
Auton Agent Multi-Agent Sys (2006) 12: 219–237
DOI 10.1007/s10458-006-5836-0

A multiagent system for the reliable execution
of automatically composed ad-hoc processes�

Walter Binder · Ion Constantinescu · Boi Faltings ·
Klaus Haller · Can Türker

Published online: 24 February 2006
Springer Science + Business Media, Inc. 2006

Abstract This article presents an architecture to automatically create ad-hoc processes for
complex value-added services and to execute them in a reliable way. The uniqueness of
ad-hoc processes is to support users not only in standardized situations like traditional work-
flows do, but also in unique non-recurring situations. Based on user requirements, a service
composition engine generates such ad-hoc processes, which integrate individual services in
order to provide the desired functionality. Our infrastructure executes ad-hoc processes by
transactional agents in a peer-to-peer style. The process execution is thereby performed under
transactional guarantees. Moreover, the service composition engine is used to re-plan in the
case of execution failures.

�The work presented in this article was supported by the Swiss National Science Foundation as part of the
project MAGIC (FNRS-68155), as well as by the Swiss National Funding Agency OFES as part of the
European projects KnowledgeWeb (FP6-507482) and DIP (FP6-507483). Authors in alphabetic order.

W. Binder (B) · I. Constantinescu · B. Faltings
Ecole Polytechnique Fédérale de Lausanne (EPFL),
Artificial Intelligence Laboratory,
CH-1015 Lausanne,
Switzerland
e-mail: walter.binder@epfl.ch

I. Constantinescu
e-mail: ion.constantinescu@epfl.ch

B. Faltings
e-mail: boi.faltings@epfl.ch

C. Türker
Functional Genomics Center Zurich (FGCZ)
UNI/ETH Zurich,
Winterthurerstr. 190,
CH-8057 Zurich,
Switzerland
e-mail: tuerker@fgcz.ethz.ch

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/159151712?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


220 Auton Agent Multi-Agent Sys (2006) 12: 219–237

Keywords Service composition · Ad-hoc processes · Process execution ·
Process expansion · Failure handling

1. Introduction

Users benefit from ad-hoc processes and distributed implementations of their execution envi-
ronment, because for the first time information systems support users not only in standardized
situations like workflow systems do. Instead, ad-hoc processes can provide support in a ubiq-
uitous way for everybody, everywhere, and anytime.

An example for an ad-hoc process is planning an evening. The user states his preferences
(e.g., comedy movie, restaurant with French cuisine). Then, an ad-hoc process reserves a
table in a restaurant and a ticket for a movie. In the scenario depicted in Fig. 1, an ad-hoc
process representing a personal agent (PA) tries to find a cinema showing a “good” comedy
and a good French restaurant. For this purpose, the PA contacts a movie recommendation
service in order to discover a good comedy, as well as a yellow page directory to select a
French restaurant. Afterwards, the PA searches for a cinema which plays the chosen movie
and uses a recommendation service to ensure that the selected restaurant has a good rating.
Finally, the PA returns a restaurant/cinema combination to the user. As it can be seen in this
example, this new generation of ad-hoc processes can support users in their everyday life
where unique situations appear.

In this way, ad-hoc processes imply a shift in the usage of process technology: Whereas
employees in their offices can be assumed to be static, this does not hold for mobile users
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Fig. 1 Exemplary scenario: Planning an evening
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who change their location. Consequently, ad-hoc processes respect the nomadicity of users
by implementing location-aware services, e.g., time table information systems considering
the actual location of the user. Centralized approaches are not suitable for ad-hoc process
execution.

Dynamic process changes are required for ubiquitous applications. In case of the evening
planner, for example, the user might miss the metro and therefore not reach the cinema in
time. Also, the ad-hoc process might figure out that there is no cinema in town. Both require
that the ad-hoc process is able to dynamically adapt, for instance, with the help of a decision
support system such that nevertheless a valid plan is constructed for the evening.

The main contribution of this article is a novel, integrated infrastructure for the automated
creation and reliable execution of ad-hoc processes. The system comprises a service com-
position planner to generate and dynamically adapt ad-hoc processes, as well as a process
engine to ensure the reliable execution of processes with the aid of transactional agents. To the
best of our knowledge, we present the first integrated system that takes the fully automated
composition of services, which are incrementally retrieved from a directory, and the reliable
execution of the resulting plan under transactional control into account.

