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Move in Islamic Mathematics

Jacques Sesiano

Communicated by A. Djebbar

1. Introduction

One of the most impressive if not most original achievements in Islamic mathemat-
ics was the development of general methods for constructing magic squares. A magic
square of order n is a square with n cells on its side, thus n2 cells on the whole, in which
different natural numbers are arranged in such a way that the sum of each line, column
and main diagonal is the same (Fig. 1 and 2). Such are the properties of simple magic
squares. As a rule, the n2 first natural numbers are actually written in, which means that
the constant sum amounts to 1

2n(n2 + 1), the n-th part of their sum. If the squares left
when the borders are successively removed are themselves magic, the square is called
bordered (Fig. 3). If every pair of broken diagonals (that is, two diagonals which lie
on either side of, and parallel to, a main diagonal and together have n cells) shows the
constant sum, the square is called pandiagonal (Fig. 4, where, for example, the sums
17 + 1 + 15 + 24 + 8 and 2 + 10 + 13 + 16 + 24 are also equal to the magic sum 65).
Then there are composite squares: when the order n is a composite number, say n = r · s
with r, s ≥ 3, the main square can be divided into r2 subsquares of order s; these sub-
squares, taken successively according to a magic arrangement for the order r , are then
filled with sequences of s2 consecutive numbers according to a magic arrangement
for the order s, the result being a magic square in which each subsquare is also magic
(Fig. 5, constructed according to the squares in Fig. 6 and 7, thus r = 3, s = 4).

Magic squares are usually divided into three categories according to order: odd when
n is odd, that is, n = 3, 5, 7, . . ., and generally n = 2k+1 with k natural; evenly-even if n
is even and divisible by 4, thus n = 4, 8, 12, . . . , 4k; and, finally, oddly-even if n is even
but divisible by 2 only, whence n = 6, 10, 14, . . . , 4k +2. There are general methods of
construction, depending on type (simple, bordered, pandiagonal) and category. Those for
simple squares may, however, not apply for the smallest orders n = 3 and n = 4, which
are particular cases. Those for bordered squares suppose that n ≥ 5. (Since no square
of order 2 is possible with different numbers, no square of order 4 can be bordered.)
Finally, those for odd-order pandiagonal squares are generally not directly applicable if
n is divisible by 3, and there are no rules for constructing oddly-even squares since such
squares do not exist.

Information about the beginning of Islamic research on magic squares is lacking. It
may have been connected with the introduction of chess into Persia. Initially, the prob-
lem was purely mathematical: whence the ancient Arabic designation for magic squares
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Figure 1

Figure 2

Figure 3

of wafq al-a‘d ād, that is, “harmonious disposition of the numbers”. Although we know
that treatises were written in the ninth century, the earliest extant ones date from the
tenth: one is by Abū’l-Wafā’ al-Būzjānī (940-997 or 998) and the other is a chapter in
Book III of ‘Alī b. Ah. mad al-Ant·ākī’s (d. 987) Commentary on Nicomachos’Arithmetic
(Sesiano 1998a and 2003). By that time, the science of magic squares was apparently
well established: it was known how to construct bordered squares of any order as well as
simple magic squares of small orders (n ≤ 6), which were used for making composite
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Figure 4

Figure 5

Figure 6

squares. (Although methods for simple magic squares are easier to apply than methods
for bordered ones, the latter are easier to discover.) The 11th century saw the finding of
several ways to construct simple magic squares, in any event for odd and evenly-even
orders (see the two anonymous treatises, presumably from the first half of the 11th cen-
tury, in Sesiano 1996a, 1996b); and the more difficult case of n = 4k + 2, which Ibn
al-Haytham (c. 965-1040) could solve only with k even (Sesiano 1980), was settled by
the beginning of the 12th century (Sesiano 1995), if not already in the second half of
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Figure 7

the eleventh. At the same time, pandiagonal squares of evenly-even order were being
constructed, and of odd order with n not divisible by 3. (Little attention seems to have
been paid to the sum of the broken diagonals; these squares were considered of interest
because the initial cell, that is, the place of 1, could vary within the square.) Treatises
on magic squares were numerous in the 12th century, and later developments tended
to be improvements on or simplifications of existing methods. From the 13th century
onwards, magic squares were increasingly put to magic purposes.

