
J Grid Computing (2011) 9:441–453
DOI 10.1007/s10723-011-9195-y

GridCertLib: A Single Sign-on Solution for Grid Web
Applications and Portals

Riccardo Murri · Peter Z. Kunszt ·
Sergio Maffioletti · Valery Tschopp

Received: 27 April 2011 / Accepted: 16 September 2011 / Published online: 4 November 2011
© Springer Science+Business Media B.V. 2011

Abstract This paper describes the design and
implementation of GridCertLib, a Java library
leveraging a Shibboleth-based authentication in-
frastructure and the SLCS online certificate
signing service, to provide short-lived X.509 cer-
tificates and Grid proxies. The main use case envi-
sioned for GridCertLib, is to provide seamless and
secure access to Grid X.509 certificates and prox-
ies in web applications and portals: when a user
logs in to the portal using SAML-based Shibbo-
leth authentication, GridCertLib uses the SAML
assertion to obtain a Grid X.509 certificate from
the SLCS service and generate a VOMS proxy
from it. We give an overview of the architecture of

R. Murri · S. Maffioletti
Grid Computing Competence Centre,
Organisch-Chemisches Institut, University of Zürich,
Winterthurerstrasse 190, 8057 Zürich, Switzerland

R. Murri
e-mail: riccardo.murri@gmail.com

S. Maffioletti
e-mail: sergio.maffioletti@gc3.uzh.ch

P. Z. Kunszt (B)
SystemsX, ETH Zürich, Clausiusstrasse 45,
8092 Zürich, Switzerland
e-mail: peter.kunszt@systemsx.ch

V. Tschopp
SWITCH, Werdstrasse 2, 8004 Zürich, Switzerland
e-mail: valery.tschopp@switch.ch

GridCertLib and briefly describe its programming
model. Its application to some deployment scenar-
ios is outlined, as well as a report on practical ex-
perience integrating GridCertLib into portals for
Bioinformatics and Computational Chemistry ap-
plications, based on the popular P-GRADE and
Django softwares.

1 Introduction

Most Grid computing middleware in production
use today relies on X.509 certificate proxies [43]
for user authentication. This has been an issue
when implementing web-based interfaces to Grid
computing facilities: in order to generate a proxy,
a copy of the X.509 private key is needed together
with the passphrase used to encrypt it. However,
uploading the public/private key pair to a web
portal is undesirable on security grounds. Sev-
eral solutions and workarounds have been imple-
mented (see Section 2), but none of them can
be considered entirely satisfactory: either because
they do not fully address the security concerns, or
because they require end users to take multiple
steps, possibly through different and unrelated
user interfaces (e.g. a web portal and UNIX shell
commands).

The solution we developed leverages two
features offered by SWITCH: the federated
authentication and authorization infrastructure

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/159151714?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


442 R. Murri et al.

SWITCHaai and the Short-Lived Credential
Service (SLCS). SWITCHaai is a federated au-
thentication and authorization infrastructure [39],
based on Shibboleth2 [18]; SWITCHaai feder-
ates all Universities in Switzerland, plus ma-
jor research centers and educational institutions.
Similar nationwide Authentication and Autho-
rization Infrastructures (AAIs) exist in Germany,
Denmark, Belgium, the Netherlands and other
countries [7]. A web service provider (e.g., a por-
tal) requiring SWITCHaai authentication will del-
egate the authentication step to the user’s home
institution Identity Provider (IdP). Users will
be prompted with the familiar login page of the
home institution; after successful logon, the ser-
vice provider will receive a set of parameters and
additional metadata (about the user) to proceed
with authorization [38].

SWITCH also provides the Short-Lived Cre-
dential Service (SLCS) and makes it available to
all SWITCHaai users [36]. SLCS is a web-service
that can sign an X.509 certificate online; authen-
tication and authorization to the SLCS service
are based on the SWITCHaai Shibboleth system.
The online Certification Authority (CA) that signs
SLCS certificates is included in the International
Grid Trust Federation (IGTF) bundle [17], so SLCS

certificates can be used for any legitimate Grid
purpose. This enables any user from a Swiss insti-
tution participating in the SWITCHaai Federation
to request a Grid-enabled X.509 certificate. It is
valid up to 1’000’000 s (corresponding to almost
11 days) which is short-lived in comparison to
regular one-year certificates issued by other CAs.
A SLCS command-line client is also part of the
gLite middleware distribution [42].

The last key enabler for our project is the
Shibboleth delegation feature, developed in the
Shibboleth uPortal project [5]. The delegation is
based on the Liberty ID-WSF ECP Single Sign-
On (SSO) profile [16], and allows SAML-based
authentication for Shibboleth-protected web ser-
vice providers.1 Based on the assertion resulting
from the web authentication through Shibboleth
on the user portal, we are able to call the SLCS

1The interested reader can find readable introductions to
Shibboleth and SAML in [15, 19].

service on the user’s behalf using the Enhanced
Client or Proxy (ECP) profile. Delegation, how-
ever, is still an experimental feature in Shibboleth,
and is expected to become standard in the next
Shibboleth version 3.0. For our project, SWITCH
has upgraded their Shibboleth Virtual Home Or-
ganization identity provider and the SLCS service
provider with ECP delegation features.

GridCertLib is a Java library providing pro-
gramming interfaces to create a SLCS certificate
and Grid proxy (optionally VOMS-enabled), given
the Security Assertion Markup Language (SAML)
assertion resulting from a successful previous
Shibboleth authentication. The main use case en-
visioned for GridCertLib, is to provide seamless
and secure access to Grid X.509 certificates and
proxies in web portals: when a user logs in to the
portal using the regular SWITCHaai Shibboleth
authentication, GridCertLib uses the SAML asser-
tion to obtain a Grid X.509 certificate from the
SLCS service and generate a Virtual Organisation
Membership Service (VOMS) proxy from it. None
of these steps requires user interaction (after the
initial Shibboleth authentication), making Grid
resources as easy to use as any single-sign-on en-
abled web service while retaining the full security
stack.

The outline of the paper is as follows: first
we provide an overview of similar solutions al-
ready implemented in production-grade Grid web
portals. In the next Section, we review the re-
quirements that were set for GridCertLib, its
actual design and discuss some implementation
details. Finally, we report on some deployment
scenarios and particularly on the integration of
GridCertLib within a Bionformatics portal (based
on P-GRADE, [10]) and within a Computational
Chemistry portal (based on Django, [8]).