This article is structured as follows: Section 2 discusses the overall architecture. We
assume that individual services are advertized in service directories. Our infrastructure com-
prises three principal components: Directories that hold the service descriptions, a service
composition planner that computes execution plans to fulfill user requirements (such as the
aforementioned evening planning task), as well as an engine that executes composition plans
in a distributed way using ad-hoc processes. In this article we focus on the service compo-
sition planner and on the execution engine. We also discuss their inter-dependencies. Scal-
able directories that facilitate service composition have been explored in previous work [6].
Section 3 outlines how service capabilities and user requests are represented. In Section 4,
we discuss the service composition component of our architecture. Section 5 concentrates
on the execution of ad-hoc processes by transactional (mobile) agents. It describes the exe-
cution infrastructure with the repositories required on each peer. Furthermore, we explain
how we enforce the isolation property [11]. The isolation property guarantees that the system
looks stable for each transactional process executing in the system. Finally, Sections 6 and 7
conclude this article.

2. Overview of the system architecture

This section briefly presents the overall architecture of our system and illustrates the inter-
play of the different components. Figure 2 gives an overview of the architecture. On the left
side, there are the peers which are the service providers. For example, there might be peers
providing services for reserving tickets for a cinema movie. On the right side, there are the
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users with their requirements. In between is our planning and execution infrastructure, which
fulfills the user requirements by invoking services using ad-hoc processes.

The users inform the planner about their initial goals such that the planner can compose a
first plan. This composition is based on the user requirements and on the services advertized
by the peers. The result of the composition is a plan, which can also be seen as the definition
of a process to be executed in the system. The process definition is compiled into a transac-
tional agent. This agent is responsible for the reliable execution of the process. During the
execution, the transactional agent invokes services on peers or presents results to the user
and obtains new information from him. However, reliable execution not necessarily implies
that the process always performs in the intended way. It can also mean that failures appear
which of course must be detected. The process has to roll back until it reaches an expansion
step which invokes the planner. Then, the planner modifies the plan. For this task, the planner
may access the process state and the failure description, which can also be considered as a
constraint for the planner.

3. Service and query descriptions

We represent services and queries in the standard way (W3C. Web services description lan-
guage (WSDL) version 2.0, http://www.w3.org/TR/wsd120) as two sets of parameters (inputs
and outputs). A parameter is defined through its name and a type that can be primitive (W3C.
XML Schema Part 2: Datatypes, Second Edition http://www.w3.org/TR/xmlschema-2/)
(e.g., a decimal in a given range) or a class/ontological type (W3C. OWL web ontology
languages 1.0 reference, http://www.w3.org/TR/owl-ref/) Both primitive and class types are
represented as sets of numeric intervals, which enables efficient subsumption testing. For
instance, the generic type Color may be encoded as the interval [1,3], whereas the specific
colors (subtypes) Red, Green, and Blue may be represented as the single-point subintervals
[1,1], [2,2], and [3,3]. For more details on the encoding of classes/ontologies as numeric
intervals see [7].

Input and output parameters of service descriptions have the following semantics:

– In order to invoke the service, a value must be provided for each of the service input
parameters and it has to be consistent with the respective parameter type. For primitive
data types, the invocation value must be in the range of allowed values; in the case of
classes, the invocation value must be subsumed by the parameter type.

– Upon successful invocation, the service provides a value for each output parameter. Each
of these values is consistent with the respective parameter type.

Service composition queries are represented in a similar way but have different semantics:

– The query inputs are the parameters available to the composition (e.g., provided by the
user). Each of these input parameters may be either a concrete value of a given type,
or just the type information. In the second case, the composition plan has to be able to
handle all possible values for the given input parameter type.

– The query outputs are the parameters that a successful composition must provide and
the parameter types define what ranges of values can be handled. The composition plan
must provide a value for each query output parameter, which has to be in the range of the
respective query output parameter type.
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For manipulating service or query descriptions, we use the following functions:

– in(X)—returns the set of input parameter names of a service or query description X .
– out (X)—returns the set of output parameter names of a service or query description X .
– t ype(P, X)—returns the type of a parameter named P in the frame of a service or query

description X as the set of intervals of all possible values for P . The ⊆ operator in con-
junction with this function represents a range inclusion in the case that P has a primitive
data type or subsumption in the case P is defined through a class or concept descrip-
tion (W3C. OWL web ontology language 1.0 reference, http://www.w3.org/TR/owl-ref/).
The operator ∩ in conjunction with this function represents a range intersection in the
case that P has a primitive data type or in the case of a class/concept description it repre-
sents the subclass common to both arguments of the operator (possibly the bottom class
“Nothing”).

