.065).

A. schlechtendali infestation was significantly influenced
by apple genotype and site (ANOVA; Table 3). Year, as a
within-subject effect, was not significant for the number of
mites per leaf, but there was a significant year×genotype
and year×site interaction (Table 3). Broad-sense heritability
(H2) for A. schlechtendali infestation was 19.9% (number
of mites per leaf), and 46.2% (number of rusty leaves per
tree, Table 4).

QTLs for rust mite resistance

Two significant QTLs were identified for A. schlechtendali
resistance in apple on the ‘Fiesta’ linkage group 7 at the
Zurich site in Year 1 (Fig. 1, Table 5). MQM mapping
(multiple QTL mapping; data not shown) did not reveal any
multiple linked QTLs and results were therefore based on
IM. The closest markers to these QTLs were the AFLP
marker E35M42-0146 at 20.2 cM and the RAPD marker
AE10-400 at 45.8 cM (Table 5). The significant LOD
scores at the marker positions were 4.3 (E35M42-0146) and
3.1 (AE10-400) for the number of mites per leaf (Zurich
Year 1). For the number of rusty leaves per tree, the
significant LOD scores at the marker positions were 6.0
(E35M42-0146) and 4.7 (AE10-400) (Zurich). The pheno-
typic variation explained by these markers ranged between
11–12% (number of mites per leaf) and 16–17% (number of
rusty leaves per tree) for significant LOD scores (Table 5).
The 95% confidence interval (2-LOD support interval)
ranged from map position 15–25 cM (E35M42-0146) and
28–47 cM (AE10-400) (Fig. 1, Zurich Year 1). A lower A.
schlechtendali infestation was found for apple genotypes
amplifying the AFLP marker E35M42-0146 or the RAPD
marker AE10-400 compared to apple genotypes not
amplifying one of the markers in 14 of 18 surveys (Table 5).
In the case of a significant QTL (Zurich), the difference was
significant (Mann–Whitney, P<0.05; Table 5). A combined
analysis of the AFLP marker E35M42-0146 or the RAPD
marker AE10-400 did not reveal an interaction between the
two markers. A lower A. schlechtendali infestation of the

Table 3 Effect of genotype, site and year on Aculus schlechtendali
infestation

df Mean
square

F value P value

No. mites per leaf
Within-subjects effects
Year 1 0.210 0.463 0.497
Year × genotype 157 0.548 1.205 <0.0001
Year × site 2 24.665 54.252 <0.0001
Error 278 0.455
Between-subjects effects
Genotype 157 0.682 1.249 0.050
Site 2 34.661 63.436 <0.0001
Error 278 0.546

No. rusty leaves
Genotype 157 0.417 1.865 <0.0001
Site 2 3.896 17.418 <0.0001
Error 290 0.224

Evaluation of the number of mites per leaf assessed by a mixed model
ANOVA and the number of rusty leaves per tree by one-way ANOVA

Table 4 Broad-sense heritability (H2) for Aculus schlechtendali
infestation

Variance components s2
g s2

p H2

No. mites per leaf 0.045 0.227 0.199
No. rusty leaves 0.064 0.139 0.462

Calculation of genotypic variance (s2
g) and phenotypic variance (s2

p)
based on mean square ANOVA results (cf. Table 3)

Table 2 Comparison of Aculus schlechtendali infestation on individual apple genotypes at three sites assessed by Spearman’s rank tests

Correlation Ticino–Valais Correlation Ticino–Zurich Correlation Valais–Zurich

rs P rs P rs P

No. mites per leaf
Year 1 0.315 <0.0001 0.026 0.758 0.259 0.002
Year 2 0.079 0.374 −0.003 0.975 −0.05 0.558
n 129 138 137
No. rusty leaves
Year 1 0.395 <0.0001 −0.082 0.326 0.359 <0.0001
n 140 144 143