2 An Overview of Existing Solutions

Distributed authentication and authorization is a
difficult problem to solve in a standard and inte-
grated manner. In past Grid projects, proprietary
services have often been developed to address this
issue (e.g. CAS [33], PRIMA [27], ROAM [6])
but none of them established itself as a widely
accepted community standard as they were too



GridCertLib: A Single Sign-on Solution for Grid Web Applications and Portals 443

tightly coupled with the middleware and the lo-
cal resources. A standardization on SAML/XACML

profiles to be used by all middlewares is available
[11] but has not been widely adopted yet.

However, we can see two technologies that are
widely accepted also outside of the Grid com-
munity: SAML-based authentication using Shibbo-
leth and X.509 certificates to authenticate local
resources, using short-lived proxy certificates. In
most Grids, also the VOMS cervice [1] is used to
enrich the proxy certificate with usage attributes
for fine-grained authorization. We are using the
SLCS service as developed by SWITCH for the
Enabling Grids for E-sciencE (EGEE) consortium
to generate certificates from the users’ Shibboleth
login. A similar but now defunct project was the
U.S. GridShib effort [4] to create a certificate
based on a Shibboleth login also as a Certificate
Authority.

In order to generate a certificate proxy, a copy
of the X.509 private key is needed together with
the passphrase used to encrypt it. This poses a
basic problem in web portals: having direct access
to the public/private certificate key pair of a user,
although technically feasible, is undesirable on
security grounds: intruders getting access to the
portal machine would gain unrestricted access to
all of the portal users’ credentials.

Some projects have worked around this issue
by submitting to the Grid as a single portal su-
peruser, using credentials of a single entity for all
Grid jobs issued through the portal or through
special-purpose certificates for automation, called
“robot” certificates.

Robot certificates are X.509 certificates granted
to a portal service or application, rather than a
human; users interested in running a certain ap-
plication on the Grid can log in to the portal, and
the portal will operate on the Grid using the robot
certificate. This approach a few drawbacks:

1. The certificate private key is available on the
portal machine, although this can be preven-
ted by using hardware-based protection (e.g.
smartcards), as done in the GILDA/GENIUS
portal [3]. Indeed, guidelines [9] have been
issued by the IGTF on the generation and
storage of private keys, and permissible key
usage of automated clients (robots) that can

hold credentials issued by IGTF-accredited
Certification Authorities, so this specific issue
is likely to become less relevant in the future.

2. The use of robot certificates moves the re-
sponsibility of user authentication and logging
from the CA to the portal, thus implicitly intro-
ducing an additional trust step in the Grid au-
thentication infrastructure. Not all Grid sites
and resource providers might be happy with
delegating trust this way.

3. It is difficult to provide per-user accounting
of computational resource usage: jobs sub-
mitted through different interfaces (e.g., por-
tal and command-line) by the same user will
be accounted to different end-entities, since
all popular Grid middlewares group usage
records by certificate subject Distinguished
Name (DN).

The solution adopted in the P-GRADE portal
[10, 23] is to have users upload a long-lived proxy
to a MyProxy server [25, 31, 32] and authorize the
portal software for automated retrieval of short-
lived proxies for job submission and data move-
ment. However, this still requires users to deal
with many of the complexities of managing X.509-
based certificates and command-line tools, which
has been found to be a real barrier to Grid adop-
tion in less tech-savvy user communities. In the
newer WS-PGRADE portal [24] the interaction
with the MyProxy service has been streamlined
so no command-line interaction is necessary, user
certificate can be directly uploaded. However,
the user still needs to apply for and manage a
certificate that expires every year. For the end-
user it is a complication to use an authentication
infrastructure that does not blend with the native
web portal authentication system. It interrupts
the natural flow of operations in the web user
interface, requiring either an additional password
(the certificate password to generate the proxy)
or additional command-line operations in order to
proceed with Grid job submission and control.

An extension to this mechanism that blends
more seamlessly with P-GRADE’s web-based in-
terface has been developed by the UK project
SARoNGS in [14]. Clicking a button on the
MyProxy web details page redirects the user to a
web service (Shibboleth-protected), which in turn



444 R. Murri et al.

loads a long-lived proxy into a specific MyProxy
server, and fills in the details in the P-GRADE
configuration page.

The approach taken in GridCertLib, instead,
requires no user interaction: once the web-based
Shibboleth login is successfully completed, the
GridCertLib code can generate an X.509 cer-
tificate through the SLCS service using the web ser-
vice based ECP delegation, and an accompanying
Grid proxy. Details of this process are given in the
following sections.

The source code of GridCertLib is publicly
available from http://gridcertlib.googlecode.com/
under the Apache License 2.0 [2].

3 Design and Implementation

3.1 Architecture Overview

GridCertLib was designed to bridge Shibboleth-
based and Grid X.509-based authentication ser-
vices for web applications and portals.2 Its design
goals were to allow easy integration into any Java
portal, and to minimize interaction with the user
while retaining the full security stack for Grid
authentication and authorization.

The flow of interaction with the Java portal
code and the SWITCHaai services illustrated in
Fig. 1 was devised in order to accomplish the
design objectives (numbers in parentheses corre-
spond to arrows in Fig. 1):

(1) Users initiates log in to the web portal us-
ing Shibboleth single sign-on (i.e., request a
Shibboleth-protected URL).

(2) They are authenticated by their home orga-
nization’s identity provider IdP; this is han-
dled transparently by the Shibboleth soft-
ware.3

2Henceforth, we shall briefly write “portal” to mean any
web-based interactive application or service.
3A detailed understanding of the Shibboleth authentica-
tion process is not needed for working with GridCertLib:
it suffices to know that the outcome of a successful Shib-
boleth logon is a Security Assertion Markup Language
version 2 (SAML2) assertion stored in the web server on
the Portal machine. The interested reader is referred to
[15, 19, 38] for an introduction to Shibboleth and SAML2.

(3) GridCertLib queries Apache’s mod_shib to
get the SAML2 assertion. The assertion is
exported, together with other authentication
parameters, to any proxied web service; por-
tals may make use of these Shibboleth at-
tributes to restrict certain services or map
users into user groups.

(4) The portal application code calls Grid-
CertLib to obtain a short-lived Grid X.509
certificate signed by the SLCS CA. This step
requires delegation of the Shibboleth cre-
dentials (SAML2 assertion) to the SLCS login
service, which is done through the generic
Identity Domain—Web Service Framework
(ID-WSF) ECP Web Service Client, developed
by SWITCH [41].

(5) After logging in to the SLCS service, Grid-
CertLib proceeds to generate an X.509 cer-
tificate and have it signed by the SLCS on-
line CA, using code similar to the one used
by gLite’s slcs-init command-line client
[42].