The connexion with magic arose from the association of each of the twenty-eight
Arabic letters with a number (the units, the tens, the hundreds and one thousand). Thus
to a name or a sentence corresponded a determined numerical quantity: whence the idea
of writing in, say, the first row the sequence of numbers equivalent to either the letters
of the word or the words of the sentence, then completing the square so as to produce
the same sum in each line. This, however, involved a completely different kind of con-
struction, which depended upon the order n and the values of the n given quantities.
The problem is mathematically not easy, and led in the 11th century to interesting con-
structions for the cases n = 3 to n = 8 (Sesiano 1996b). Since few people interested in
magic and talismans had much taste for mathematics, most texts written for them merely
depicted certain magic squares and mentioned their attributes; some did, however, keep
the general theory alive, such as one, of uneven value, by the 17th-century Egyptian
Muh·ammad Shabrāmallisī. Among the sets of magic squares used for talismanic pur-
poses, we also find simple magic squares of the first seven possible orders (n = 3 to n =
9) filled with the first natural numbers; each is associated with one of the seven heavenly
bodies then known and was supposed to be endowed with the same virtues and defects
as the corresponding planet.

The transmission of Islamic research on magic squares was uneven. Thus it was that
Europe only received, in the late Middle Ages, two sets of squares associated with the
planets in magic texts and without any indication as to their construction. (Because of
these sources, in Europe such squares came to be called magic and also, until the 17th
century, planetary.) No other Arabic text on magic squares reached Europe or, at any
rate, appears to have been studied or used there. The extent of Islamic research thus
remained unknown for quite a long time; indeed, a very long time, since it has only
recently been assessed and its importance recognized. The East was more fortunate.
As early as the twelfth century some methods of construction had reached India and
China; and also Byzantium, as can be seen from the treatise on magic squares written
around 1300 by Manuel Moschopoulos, which is also the first mediaeval treatise on
magic squares modern Europe came to know (Tannery 1886 and Sesiano 1998b).
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Figure 8

We mentioned above the possible connexion between magic squares and chess. From
the earliest times, we find that various methods for constructing simple and pandiagonal
squares of odd or evenly-even order made use of chess moves: mainly that of the knight
(faras = horse), that is, a non-diagonal move of two cells in any direction and one cell
perpendicularly, but also the move of the queen (firzān), that is, a diagonal move to any
adjacent cell. Then to complete certain squares of evenly-even order, the complement to
n2 + 1 of each number written is placed in the corresponding cell of the bishop ( f ı̄l =
elephant), that is, a diagonal move of two cells in any direction. All these moves, which
we shall repeatedly meet, are indicated in Fig. 8: around a cell marked X appear all
possible knight’s moves (K), queen’s moves (Q) and bishop’s moves (B). The purpose
of what follows is to describe some of the methods involving such moves, but above all
the knight’s move, in the construction of magic squares for odd and evenly-even orders.

2. Odd-order magic squares

• First method

In a blank square of the considered order, start with 1 in the centre cell of the top line.
Then proceed downwards from one column to the next using the knight’s move. When
any side of the square is reached, continue the movement on the opposite side (to deter-
mine which cell comes next, imagine the square repeated on the plane). Continue until n
numbers have been placed. At this point, no further such move is possible since the next
cell is occupied. Staying in the same column, count, whatever the value of n, four cells
down; this will be the starting point for the next sequence of n numbers. Repeat these
steps until the whole square is complete. This procedure will produce a magic square
for any odd order (Fig. 9–12).