Significant correlations after FDR correction are in bold
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‘Fiesta’ × ‘Discovery’ progeny amplifying the AFLP
marker E35M42-0146 was found independently of the
presence/absence of the RAPD marker AE10-400 (Table 6;
Zurich Year 1). Similarly, A. schlechtendali infestation was
lower or equal on genotypes amplifying AE10-400 com-
pared to trees not amplifying AE10-400, independent of the
presence/absence of E35M42-0146. The effect of the AFLP
marker E35M42-0146 was stronger than the effect of the
RAPD marker AE10-400 as differences between presence/
absence of this marker are higher compared to the latter
(Table 6). The origin of the QTL associated with A.
schlechtendali resistance (AFLP marker E35M42-0146 at
20.2 cM) was traced back in the ‘Fiesta’ pedigree. The
allele ‘240 bp’ of the SSR marker Hi03a10 (Silfverberg-
Dilworth et al. 2006), which is closely located and in
coupling to the marker E35M42-0146 (5.8 cM distance
between Hi03a10 and E35M42-0146), was found to be
inherited from the cultivar ‘Idared’ and finally ‘Wagener’
(Fig. 2).

We additionally identified QTLs that were significant for
one survey method, at one site, and in one of the two
consecutive years (data not shown). The ALFP marker
E35M41-0148 at 63.8 cM of linkage group 5 of ‘Discov-

ery’ was closest positioned to a QTL that was significant
for the number of mites per leaf at the Valais site in Year 2.
The QTL had a LOD score of 3.1 and explained 9.5% of
the phenotypic variability. Also for ‘Discovery’, the RAPD
marker C05-1000 on linkage group 4 at 35.8 cM, and the
allele ‘112 bp’ of the SSR marker CH02g09 on linkage
group 8 at 33.5 cM, were closest positioned to QTLs that
were significant for the number of rusty leaves at the Zurich
site in Year 1. The LOD scores of the QTLs were 3.2 and
2.0, and the phenotypic variability explained was 9.0% and
5.9%.

Spatial distribution of rust mites

The calculation of the index of dispersion (ID) showed that
A. schlechtendali infestation on individual trees was
significantly aggregated (P<0.0001; Table S2). Some trees
were strongly infested, whereas other trees were not
infested at all, but there was no significant spatial pattern
of A. schlechtendali infestation assessed by Moran’s I
(Table 7). This finding was in line with a visualization of the
position of trees infested with A. schlechtendali (Fig. S1). No
correlation between mite infestation on an individual tree and
mite infestation on the two neighboring trees was found,
neither for the number of rusty leaves nor for the number of
mites per leaf (Table S3).

Relationship between rust mite abundance and co-occurring
herbivore species

A significant positive relationship was found between the
number of A. schlechtendali per leaf and the number of A.
pomi per tree at the Ticino site in Year 1 (Spearman’s rank
test, Benjamini–Hochberg procedure; n=143, rs=0.284, P=
0.001), and at the Zurich site in Year 1 and Year 2 (Year 1,
n=153, rs=0.222, P=0.006; Year 2, n=153, rs=0.200, P=
0.005). A significant positive relationship between A.
schlechtendali and A. pomi was additionally found for the
number of rusty leaves per tree as measure for mite
infestation in Year 1 (Ticino, n=143, rs=0.270, P=0.001;
Zurich, n=153, rs=0.204, P=0.011). No significant rela-
tionship between infestation of the apple genotypes by A.
schlechtendali and by the other surveyed herbivores D.
plantaginea, D. cf. devecta, C. pomonella, and L. clerkella
was identified (P>0.05 for all tests).