(6) The portal calls GridCertLib to create a Grid
proxy (with or without VOMS extensions).
Here GridCertLib is just a thin wrapper
around the regular VOMS libraries, mainly
providing simpler façade calls for commonly-
used cases.

(7) The certificate, private key and proxies
are stored. Currently, GridCertLib provides
methods for persisting certificates and prox-
ies to the filesystem; it is up to the portal
to move the files to different storage back-
ends (e.g., databases), although it should be
noted that most Grid middlewares require
the proxy to be in a known location on the
filesystem.

As soon as the GridCertLib code completes suc-
cessfully, a valid certificate and proxy are available
on the filesystem and Grid operations can proceed.

The foreseen usage of GridCertLib in web por-
tals (see Section 4) called for implementation of
additional features in GridCertLib:

(a) The SLCS and the Grid/VOMS proxy gener-
ation functions can be called independently.
In particular, proxy generation does not rely
on the SLCS generation feature being called
first. As a consequence, Grid proxy code

http://gridcertlib.googlecode.com/


GridCertLib: A Single Sign-on Solution for Grid Web Applications and Portals 445

Fig. 1 Interactions of
GridCertLib with the
other involved services.
Components in the center
column are all part of the
same web application
(but they could be part
of different processes: for
instance, the Shibboleth
web login is usually
handled by an Apache
module rather than by
Java servlet code).
Round boxes on the
sides represent services
running on remote
hosts, that GridCertLib
interacts with over HTTP.
A detailed description
of interactions is given
in Section 3.1

does not need Shibboleth authentication to
run, it only expects a valid user certificate to
be available.
This is a portal user interface requirement: all
that is necessary for generating an X.509 cer-
tificate is known after SLCS login, but proxy
generation requires additional data; namely,
names of the VOs a user belongs to. Portals
might need to gather this additional data
after a user has logged in.

(b) The SLCS generation function can be called
at any time, as long as the SAML2 assertion
resulting from the Shibboleth login process
is available.
This is another portal user interface require-
ment: SLCS login and generation of X.509
certificates can take long times (from a user
interface perspective), so they can be delayed

at a later stage or started in an asynchro-
nous thread, in order not to delay the login
process.

(c) GridCertLib has a generic interface that can
be used with any web application or portal.
In particular, GridCertLib does not make
any assumption on how user data (like the
certificates) are represented and/or stored
within the portal, except that they can be
stored on the filesystem.

Feature (a) led us to provide GridCertLib with
two main independent entry points, SLCSFactory
and GridProxyFactory. An instance of each class
is responsible for generating SLCS certificate and
Grid proxies, respectively. To achieve portal inde-
pendence, each class constructor takes an explicit
list of all the parameters needed for instantiation,



446 R. Murri et al.

although they can also be conveniently provided
by a single Java Properties object.

Similarly, for the same goal (c) of portal tech-
nology independence, GridCertLib certificate and
proxy generation functions accept an explicit list
of all the required parameters, but provide short-
ened forms that have common defaults.

Feature (b) implies that the SLCS-generation
methods in GridCertLib only require the Shibbo-
leth SAML assertion as input. However, the SAML2

assertion can expire long before the Shibboleth
session itself does (see Section 3.2.1). To solve
this problem, GridCertLib provides a re-usable
servlet RenewAssertion, which can also be used
as a model for implementing assertion renewal in
the portal code.

3.2 Core Library Implementation

GridCertLib core functions reside in the single
Java package ch.swing.gridcertlib; an
additional package ch.swing.gridcertlib.
servlet provides example servlets (with fully-
commented code) that show how the library can
be used.

The main package ch.swing.gridcertlib
has two public entry points:

– The SLCSFactory class provides the SLCS cer-
tificate generation functionality and can store
the certificate and its associated private key on
the filesystem.

– The GridProxyFactory class creates Globus
Toolkit proxy certificates with or without
VOMS extensions from available user cer-
tificates and stores them to a temporary loca-
tion on the filesystem.

A single instance of each of these classes can
generate multiple SLCS certificates or proxies,
possibly for different Portal users, via repeated
invocation of the certificate creation methods.

Since the parameters used to configure the fac-
tory objects are portal-wide global variables and
their values are fixed while the portal application
is running, each factory class can be configured (at
construction time) through a java.util.Properties
object, which can be conveniently loaded from a
file with standard Java Application Programming
Interface (API) calls. Alternatively, a constructor

that allows to specify all instance parameters ex-
plicitly is also provided.

However, GridCertLib does not enforce that
only a single instance of these factory objects
exists. Different factory objects can be created
to cater for different classes of users (e.g., users
coming from different Shibboleth federations). It
is up to the web application/portal code to route
requests to the correct factory.

3.2.1 Creating SLCS Certif icates

Upon calling the newSLCS method of the SLCS-
Factory class, a SLCSRequestor object is created
to carry out generation of the certificate and ac-
tual interaction with the SLCS server. The reason
for this split is twofold:

– SLCSFactory handles system-wide defaults,
and thus a single instance is needed to serve
the whole portal, whereas a new SLCSRe-
questor object is created for every certificate
request.

– The SLCSRequestor corresponds to the
slcs-init command-line tool provided in
the gLite middleware distribution [42]; this
eases porting of fixes from the official SLCS

client on to GridCertLib.

SLCS certificates are created following these
steps:

1. Login to the SLCS server using ECP delegation:
if successful, this returns the subject DN to use
in the X.509 certificate to be generated, and
an authorization token to validate the final
certificate signing request to the same SLCS

server.
2. Locally generate an X.509 public/private key

pair.
3. Locally generate an X.509 Certificate Signing

Request (CSR), using the subject DN and other
X.509 constraints returned by step 1.

4. Submit the CSR to the SLCS server and get the
signed certificate back.

All of the above steps keep data (like the pass-
word), which is necessary for the private key, in
memory. Only after a certificate has been success-
fully generated by the SLCSRequestor will SLCS-
Factory save the result in a file and return the



GridCertLib: A Single Sign-on Solution for Grid Web Applications and Portals 447

certificate file path, private key path and private
key password to the caller. Any of these three
can be defined by the client code by passing an
optional argument to the newSLCS method; by
default, SLCSFactory uses a random password
and stores the certificate and private key files in a
configurable directory (using a random file name,
which is also returned as a result of the call).