• Second method

Place the first n numbers as before but, for the “break-move”, count only one cell down.
This too will produce a magic square for any odd order (Fig. 9 and 13–15).

Remarks

(1) These two methods are found in many Arabic manuscripts from various periods. We
know that the first method reached the Byzantine Empire because it occurs in the
above-mentioned treatise by Manuel Moschopoulos.
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Figure 9

Figure 10

Figure 11

(2) Several variants of these two methods are also found in manuscripts. Thus the initial
cell is often at the corner and the break-move between two sequences of n numbers
one cell back or four cells vertically or horizontally away. Obviously the authors
restricted themselves in this case to constructing the first two squares (n = 5 and
n = 7); they are both magic, and even pandiagonal, but the next square, of order
n = 9, will not be magic – nor will, generally, any square constructed in this last way
when n is divisible by 3.

3. Evenly-even squares

• First method

Consider the two squares of order 4 represented in Fig. 16 and 17 (which are both pan-
diagonal). The underlying construction principle is the same: start with 1 in the top line,
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Figure 12

Figure 13

Figure 14

either in the corner or in a middle cell; place 2 by a knight’s move in the next line, 3 in
the third line by a queen’s move, 4 in the last line by a knight’s move again; then do the
same for the numbers 8 to 5, starting from the symmetrically located cell in the top line.
The configuration of cells thus filled is symmetrical relatively to the vertical axis, and to
each occupied cell can be associated one, and only one, empty cell a bishop’s move away
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Figure 15

Figure 16

Figure 17

Figure 18

(Fig. 18 and 19). The quantity to attribute to an empty cell is determined by subtracting
from n2 + 1 = 17 the number found in its associate cell. Thus 16 is associated with 1,
15 with 2, and so forth.

This method can be generalized. We divide a blank square of order n = 4k into
subsquares of order 4. As before, we begin in the top line, where we choose two cells
in each subsquare, thus n

2 cells on the whole, but all either corner cells or middle cells
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Figure 19

Figure 20

Figure 21

(Fig. 20–21). Half of them will serve as starting points for placing sequences of n con-
secutive numbers in increasing order beginning with 1, the other half for sequences of
decreasing numbers beginning with n2

2 . The direction of the first knight’s move is easily
determined: it must always fall within the subsquare where the initial cell of the sequence
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Figure 22

Figure 23

is located. Then, as for the square of order 4, we progress with knight’s moves from one
line to the next, except where the movement is interrupted by the side of the main square,
whereupon we make one queen’s move (which will be towards the last column if we
started in a corner cell, away from it otherwise) and then resume with knight’s moves.
When half of the cells are occupied, we fill the remaining cells by taking the complement
to n2 + 1 of each number already placed and putting it in the corresponding bishop’s
cell within the same subsquare. (See Fig. 22 and Fig. 23, where the complements are to
65 and 145 respectively).
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Figure 24

We may choose, as starting points for conjugated pairs of increasing and decreasing
sequences (that is, two sequences of which the first terms add up to n2

2 + 1), symmetri-
cally located cells (as seen in Fig. 20 with 1, 32 and 9, 24; or in Fig. 21 with 1, 72; 13,
60; 25, 48). But this is not necessary; thus, in Fig. 24, the symmetrically located cells of
the top line are occupied by 1 and 60, 48 and 13, 72 and 25. Furthermore, we may start
such constructions from any line (Fig. 25). Whatever the initial situation, from then on
the same rules apply as before.