Discussion

The purpose of this study was to investigate the resistance
of apple (Malus × domestica) to the apple rust mite (A.
schlechtendali). Interactions between A. schlechtendali and
other herbivores, climatic conditions at the study sites and

Fig. 1 QTLs for resistance of apple to A. schlechtendali identified on
linkage group 7 of ‘Fiesta’ based on IM results. The x axis indicates the
linkage map of ‘Fiesta’ in cM and the marker names; the y axis shows
the LOD scores. The solid black bar indicates the 2-LOD support
interval for the position of the QTL (Zurich Year 1). Log10(x+1)
transformed data were used for QTL analysis. The markers closest
positioned to the QTLs are underlined. LOD threshold levels at the
Zurich site for the number of mites per leaf were 2.6 (Year 1) and 4.5
(Year 2), and for the number of rusty leaves the threshold level was 3.2
(Year 1)
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the spatial variability of A. schlechtendali infestation were
assessed to elucidate QTL effects. We identified two
significant QTLs associated with A. schlechtendali resis-
tance on the ‘Fiesta’ linkage group 7. The AFLP marker
E35M42-0146 at 20.2 cM and the RAPD marker AE10-400
at 45.8 cM were closest positioned to the QTLs. A
significantly lower number of mites per leaf and a lower
number of rusty leaves per tree were found for apple
genotypes amplifying the AFLP marker E35M42-0146
compared to apple genotypes not amplifying the markers
at the Zurich site in Year 1 and at the Valais site in Year 2.
Referring to the second marker on the ‘Fiesta’ linkage
group 7, the RAPD marker AE10-400, the linkage map at
this region is not well saturated with molecular markers.
QTL significance may disappear when including more

markers in the QTL analysis. We did not find an interaction
between the two markers and they seem to be linked, as
70% of the apple genotypes amplifying for E35M42-0146
additionally amplify the marker AE10-400. These findings
may partly explain the QTL at the region of the RAPD
marker AE10-400. Broad-sense heritability (H2) amounted
to 19.9% (number of mites per leaf), and 46.2% (number of
rusty leaves), respectively. While some putative QTLs for
resistance to A. schlechtendali were also found on the
‘Discovery’ linkage groups 4, 5, and 8, the linkage group 7
of ‘Fiesta’ appears to be strongly related to resistance
against different pests and diseases. Besides the two newly
identified QTLs associated to resistance to A. schlechten-
dali, a QTL for fire blight resistance (Calenge et al. 2005;
Khan et al. 2006) and one for D. cf. devecta resistance

Table 5 QTLs identified for Aculus schlechtendali infestation in a segregating ‘Fiesta’ × ‘Discovery’ population on linkage group 7 of ‘Fiesta’

Site and year Locus Closest markera LOD score
(threshold)b

PVEc Mean infestation
(marker pres/abs)d

Number of mites per leaf
20.2 E35M42-0146 (+)

Ticino Year 1 0.8 (2.5) 2.9 0.7/1.0n.s.

Year 2 0.7 (2.4) 2.5 0.2/0.3n.s.

Valais Year 1 1.3 (3.0) 4.1 0.5/0.8*

Year 2 0.3 (3.4) 0.7 0.8/0.4n.s.

Zurich Year 1 4.3 (2.6) 12.3 0.5/0.9*****

Year 2 0.2 (4.5) 0.4 6.2/6.3n.s.

45.8 AE10-400 (−)
Ticino Year 1 0.8 (2.5) 7.9 1.2/0.8n.s.

Year 2 0.7 (2.4) 6.7 0.7/0.5n.s.

Valais Year 1 1.1 (3.0) 6.4 0.6/0.6n.s.

Year 2 1.2 (3.4) 9.1 1.3/0.4n.s

Zurich Year 1 3.1 (2.6) 11.0 0.4/0.8***

Year 2 0.8 (4.5) 2.9 4.0/6.6n.s.

Number of rusty leaves
20.2 E35M42-0146 (+)

Ticino 0.7 (2.5) 2.2 4.6/6.0n.s.