The SLCS service is a properly authorized Shib-
boleth Service Provider (SP). Since GridCertLib
is contacting SLCS on behalf of the user, and with
no user intervention at all, delegation of SAML

credentials is needed. Shibboleth delegation is an
experimental feature available in Shibboleth2, by
which the SAML2 assertion that initiates a Shib-
boleth session on an SP, may be re-used to au-
thenticate towards other web service based SPs.
Shibboleth delegation must be supported both
on the IdP granting the SAML2 assertion and the
target SP receiving the delegated assertion (the
SLCS server in this case).

The requirement that SLCS generation may
happen at any time after login to the portal cre-
ates an additional complication: SAML2 assertions
have a short time validity (5 min in the default
configuration) but SP and IdP sessions last much
longer (8 hours by default, see [37] for details),
i.e., users are authenticated with the Shibboleth
SP even after the SAML2 assertion is long expired.
Therefore, by the time SLCSFactory.newSLCS
is called, the SAML2 assertion might be unusable
for delegated authentication with the SLCS server.
There is no support in the Shibboleth API to get
a fresh assertion in the IdP and store it in the SP

session, but this can be worked around by forcing
an SP session logout, followed by a redirection to a
Shibboleth-protected URL: the SP will start a new
session and request a fresh assertion from the IdP.
This can be implemented by a chain of HyperText
Transfer Protocol (HTTP) redirections, so that the
whole procedure does not require any user in-
tervention. We implemented this workaround in
the RenewAssertion servlet, described in Sec-
tion 3.2.3.

3.2.2 Creating Grid and VOMS Proxies

The GridProxyFactory class is a interface wrapper
on top of the VOMS Java API. GridProxyFactory

implements a simplified interface to create a Grid
proxy in the use case most frequently needed
in web applications and portals: its newProxy
method creates a proxy (with optional VOMS ex-
tensions) given an X.509 certificate and private
key, and a (possibly empty) list of VOs to contact
for VOMS ACs.

A single instance of the class can generate
multiple proxies (possibly for different users) via
repeated invocation of the newProxy method.
Since the org.glite.voms.contact.VOMSProxyInit
class uses system properties to determine part
of its configuration, it is not possible to create
different instances of this class, each using its own
configuration. This is not a limit in practice, as
the org.glite.voms library has native support for
multiple servers and Virtual Organisation (VO)
endpoints.

3.2.3 Example Servlets

The provided sample servlets can run in any Java
servlet container. They have been successfully
tested with the Jetty and Tomcat Java application
servers (with an Apache proxy front-end for man-
aging the Shibboleth session).

Three servlets are distributed with the Grid-
CertLib source code:

– SlcsInit: This servlet generates an X.509 cer-
tificate and private key and uses the SLCS

service to sign it. Upon successful completion,
the certificate and private key are stored in the
filesystem.

– VomsProxyInit: This servlet creates a VOMS

proxy and stores it in the filesystem.
– RenewAssertion: This servlet ensures that a

fresh SAML assertion is stored in the SP Shib-
boleth session cache.

A detailed description of each of these servlets
follows.

SlcsInit The ch.swing.gridcertlib.servlet.SlcsInit
servlet extracts the SAML2 assertion Uniform Re-
source Locator (URL) from the Shibboleth HTTP

headers, downloads the assertion into memory,
and uses it to authenticate to a remote SLCS ser-
vice and get a new certificate/private key pair. The



448 R. Murri et al.

key is encrypted with a random password, and
the certificate and private key locations (on the
filesystem) are printed in the response text.

If SLCSFactory detects an expired assertion
in the SP session, it will raise an exception. The
SlcsInit code catches the error and redirects the
user’s browser to the RenewAssertion servlet,
setting the return address to the current page:
when the user browser is sent back to the return
URL, a new SAML2 assertion will be in the SP

cache.

VomsProxyInit The ch.swing.gridcertlib.servlet.
VomsProxyInit servlet creates a VOMS proxy and
stores it on the filesystem, in the default store
directory. HTTP query parameters can set ar-
guments that are passed to the GridProxyFac-
tory.newProxy method, thus making this servlet
a generic front-end to the GridProxyFactory class
functionality.

This servlet does not require any interaction
with the Shibboleth subsystem, and can be de-
ployed unprotected. It requires, however, that the
certificate and private key are available on the
filesystem.

RenewAssertion The ch.swing.gridcertlib.servlet.
RenewAssertion servlet ensures that a fresh asser-
tion is stored in the SP Shibboleth session cache. It
implements the workaround described in a previ-
ous section for the “expired assertion” problem:

1. The user’s browser is redirected to the SP

session logout URL.
2. The logout function allows setting a “return

address” via a URL query parameter, to which
the browser will be redirected after the logout
is done; this “return address” is set to the Re-
newAssertion URL plus a trailing component
(URL “path information” part) that encodes
the referring page URL.

3. The Shibboleth SP logs the user out of the
session and destroys the cached data, then
redirects the user browser to the RenewAsser-
tion URL.

4. The RenewAssertion page is Shibboleth-
protected, so a new Shibboleth authentication
procedure begins. As long as the user session

in the IdP is still valid, this will not require user
interaction, and the IdP will just send a new
SAML2 assertion to the requesting SP.

5. The RenewAssertion servlet detects that the
browser is returning after the initial visit (from
the trailing portion of the URL), and redi-
rects the user to the initial requesting page
(by decoding the URL embedded in the “path
information” component).

Note that none of the above steps requires any
user interaction (unless the Shibboleth session on
the IdP is expired).

A request URL to RenewAssertion must be
properly formatted; the convenience method Re-
newAssertion.getRenewalUrl is provided to this
purpose. However, the URL encoding system in
the RenewAssertion servlet imposes a limit on
the length of return URLs; more importantly, it
cannot be used with HTTP POST requests, as there
is no way of encoding the POST data into a single
URL. This is a technical issue which we have not
been able to work around so far: due to the large
number of HTTP redirects taking place, session
cookies, query parameters, and other commonly-
used ways of associating state data with HTTP

requests, may be lost before the final visit to the
RenewAssertion servlet.

4 Deployment Experiences

The following points need to be taken into consid-
eration by the portal providers:

– Since certificate generation can be time-
consuming (relative to user interface reaction
times), it could be delayed to a later stage or
executed asynchronously in a separate thread.
However, this delay was not a problem on the
P-GRADE Bioinformatics portal.

– The validity of the Shibboleth assertion is usu-
ally limited to a few minutes, so the SLCS cer-
tificate request should not be delayed for too
long. Of course if a valid SLCS certificate for
the user is already available from a previous
login of the user, the request can simply be
omitted.