This method is described in the smaller of the two anonymous 11th-century treatises
(Sesiano 1996a). Its author also mentions a means for checking, before we write in the
complements, that the sequences have been placed correctly: first, the sum appearing
in all the lines must be the same; secondly, any column must contain the same sum as
the next column but one within the same column of subsquares (as seen in Fig. 20–21).
This, incidentally, explains why the completed square will be magic: the sum of the
complements for any line is the same as for any other, while the sum of the complements
for either of any two conjugate columns is the same as for the other; filling in the bishop’s
cells will therefore complete the amount needed for the magic sum. Indeed, if in a line
or a column we have initially placed n

2 numbers αi making the sum
∑

αi, the conjugate
line or column will receive their complements (n2 + 1) − αi . Since the cells already
filled contain n

2 numbers βi with the sum
∑

αi = ∑
βi, the sum in the conjugate line

or column will be
∑

βi + n

2
(n2 + 1) −

∑
αi = n

2
(n2 + 1)

that is, the magic sum. Thirdly, the case of the diagonals is banal: since they are composed
of pairs of complements, they must contain n

2 times the amount n2 + 1.
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Figure 25

• Second method

Starting with the sequences beginning with 1 and n2

2 taken in increasing and decreasing
order respectively, we proceed to the end of the first pair of lines using the knight’s move,
then advance to the following pair of lines with a queen’s move and return in the opposite
direction (Fig. 26). Continuing thus, we place the first half of the numbers, and then
fill the empty bishop’s cells within each subsquare of order 4 with their complements
(Fig. 27).

This method, found in Shabrāmallisī’s treatise, is also described earlier, in the larger
of the two anonymous 11th-century works (Sesiano 1996b, pp. 44–45 & 195–196). Its
author considers at length various positions the initial cell may take.

The result is indeed a magic square for, here too, the first part of the procedure has left
each line with pairs of cells containing the sum n2

2 +1 (thus n
4 ( n2

2 +1) for the whole line).
Conjugate columns also contain a same sum. The complements will therefore complete
the magic sum. Finally, each of the two main diagonals contains pairs of complements.
Note that in this case the square is even pandiagonal, a property not noted by the author.
The same holds for the squares constructed by the next method.

• Third method

“Knight’s moves in four cycles” is how Muh·ammad Shabrāmallisī denominates this

method; for here we place all four sequences of n2

4 numbers using the knight’s move. We

begin by writing the first n2

4 numbers, thus from 1 to 4 in Fig. 28, from 1 to 16 in Fig. 29,
from 1 to 36 in Fig. 30. To do this, we use the knight’s move to place n

2 numbers within
the first two lines; we then repeat this movement along the next pair of lines but this time
starting one cell away from the side. When this is done for the whole square, we proceed
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Figure 26

Figure 27

with the second cycle: we move sideways from the cell just reached and return, using
the knight’s move, along the same pair of lines; and, because we started one cell away
from the side in the last line, we shall start, in the pair of lines above, in the first cell.
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Figure 28

Figure 29

Figure 30
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Figure 31

Thus we proceed with this second cycle just as for the first n2

4 numbers but reversing
the two directions of the movement. After arriving next to our initial cell, we put the
subsequent number, the first of the third cycle, in the other end of the broken diagonal,
that is, above the last cell (9 in Fig. 28, 33 in Fig. 29, 73 in Fig. 30); we then continue
with knight’s moves in the same manner as before, advancing to the left and upwards.
After arriving below our initial cell, we again move, for the last cycle, sideways to the
next cell and proceed to the right and down until the last number is placed.

The reason that the lines and columns produce the magic sum is the same as in the
preceding method. Indeed, the n2

2 elements placed after the first two cycles differ from
the previous case in arrangement only: half the columns, namely those formerly of odd
indices, are the same, while the columns of even indices 2i are now those with indices
n − 2i + 2; thus the elements in the lines will be the same as before while the conjugate
columns will form the same pairs. This will, however, mean that we end up with different
numbers in the two diagonals, though still forming, in the end, pairs of complements.

• Fourth method

The same author describes another method, which he calls “knight’s moves in two
cycles”. We start as above but, instead of advancing to the next pair of lines, return along
the same ones after making one move sideways from the cell last reached. The move
to each subsequent pair of lines is as in the previous method. This brings us, in the last
pair of lines, to the number n2

2 (8 in Fig. 31, 72 in Fig. 32), whereupon we move to the
corresponding lower queen’s cell and resume the movement in the opposite direction.
The construction will end in the queen’s cell of 1.