We assume that all service and query descriptions X are well-formed in that they cannot
have the same parameter both as input and output: in(X)∩out (X) = ∅. The rationale behind
this assumption is that if a description had an overlap between input and output parameters,
this would lead to two undesirable cases: either the two parameters would have the same
type, in which case the output parameter is redundant, or they would have different types, in
which case the service description is inconsistent.

Parameter names (properties in the case of OWL-S (OWL-S.DAML Services, http://www.
daml.org/services/owl-s/) or strings in the case of WSDL (W3C. Web services description
language (WSDL) version 2.0, http://www.w3.org/TR/wsdl20)) attach also some semantic
information to the parameters.1 Thus, in our composition algorithms we not only consider
type compatibility between parameters but also semantic compatibility.

4. Type-compatible service composition

Our approach to service composition is based on the idea of chaining services, starting with
the input parameters provided by a query. Forward chaining techniques are used by differ-
ent types of reasoning systems, in particular for planning [2] and more recently for service
composition [8,24].

In Section 4.1 we explain the principle of forward chaining and the kind of type matches
that are involved between query and service descriptions. In Section 4.2 we also argue for
interleaving service composition with the dynamic discovery of relevant service descriptions
from a separate directory. In Sections 4.3 and 4.4 we introduce two service composition
algorithms, which are evaluated in Section 4.5.

4.1. Service composition using forward chaining

As described in Section 3, a service composition query is specified in terms of a set of avail-
able input parameters and a set of required output parameters. A composition solution is a
plan defining the order in which to invoke services and how to pass parameter values between
them such that after execution of the plan, values are known for all output parameters required
by the query.

Our service composition algorithms are based on forward chaining. Informally, the idea of
forward chaining is to iteratively apply a possible service S to a set of input parameters pro-

1 For WSDL this is not explicitly specified by the standard, but we assume that two parameters with the same
name are semantically equivalent.
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vided by a query Q (i.e., all inputs required by S have to be available). If applying S does not
solve the problem (i.e., still not all the outputs required by the query Q are available), a new
query Q′ can be computed from Q and S and the whole process is iterated. This part of our
framework corresponds to planning techniques currently used for service composition [24].

Now we consider the conditions for a service S to be applied to the inputs available from a
query Q using forward chaining: for each input required by the S, there has to be a compatible
parameter in the inputs provided by Q. Compatibility has to be achieved both for names (that
have to be semantically equivalent) and for types, where the range provided by Q has to be
at least as specific as the one accepted by S:

(∀P ∈ in(S)) (P ∈ in(Q) ∧ t ype(P, Q) ⊆ t ype(P, S))

We call this kind of matching between the inputs of query Q and service S forward chain-
ing with complete type matches. Concerning inputs, forward chaining with complete type
matches corresponds to the plugin match identified by Paolucci, Kawamura, Payne, and
Sycara [20].

Frequently, forward chaining with complete type matches is too restrictive and fails to
find a solution, because the types accepted by the available services may partially overlap
the type specified in the query. For example, a query for restaurant recommendation ser-
vices across all Switzerland may specify that the integer parameter zip code could be in the
range [1000,9999], whereas an existing service providing recommendations for the French
speaking part of Switzerland accepts only integers in the range [1000–2999] for the zip code
parameter. Nonetheless, there may be several recommendation services for different parts of
Switzerland that together could cover the whole range given in the query. Hence, a service
composition algorithm may create a plan with different execution paths, depending on the
concrete value provided for the zip code parameter at execution time. That is, the plan would
include a switch in order to select the appropriate execution path.

In order to support partial type matches, we can relax the type inclusion to a type overlap:

(∀P ∈ in(S)) (P ∈ in(Q) ∧ t ype(P, Q) ∩ t ype(P, S) �= ∅)

We call this kind of matching between the inputs of query Q and service S forward chaining
with partial type matches. It corresponds to the overlap resp. intersection match identified
by Li and Horrocks [18] and Constantinescu and Faltings [7].