GridCertLib: A Single Sign-on Solution for Grid Web Applications and Portals 449

– When a VOMS-enabled proxy is needed, it is
the portal’s responsibility to prompt the user
for the relevant information, e.g., VO name or
Fully-Qualified Attribute Name (FQAN) list.
In the P-GRADE implementation, the users
can set their VOs in their settings page. There
is a global default configuration option for the
administrator if every user is expected to be
always member of the same VO.

4.1 Integration into the P-GRADE Portal

The P-GRADE portal comes with full Grid X.509
proxy support, which in this case is a mixed
blessing as many of the certificate management
features need to be modified in various places
of the portal code. Out of the box, P-GRADE
supports proxy certificate upload or the usage of
a MyProxy server to which the user has to upload
the certificate outside of P-GRADE.

In its standard form, P-GRADE provides no
facilities for the creation of the certificates; this
is a new feature we add using GridCertLib.
We extended the Shibboleth-enabled login [29]
for the Gridsphere portal [13] (provided by the
Australian MAMS project [28]) by storing all
Shibboleth attributes including the assertion and
other attributes that were not previously re-
quested into a singleton object.

In the MAMS implementation, on first-time
login using Shibboleth, the user is presented with a
registration request portlet which simply displays
the attributes of the user as received through the
Shibboleth login by the server. Users can then
simply press a button “Send registration request”,
which triggers an email to the portal administra-
tor, who can decide whether to enable the user
account, and optionally assign it certain roles in
Gridsphere.

Users can simply reload the page or re-login
once the admin has enabled them. At the same
time it is checked whether an SLCS certificate still
exists for the given user and whether it is valid
for longer than 24 h. If not, GridCertLib is used
to create a new SLCS certificate. The certificate
location and other related information is stored
together with all other user attributes in the user
table, which has been extended accordingly.

The VOMS configuration is the same for all
users of the portal in our current implementa-
tion, which is set to the “life” VO of the na-
tional Grid computing infrastructure Swiss Multi-
Science Computing Grid (SMSCG) [35], using a
portal-wide configuration of GridCertLib.

An issue remains: the delegation feature used
by GridCertLib is not yet deployed as a stan-
dard feature in the Swiss SWITCHaai federation,
therefore we currently can only make use of this
whole mechanism through a special home orga-
nization, the Virtual Home Organisation (VHO),
provided by SWITCH for collaboration purposes.
We have a dedicated group in the VHO where
we can administer our own users. This should not
be necessary anymore after the SWITCHaai fed-
eration has upgraded to a version of Shibboleth
that supports delegation, which should happen
sometime in late 2011 or 2012.

For now, in the optimal case a user can log
in through AAI by selecting the VHO as the
“home organization”, and is ready to submit
Grid jobs to the Swiss Multi-Science Computing
Grid. Clicking on the “Certificates” tab will show
the details of the current certificates and their
validity.

Expiration of the certificate is not an issue, as
P-GRADE requests the download of the results
only when the user asks for it through the portal.
The portal makes sure that a new proxy is gen-
erated automatically in the background from the
SLCS certificate (if the existing proxy is not valid
anymore). Should the SLCS certificate expire, a
new one is requested automatically at the next
login, so unless the user is actively using the portal
browser window for ten days with no interruption,
this will not happen.

4.2 Integration into Django-Based Web
Applications

Django [8] is a high-level Python Web frame-
work, providing reusable components to build
any sort of web application. We have used it
to build a simple portal for users of the com-
putational chemistry application GAMESS-US
[12, 34]. The portal uses the Django-Shibboleth



450 R. Murri et al.

application4 [30] to enable users to log in us-
ing their SWITCHaai/Shibboleth credentials; new
users will have their account created automatically
when they log in for the first time.

Django support in GridCertLib thus comprises
two (inter-dependent) parts:

– A Python package, containing the access-
control decorators5 certif icate_required and
gridproxy_required. By using these decora-
tors, a Django programmer can easily mark
some URLs as requiring the use of a valid
SLCS certificate and/or proxy.

– A set of Java servlets, which should be de-
ployed alongside the Django site, that inter-
face with GridCertLib to provide the SLCS-
and proxy-generation functionality.

All communication between the Django decora-
tors and the corresponding servlets happens by
means of HTTP redirects through the users’ web
browser.

The GridCertLib Django decorators will first
ensure that the HTTP request is authenticated
with the standard Django login system; when the
Django-Shibboleth application is installed, this au-
tomatically ensures that the HTTP request is part
of a valid Shibboleth session.

Next, GridCertLib Django decorators check
that the certificate (resp. proxy certificate) exists
and is valid. For the sake of processing speed
(no response can be sent to the web browser
until the decorator has passed control to the view
function), the decorators assume that no other
actor can modify the certificate/proxy files they
have created: thus a simple “modification time”
check suffices to prove that a certificate/proxy
is still in its validity period. Note that, in con-

4Django structures a web site as an set of web applications,
each of which is attached to specific URLs in the web site
URL space. Applications can be packaged and deployed
separately, and can be thus re-used in different combina-
tions to build a site.
5Django routes HTTP requests to Python functions (“view”
functions), that are responsible for returning content to the
user. Access control is most easily done through Python
function decorators: if a view function is marked with the
login_required decorator, then Django ensures that HTTP
requests to that URL come from logged-in users, and will
redirect any unauthorized request to the site login page.

trast to what happens in the P-GRADE portal,
the certificate/proxy check happens each time the
Django view function is invoked, and it is thus
essential to keep it performant.

If the certificate/proxy exists and is valid, envi-
ronment variables are set to the filesystem path of
the relevant files to communicate the location to
the Grid middleware, and control is passed to the
view function.

Otherwise, an HTTP redirect response is issued,
channeling the web browser to the URL corre-
sponding to a Django-specific version SlcsInit or
VomsProxyInit servlets. As mentioned for the Ex-
ample Servlets (see Section 3.2.3), only the SlcsInit
URL needs to be Shibboleth-protected.

HTTP session cookies are used to tell the
servlets to store the certificate/proxy in a certain
filesystem location;6 however this poses a mild
security threat: since the servlets URLs must be
public (so that the users’ web browsers can visit
them), then an HTTP request could be crafted to
make the servlets read/write the certificate/proxy
file in an arbitrary location on the filesystem. Se-
curity is enforced with the following procedure:

– Before starting the redirect to the a servlet,
the Django access decorator creates an empty
directory L, creates a “marker” file in it, and
writes a random string K into this “marker”
file.

– The decorator redirects the web browser to
the servlet URL, passing along L and K (as
HTTP cookies).