Valais 1.6 (3.4). 4.8 4.0/7.2****

Zurich 6.0 (3.2) 16.6 4.7/12.1*****

45.8 AE10-400 (−)
Ticino 0.8 (2.5) 6.0 5.0/6.8n.s.

Valais 1.5 (3.4) 5.7 5.0/6.0*

Zurich 4.7 (3.2) 15.9 4.5/10.7****

QTL analysis was carried out for each year and site separately. Site and Year, genetic locus (locus in cM), closest marker, linkage phase, LOD
score and threshold level at the locus of the closest marker, and phenotypic variance explained (PVE in %) based on IM are presented. Mean A.
schlechtendali infestation for the two subpopulations of the ‘Fiesta’ x ‘Discovery’ progeny based upon the presence (pres) and absence (abs) of
the nearest markers linked to the identified QTL on the ‘Fiesta’ chromosome. Significant LOD scores are highlighted
aMolecular marker closest to the likelihood peak of each QTL. Linkage phase information is provided as (+) or (−), indicating on which of the
homologous chromosomes the marker is located
b LOD (logarithm of odds ratio) score and LOD threshold at the position of the closest marker. LOD threshold levels were derived by 1000-fold
permutation tests (genome-wide)
c Phenotypic variance explained by the QTL
dMean A. schlechtendali infestation for the two subpopulations of the ‘Fiesta’ x ‘Discovery’ progeny divided based upon the presence/absence of
the nearest markers linked to a QTL on the ‘Fiesta’ chromosome. Different letters indicate significant differences between subpopulations (Mann–
Whitney U-test). *P<0.05; **P<0.01; ***P<0.005; ****P<0.001; *****P<0.0001. Sample size for the marker E35M42-0146 varied between
70–76 (pres) and 69–74 (abs). For the marker AE10-400 sample size varied between 46–52 (pres) and 53–56 (abs)
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(Roche et al. 1997; Stoeckli et al. 2008a) were previously
identified on this linkage group. The specific gene regions
of these QTLs are probably not overlapping. The fire blight
QTL is positioned on the bottom of the linkage group
(46.5–51.5 cM), whereas the QTL for D. cf. devecta
resistance was identified at its top (0–5 cM).

The genetic basis of apple resistance to A. schlechtendali is
underlined by the finding that rust mite infestation of
individual trees representing unique genotypes was highly
aggregated (ID, Table S2), and that genotype was a
significant factor explaining the number of rusty leaves per
tree (ANOVA; Table 3). Furthermore, we detected a
significant correlation of A. schlechtendali infestation of
individual apple genotypes between the sites Ticino and
Valais, as well as between the sites Valais and Zurich in Year
1. In combination with the identified QTLs, these phenotypic
findings provide further evidence for the genetic basis of rust
mite resistance in apple, which is supported by results from
other studies showing that rust mite infestation may vary on
different apple cultivars (e.g. Graf et al. 1998; Spieser et al.
1998; Duso et al. 2003).

A number of apple cultivars described as resistant to A.
schlechtendali, such as ‘Cox’s Orange Pippin’ (Easterbrook
and Palmer 1996), ‘Florina’ (Graf et al. 1998), ‘Glockenapfel’

(Höhn and Höpli 1990), ‘Golden Delicious’ (Herbert 1974;
Spieser et al. 1998), ‘Jonagold’ (Höhn and Höpli 1990),
‘McInosh’ (Downing and Moilliet 1967), ‘N.Y. 18491’ (Duso
et al. 2003) or ‘Red Delicious’ (Downing and Moilliet 1967;
Table S4), are highly promising to be tested for the SSR
marker allele associated with the described QTL (allele
‘240 bp’ of Hi03a10 on ‘Fiesta’ linkage group 7). However,
the pedigree analysis of ‘Fiesta’ revealed that the SSR marker
allele was inherited from the cultivar ‘Wagener’ to ‘Idared’,
but was not present in ‘Cox’s Orange Pippin’. Host-plant
resistance to A. schlechtendali has not yet been reported for
the cultivars ‘Wagener’ and ‘Idared’, and phenotypic field
surveys are therefore highly encouraged. The phenotypically
observed resistance of ‘Cox’s Orange Pippin’ (Easterbrook
and Palmer 1996) may be based on genetic factors, or its
expression may be strongly affected by environmental
conditions.