After half the numbers have been placed, all columns produce the same sum and, if
we consider successive pairs of adjacent columns, each will receive the complements
of its neighbour. Equal sums are also found in pairs of adjacent lines, each of which will
be completed with the complements of the other. Finally, the diagonals will contain in
the end pairs of complements, but this time in adjacent cells.

• Fifth method

This method is explained in the larger of the two anonymous 11th-century treatises
(Sesiano 1996b, pp. 66–67 & 177–179). Starting with 1 and n2 at either end of (say) the
top line, we use the knight’s move to place two (increasing and decreasing) sequences
of n

2 numbers within the first two lines. We then repeat the movement along the next pair
of lines starting, as we did in the third method, one cell away from the side. We continue
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Figure 32

Figure 33

in the same way, for each group of four lines, to the bottom, thus placing the first and
last n2

4 numbers (1 to 4 and 16 to 13 in Fig. 33, 1 to 36 and 144 to 109 in Fig. 34).
The remaining numbers are then placed, not by using the knight’s move, but pro-

gressing along each broken diagonal as indicated by arrows in Fig. 35–36. First, we
return to the increasing sequence (with, in the examples, 5 and 37 respectively) in the
column where we left off, but starting now in the third cell from the top, and fill in the
empty cells of the corresponding broken diagonal. We do the same for the next broken
diagonals, starting each time two cells below; the first cell actually filled is thus alter-
nately in the first and second column. This brings us back to the top of the square. In
this way we shall place the sequences 5, 6 and 7, 8 in Fig. 35, and 37 to 42, 43 to 48,
49 to 54, 55 to 60, 61 to 66, and 67 to 72 in Fig. 36. Lastly, we write the remaining n2

4
numbers along the corresponding ascending diagonals (starting with 12 in Fig. 35 and
108 in Fig. 36).
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Figure 34

Figure 35

This method produces a magic square for the following reasons. The lines produce
the required amount since each line contains pairs of complements (in cells which are
symmetrically located). The columns contain n

4 arithmetical progressions with n
4 terms

each, namely, if i designates any of the numbers from 1 to n and t takes the natural values
t = 1, . . . , n

4 ,

i + (t − 1)n

(
n2

2
− i + 1

)

− (t − 1)n

(
n2

2
+ n − i + 1

)

+ (t − 1)n

(n2 − n + i) − (t − 1)n,



18 J. Sesiano

Figure 36

the sum of which for i constant gives the magic sum. Finally, consider the descending
main diagonal. It is occupied by numbers belonging to the arithmetical progressions

1 + s
(n

2
+ 1

)

n2 − s′
(n

2
− 1

)

with s = 0, 1, . . . , n
2 − 1 and s′ = 1, 2, . . . , n

2 . The sum of the n numbers belonging to
these two progressions will therefore be

1 · n

2
+ n

2

(n

2
− 1

) (n

2
+ 1

)
+ n2 · n

2
− n

2

(n

2
+ 1

) (n

2
− 1

)
= n

2
(n2 + 1).

The other main diagonal, since it contains their complements, will produce the magic
sum as well. Figure 37 will help familiarize the reader with this last method.

We have provided all these methods with a justification for the magic property. Most
Arabic texts do not, however, explain why a square obtained by a particular method
happened to be magic. (Exceptions are found in some works by mathematicians, such
as those by Abū’l-Wafā’ and Ibn al-Haytham.) Clearly then, empiricism may have led
to the discovery of some of the above methods thought at the time to be general (see the
second remark concluding Sect. 2). Elsewhere though, there is quite definite evidence
pointing to a theoretical foundation (if only found a posteriori), as in the first method
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Figure 37

presented for evenly-even squares. Whether theoretically or empirically reached, these
discoveries are the result of an amazing amount of study which cannot but compel our
admiration.
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