– The servlet verifies that the “marker” file ex-
ists in L and that it has the expected content
K, then it deletes the “marker” file and pro-
ceeds. For added security, it can optionally
verify that L is a filesystem path starting with a
configured prefix (e.g., /var/www/portal),
so that possible damage is confined to a por-
tion of the filesystem.

It is clear that the above procedure guarantees
that hypothetical attackers can only trick the

6Since the SlcsInit and VomsProxyInit servlets run in a Java
server, completely separated by the server running Django,
an issue arises as how to communicate certificate/proxy
location and passphrases back and forth from the Django
decorator to the Java servlets.



GridCertLib: A Single Sign-on Solution for Grid Web Applications and Portals 451

GridCertLib servlets into writing into a location
L if and only if they can already write to L.

The added security layer is basically the only
difference between the Django-support servlets
and the GridCertLib example servlets (see
Section 3.2.3). After successful creation of the
certificate or proxy, the servlet redirects the web
browser back to the initial requesting page with
no output.

As in the P-GRADE integration, two issues
remain that might need special attention in the
future:

– The VOMS configuration is the same for all
users: while it is possible to extend the Django
user object model to include individual VOMS

information, this is not necessary at present
since all users of the GAMESS portal belong to
the same Virtual Organization.

– Until the delegation feature becomes a stan-
dard feature of SWITCHaai, users have to
select the special home organization VHO in
order to use the portal.

Django support for GridCertLib provides an
example of how GridCertLib can be integrated
into an existing web framework with little coding
and only small edits to tune the example servlet
behavior to the interface expected by other portal
components.

5 Conclusions and Future Developments

GridCertLib is an easy to use Java library that
enables automatic creation of SLCS certificates
and/or Grid proxies from SAML2 assertions ob-
tained from successful Shibboleth authentication.
It can be integrated into real-world Grid portals,
hiding the complexities of X.509 certificate usage
from the portal user. This considerably lowers the
barrier to Grid usage, potentially allowing much
larger communities to profit from Grid resources
securely. Source code for GridCertLib is publicly
available from http://gridcertlib.googlecode.com/
under the Apache License version 2.0 [2].

The current implementation of GridCertLib
relies on three key features of the SWITCHaai
infrastructure: Shibboleth authentication, ID-WSF

ECP delegation, and the SLCS online CA service.

The integration of these three components to-
gether with a valid access to a VOMS server, allow
the creation of any community-specific web portal
that can leverage the national Grid computing
infrastructure SMSCG [35] thus enabling Grid use
by virtually any Swiss scientific community.

An interesting future development could be to
adapt GridCertLib to draw certificates from the
(recently created) Trans-European Research and
Education Networking Association (TERENA)
on-line CA; this would lift the dependency on the
Swiss infrastructure and potentially allow usage
of GridCertLib on any European Grid infrastruc-
ture.

More generally, one could investigate whether
GridCertLib could be ported to provide its func-
tionality on top of equivalent base technolo-
gies (e.g., substitute Shibboleth with a different
SAML-based federated authentication infrastruc-
ture). Developments in this area could turn Grid-
CertLib into a modular system capable of pro-
viding its functionality for almost all Grid users
today. No investigation has been carried out by us
in this area: the project that funded GridCertLib
development had a practical scope of producing
a simple single sign-on solution for the selected
portals; we are anyway open to collaborations in
this respect.

GridCertLib has already been successfully de-
ployed and integrated into a Bioinformatics por-
tal based on P-GRADE, and into a Django-
based Computational Chemistry portal, proving
the flexibility and re-usability of the library and
its design.

We will assist in the integration of GridCertLib
into portals that are in use in Switzerland, like
JOpera [21] and the new WS-PGRADE [22]. We
will consider requests for extensions in function-
ality of the GridCertLib based on the experience
with these new portals.

Looking further into the future, GridCertLib
will greatly profit from the upgrade of the
SWITCHaai federation to the next version of
Shibboleth: this will enable true single-sign on
and Grid usage in one portal, without the need
to use a special VHO account. The SystemsX
project SyBIT [40] also plans to upgrade its
P-GRADE portal from the current Gridsphere-
based implementation to the more modern

http://gridcertlib.googlecode.com/


452 R. Murri et al.

WS-PGRADE, which makes use of the Lif-
eray portal [26] technology: besides many portal-
related improvements, this will allow the users to
freely choose the VOMS attributes they wish to
associate with their proxy. However, due to the
entirely new portal code base, a new programming
effort will be needed to integrate GridCertLib into
the Liferay framework.

Acknowledgements This work was carried out in the
context of the “Swiss Grid Portal” project, funded through
the SWITCH-AAA track and through the SyBIT project
of SystemsX.ch. We would like to thank all our collabo-
rators in the Swiss Grid Portal project—Cesare Pautasso,
Frédérique Lisacek, Heinz Stockinger—and also all the
help we received from the Hungarian Academy of Sciences
SZTAKI for the integration with P-GRADE, especially
Ákos Balasko.

List of Acronyms

AAI Authentication and Authorization
Infrastructure

AC Attribute Certificate (VOMS, X.509)
API Application Programming Interface
CA Certification Authority
CSR Certificate Signing Request
DN Distinguished Name
ECP Enhanced Client or Proxy
EGEE Enabling Grids for E-sciencE
FQAN Fully-Qualified Attribute Name (VOMS)
GAMESS General Atomic and Molecular

Electronic Structure System, a Computational
Chemistry application (see [12, 34])

GC3 Grid Computing Competence Center,
University of Zurich

HTTP HyperText Transfer Protocol
ID-WSF Identity Domain—Web Service

Framework (Shibboleth)
IGTF International Grid Trust Federation
IdP Identity Provider (Shibboleth)
MAMS Meta Access Management System, an

Australian development project (see [28])
PKI Private Key Infrastructure
SAML Security Assertion Markup Language
SAML2 Security Assertion Markup Language

version 2
SARoNGS UK development project (see [20])
SLCS Short-Lived Credential Service
SMSCG Swiss Multi-Science Computing Grid

SP Service Provider (Shibboleth)
SSO Single Sign-On
SWITCH Swiss Academic Network Provider
TERENA Trans-European Research and

Education Networking Association
URL Uniform Resource Locator
VHO Virtual Home Organisation
VOMS Virtual Organisation Membership Service
VO Virtual Organisation
XACML eXtensible Access Control Markup

Language

References

1. Alfieri, R., Cecchini, R., Ciaschini, V., dell’Agnello, L.,
Frohner, Á., Lőrentey, K., Spataro, F.: From gridmap-
file to VOMS: managing authorization in a Grid envi-
ronment. Future Gener. Comput. Syst. 21(4), 549–558
(2005)