The identified QTL for the number of mites per leaf was
significant for the Zurich site in Year 1 and the Valais site in
Year 2, but it was not significant for the second year and the
Ticino site. This observation may reflect environmental
variability, which may partly explain different infestation
patterns and the instability of QTLs among sites (Walde et
al. 1997). The potential influence of environmental vari-
ability on rust mite infestation is supported by the finding
of a lacking correlation of A. schlechtendali infestation of
individual apple genotypes amongst the Ticino and Zurich
sites in Year 1. In general, all three sites differed markedly
in climate conditions. Temperature at the Ticino and the
Valais site was higher compared to the Zurich site, and field
observations revealed that tree phenology in the Zurich
orchard was approximately 2 weeks delayed compared to
the Ticino site. Besides climate, other environmental factors
such as the composition of the orchard fauna may affect
mite distribution and mask the effects of host tree genotype.
Host-tree infestation by aphids, for example, affects leaf
growth and, thus, probably changes habitat and resources
for rust mites. There was a significant positive correlation
between infestation by A. schlechtendali and the aphid A.
pomi at the Ticino site in Year 1, and at the Zurich site in
Year 1 and Year 2. A. pomi infestation was higher at the

Table 6 Combined analysis of the two markers at the peak of the
QTLs E35M42-0146 and AE10-400 (‘Fiesta’) that where significantly
linked to Aculus schlechtendali resistance at the Zurich site in Year 1

AE10-400

Presence Absence

No. mites per leaf
E35M42-0146 Presence 0.39±0.10 0.38±0.13

Absence 0.63±0.18 0.92±0.11
No. rusty leaves
E35M42-0146 Presence 0.39±0.07 0.51±0.15

Absence 0.67±0.17 0.89±0.08

The phenotypic trait (number of mites per leaf and number of rusty
leaves) was divided in four subpopulations based on the presence and
absence of the markers, and average values (log10(x+1)—trans-
formed) were analyzed

Fig. 2 Analysis of the pedigree
of the apple variety ‘Fiesta’ with
the SSR marker associated with
one of the QTLs for resistance
to A. schlechtendali (AFLP
marker E35M42-0164). The
SSR marker allele associated
with resistance is in bold (allele
‘240 bp’ for Hi03a10)
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Ticino and Valais sites than at the Zurich site and may have
contributed to instable QTL effects considering sites.
Although high herbivore infestation of an individual tree
may serve as a source of infestation by the same herbivore
of the neighbor trees (neighborhood effect), there was no
correlation between mite abundance on an individual apple
tree and mite abundance on the two neighbor trees.
Similarly, there was no significant effect of the spatial
position of trees in the study plots on distribution of A.
schlechtendali. Therefore, neighborhood effects or spatial
autocorrelation can be ruled out as explanation for the
QTLs in different environments and years.

The apparent influence of environmental conditions on
the variable and partly weak expression of the described
QTLs has to be taken into account when considering these
QTLs for breeding programs or orchard management
decisions. The stability of the QTLs in different genetic
backgrounds and under different environmental conditions
should be evaluated and further molecular markers should
be developed to saturate the described QTL regions.
Consideration of SSR markers that are closely positioned
to the QTLs will enhance the reliability and efficiency of
marker assisted selection (MAS; Mohan et al. 1997; Francia
et al. 2005). Besides a focus on the genetic basis of A.
schlechtendali resistance in apple, knowledge about biotic
and abiotic factors related to mite resistance will facilitate
rust mite control in apple orchards, requiring field evalua-
tions to receive environment-specific information. The
complexity of breeding pest-resistant cultivars is not only
due to the mentioned environmental factors but also to the
usually quantitative genetic background of arthropod

resistance. Nonetheless, SSR marker alleles such as allele
‘240 bp’ of the SSR marker Hi03a10 that are closely
positioned and in coupling to the identified QTLs may be
used as a starting point to screen existing apple cultivars for
resistance to A. schlechtendali and to identify resistant
parents that can be used in MAS to develop new resistant
apple cultivars.
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