2. The Apache Software Foundation: Apache License, ver-
sion 2.0 http://www.apache.org/licenses/LICENSE-2.0.
Cited 17 Apr 2011

3. Barbera, R., Donvito, G., Falzone, A., La Rocca, G.,
Milanesi, L., Maggi, G.P., Vicario, S.: The GENIUS
Grid Portal and robot certificates: a new tool for e-
Science. BMC Bioinformatics 10(Suppl 6), S21 (2009).
http://www.biomedcentral.com/1471-2105/10/S6/S21

4. Barton, T., Basney, J., Freeman, T., Scavo, T.,
Siebenlist, F., Welch, V., Ananthakrishnan, R.,
Baker, B., Goode, M., Keahey, K.: Identity federation
and attribute-based authorization through the Globus
toolkit, Shibboleth, Gridshib, and MyProxy. In: 5th
Annual PKI R&D Workshop (2006)

5. Barton, T., Cantor, S., Olshansky, S.: Shib-uPortal
Home. https://wiki.shibboleth.net/confluence/display/
ShibuPortal/Home. Cited 17 Apr 2011

6. Burruss, J.R., Fredian, T.W., Thompson, M.R.:
ROAM: an authorization manager for Grids. J. Grid
Computing 4(4), 413–423 (2006)

7. Cantor, S., et al.: Shibboleth Federations.
https://wiki.shibboleth.net/confluence/display/SHIB/
ShibbolethFederations. Cited 17 Apr 2011

8. Django: http://www.djangoproject.com. Cited 17 Apr
2011

9. The European Grid Authentication Policy Manage-
ment Authority in e-Science: Guideline on IGTF Ap-
proved Robots, version 1.0. http://www.eugridpma.org/
guidelines/robot/. Cited 17 Apr 2011

10. Farkas, Z., Kacsuk, P.: P-GRADE portal: a generic
workflow system to support user communities. Fu-
ture Gener. Comput. Syst. 27(5), 454–465 (2011).
doi:10.1016/j.future.2010.12.001

11. Garzoglio, G., et al.: Definition and implementation
of a SAML-XACML profile for authorization in-
teroperability across Grid middleware in OSG and
EGEE. J. Grid Computing 7(3), 297–307 (2009).
doi:10.1007/s10723-009-9117-4

http://www.apache.org/licenses/LICENSE-2.0
http://www.biomedcentral.com/1471-2105/10/S6/S21
https://wiki.shibboleth.net/confluence/display/ShibuPortal/Home
https://wiki.shibboleth.net/confluence/display/ShibuPortal/Home
https://wiki.shibboleth.net/confluence/display/SHIB/ShibbolethFederations
https://wiki.shibboleth.net/confluence/display/SHIB/ShibbolethFederations
http://www.djangoproject.com
http://www.eugridpma.org/guidelines/robot/
http://www.eugridpma.org/guidelines/robot/
http://dx.doi.org/10.1016/j.future.2010.12.001
http://dx.doi.org/10.1007/s10723-009-9117-4


GridCertLib: A Single Sign-on Solution for Grid Web Applications and Portals 453

12. Gordon, M.S., Schmidt, M.W.: Advances in electronic
structure theory: GAMESS a decade later. In: Dykstra,
C.E., Frenking, G., Kim, K.S., Scuseria, G.E. (eds.)
Theory and Applications of Computational Chem-
istry: The First Forty Years, pp. 1167–1189. Elsevier,
Amsterdam (2005)

13. Grisphere Portal: http://www.gridsphere.org/gridsphere/
gridsphere. Cited 30 Dec 2010

14. Hewitt, M., Kaushal, S.: Experiences of P-GRADE at
the White Rose Grid e-Science Centre. Presentation
held at the 2010 P-GRADE User Communities
Workshop (PUCoWo), ETH Zürich, 10 Jun 2010.
http://portal.p-grade.hu/pucowo/download/slides/
WRG-Mark-Shiv.ppt (2010)

15. Hodges, J.: How to Study and Learn SAML. http://
identitymeme.org/doc/draft-hodges-learning-saml-00.
html. Cited 9 Sept 2011

16. Hodges, J., Aarts, R., Madsen, P., Cantor, S., Cahill, C.,
Champagne, D., Ellison, G., Lockhart, R., Whitehead,
G.: Liberty ID-WSF Authentication, Single Sign-On,
and Identity Mapping Services Specification. http://www.
projectliberty.org/liberty/content/download/3441/22949/
file/liberty-idwsf-authn-svc-2.0-diff-v1.0.pdf. Cited 17
Apr 2011

17. IGTF: The International Grid Trust Federation Char-
ter. http://www.igtf.net/charter.html. Cited 17 Apr 2011

18. Internet2 Middleware Initiative: Shibboleth. http://www.
internet2.edu/shibboleth. Cited 17 Apr 2011

19. Internet2 Middleware Initiative: High Level Intro-
duction to Shibboleth. http://shibboleth.internet2.edu/
HighLevelIntro.html. Cited 9 Sept 2011

20. JISC: Shibboleth Access to Resources on the
National Grid Service. http://www.jisc.ac.uk/whatwedo/
programmes/einfrastructure/sarongs.aspx. Cited 17
Apr 2011

21. JOpera. http://www.jopera.org/. Cited 17 Apr 2011
22. Kacsuk, P.: P-GRADE portal family for Grid in-

frastructures. Concurr. Comput.: Practice and Experi-
ence 23(3), 235–245 (2011)

23. Kacsuk, P., Sipos, G.: Multi-Grid, multi-user workflows
in the P-GRADE portal. J. Grid Computing 3(3–4),
221–238 (2005)

24. Kacsuk, P., et al.: WS-PGRADE: supporting parame-
ter sweep applications in workflows. In: 3rd Workshop
on Workflows in Support of Large-Scale Science. In
conjunction with SC 2008, pp. 1–10, IEEE, Austin, TX,
USA (2008). doi:10.1109/WORKS.2008.4723955

25. Kouril, D., Basney, J.: A Credential Renewal Ser-
vice for Long-Running Jobs. In: 6th IEEE/ACM In-
ternational Workshop on Grid Computing (Grid 2005),
Seattle, WA, 13–14 Nov 2005

26. Liferay portal: http://www.liferay.com/. Cited 17 Apr
2011

27. Lorch, M., Kafura, D.: The PRIMA Grid Authoriza-
tion System. J. Grid Computing 2(3), 279–298 (2005)

28. MAMS project: Meta Access Management System.
https://mams.melcoe.mq.edu.au/zope/mams. Cited 17
Apr 2011

29. MAMS project: Shibbolizing GridSphere demo. https://
mams.melcoe.mq.edu.au/zope/mams/kb/all/GridSphere%
20Wink%20demo.zip/view. Cited 17 Apr 2011

30. Morrison, S.: Django-Shibboleth: Shibboleth
login/registration integration. http://code.arcs.org.
au/gitorious/django/django-shibboleth. Cited 17 Apr
2011

31. NCSA: MyProxy Credential Management Service.
http://grid.ncsa.illinois.edu/myproxy/. Cited 30 Dec
2010

32. Novotny, J., Tuecke, S., Welch, V.: An online creden-
tial repository for the Grid: MyProxy. In: Proceedings
of the Tenth International Symposium on High Per-
formance Distributed Computing (HPDC-10), pp. 104–
111. IEEE Press (2001)

33. Pearlman, L., Welch, V., Foster, I., Kesselman, C.,
Tuecke, S.: Community authorization service for group
collaboration. In: Proceedings of the 3rd International
Workshop on Policies for Distributed Systems and Net-
works, pp. 50–59 (2002)

34. Schmidt, M.W., Baldridge, K.K., Boatz, J.A., El-
bert, S.T., Gordon, M.S., Jensen, J.H., Koseki, S.,
Matsunaga, N., Nguyen, K.A., Su, S., Windus, T.L.,
Dupuis, M., Montgomery, J.A.: General atomic and
molecular electronic structure system. J. Comput.
Chem. 14, 1347–1363 (1993)

35. SMSCG project: Swiss Multi-Science Computing Grid.
http://www.smscg.ch/. Cited 17 Apr 2011

36. SWITCH: Description of the SLCS. http://www.switch.
ch/grid/slcs/about/about_long.html. Cited 17 Apr
2011

37. SWITCH: Expert Session Add-On. http://www.switch.
ch/aai/demo/2/expert_session.html. Cited 17 Apr 2011

38. SWITCH: Simple Demo http://www.switch.ch/aai/demo/
2/simple.html. Cited 17 Apr 2011

39. SWITCH: SWITCHaai—The Key That Connects
Students and the University. http://www.switch.ch/aai.
Cited 17 Apr 2011

40. SystemsX.ch: SyBIT: Systems Biology IT. http://www.
systemsx.ch/projects/systemsxch-projects/sybit/. Cited
17 Apr 2011

41. Tschopp, V.: ID-WSF ECP Web Service Client. https://
forge.switch.ch/redmine/projects/idwsfecp. Cited 30
Dec 2010

42. Tschopp, V., Witzig, Ch.: Short-lived Credential
Service—User Guide. EGEE-II project. https://edms.
cern.ch/document/788604/1 (2006)

43. Tuecke, S., Welch, V., Engert, D., Pearlman, L.,
Thompson, M.: Internet X.509 Public Key Infra-
structure (PKI) Proxy Certificate Profile, RFC3820.
The Internet Society. http://www.ietf.org/rfc/rfc3820.txt
(2004)

http://www.gridsphere.org/gridsphere/gridsphere
http://www.gridsphere.org/gridsphere/gridsphere
http://portal.p-grade.hu/pucowo/download/slides/WRG-Mark-Shiv.ppt
http://portal.p-grade.hu/pucowo/download/slides/WRG-Mark-Shiv.ppt
http://identitymeme.org/doc/draft-hodges-learning-saml-00.html
http://identitymeme.org/doc/draft-hodges-learning-saml-00.html
http://identitymeme.org/doc/draft-hodges-learning-saml-00.html
http://www.projectliberty.org/liberty/content/download/3441/22949/file/liberty-idwsf-authn-svc-2.0-diff-v1.0.pdf
http://www.projectliberty.org/liberty/content/download/3441/22949/file/liberty-idwsf-authn-svc-2.0-diff-v1.0.pdf
http://www.projectliberty.org/liberty/content/download/3441/22949/file/liberty-idwsf-authn-svc-2.0-diff-v1.0.pdf
http://www.igtf.net/charter.html
http://www.internet2.edu/shibboleth
http://www.internet2.edu/shibboleth
http://shibboleth.internet2.edu/HighLevelIntro.html
http://shibboleth.internet2.edu/HighLevelIntro.html
http://www.jisc.ac.uk/whatwedo/programmes/einfrastructure/sarongs.aspx
http://www.jisc.ac.uk/whatwedo/programmes/einfrastructure/sarongs.aspx
http://www.jopera.org/
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4723955&tag=1
http://www.liferay.com/
https://mams.melcoe.mq.edu.au/zope/mams
https://mams.melcoe.mq.edu.au/zope/mams/kb/all/GridSphere%20Wink%20demo.zip/view
https://mams.melcoe.mq.edu.au/zope/mams/kb/all/GridSphere%20Wink%20demo.zip/view
https://mams.melcoe.mq.edu.au/zope/mams/kb/all/GridSphere%20Wink%20demo.zip/view
http://code.arcs.org.au/gitorious/django/django-shibboleth
http://code.arcs.org.au/gitorious/django/django-shibboleth
http://grid.ncsa.illinois.edu/myproxy/
http://www.smscg.ch/
http://www.switch.ch/grid/slcs/about/about_long.html
http://www.switch.ch/grid/slcs/about/about_long.html
http://www.switch.ch/aai/demo/2/expert_session.html
http://www.switch.ch/aai/demo/2/expert_session.html
http://www.switch.ch/aai/demo/2/simple.html
http://www.switch.ch/aai/demo/2/simple.html
http://www.switch.ch/aai
http://www.systemsx.ch/projects/systemsxch-projects/sybit/
http://www.systemsx.ch/projects/systemsxch-projects/sybit/
https://forge.switch.ch/redmine/projects/idwsfecp
https://forge.switch.ch/redmine/projects/idwsfecp
https://edms.cern.ch/document/788604/1
https://edms.cern.ch/document/788604/1
http://www.ietf.org/rfc/rfc3820.txt

	GridCertLib: A Single Sign-on Solution for Grid Web Applications and Portals
	Abstract
	Introduction
	An Overview of Existing Solutions
	Design and Implementation
	Architecture Overview
	Core Library Implementation
	Creating SLCS Certificates
	Creating Grid and VOMS Proxies
	Example Servlets


	Deployment Experiences
	Integration into the P-GRADE Portal
	Integration into Django-Based Web Applications

	Conclusions and Future Developments
	List of Acronyms
	References