Figure 3 illustrates how partially matching services can be aggregated in order to cover
a given input range. In this example, the query Q1 provides the input parameters X and Y ,

Fig. 3 Composing services with partial type matches
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where X may be either x1 or x2, and Y can only be y2. Using forward chaining with complete
type matches, none of the three service S1, S2, S3 are applicable: S1 and S2 cannot handle
the case X = x1, while S3 cannot deal with X = x2. However, a combination of S3 with
S1 or S2 can handle all possible input parameter values provided by the query Q1. Hence,
a service composition algorithm based on forward chaining with partial type matches may
find a solution in a situation where forward chaining with complete type matches would fail.

4.2. Interleaving service composition with discovery

In contrast to prevailing service composition techniques [24], which require all service
descriptions to be loaded into a reasoning engine before starting the composition process,
our composition algorithms involve dynamic directory access in order to incrementally re-
trieve relevant service descriptions. In previous work [6] we presented a directory system that
provided specific support for the kind of queries issued by service composition algorithms.
Details concerning our directory system are not in the scope of this article, we refer to [6].

The design of our service composition algorithms has been motivated by two aspects that
are specific to large-scale service directories operating in open environments:

1. Large result sets: For each query, the directory may return a large number of service
descriptions.

2. Costly directory accesses: Accessing the directory (possibly remotely) can be expensive,
as the directory is a shared resource.

Our composition algorithms address these issues by interleaving discovery and composi-
tion, as explained in Sections 4.3 and 4.4. We describe our service composition algorithms in
Java-based pseudo-code. We assume a Directory interface with the method getNext-
NewService(Query, boolean), which returns a service description matching a given
query that has not been returned by a prior invocation of the method during the same run
of the composition algorithm. The matching algorithm compares the available inputs of the
given query with the required inputs of service descriptions in the directory. If the second
argument is false, only complete type matches are taken into account; if it is true, also partial
type matches are considered. The matching conditions regarding inputs have been explained
in Section 4.1. If there are multiple matching service descriptions in the directory, it returns
the service description that provides most of the outputs required by the given query (rank-
ing). getNextNewService(Query, boolean) returns null if there are no further
matching service descriptions.

4.3. Forward chaining with complete type matches

Figure 4 illustrates a decision algorithm that computes whether a given service composition
problem (a query Q) can be solved by forward chaining with complete type matches. The
type Query represents a query and the type Service a service description.

The algorithm uses a search structureSearchStruct that keeps track of currently avail-
able inputs and of the required outputs. The constructor takes a query Q as argument and
initializes the available inputs with in(Q) resp. the required outputs with out (Q). The meth-
ods getAvailableInputs() resp. getRequiredOutputs() returns the currently
available inputs resp. the required outputs. The addService(Service)method adds the
output parameters of a given service description to the available inputs of the search structure,
taking name and type of the parameters into consideration. isSolution() returns true, if
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Fig. 4 Algorithm: Forward chaining with complete type matches

for each required output there is a matching available input (the type of the required output
parameter has to subsume the type of the available input parameter).

The algorithm terminates, because the directory is finite, i.e., at some point getNext-
NewService(Query, boolean) returns null. In our actual implementation, a com-
position plan is computed from the information stored in the SearchStruct instance.

4.4. Forward chaining with partial type matches

Conceptually, our service composition algorithm using forward chaining with partial type
matches has three steps (see Fig. 5 for an informal presentation of the algorithm):

1. Discover complete matches using the algorithm presented before (see Fig. 4).
2. Discover full coverage: Discovery of partially matching services in order to fully cover

the available inputs. This step yields a set of sub-problems (represented as queries) to
be solved.

3. Discover correct switch: Solving of all sub-problems by recursive invocation of the
composition algorithm.

A decision algorithm for forward chaining with partial type matches is presented in Fig. 6.
In addition to the search structure SearchStruct introduced previously, we use a switch
generatorSwitchGen. Upon failure of the composition algorithm supporting only complete
type matches (invocation of solveFwdComplete(Directory, SearchStruct)),
a new SwitchGen instance is initialized with the set of available inputs obtained from the
failed algorithm.
SwitchGen provides two main functionalities corresponding to the second and third

steps of the algorithm: Handling the coverage of all possible combinations of available input
values and ensuring that for each combination of values, the subsequently composed ser-
vices provide a solution to the original query. isFullCoverage() determines whether
the possible input range is fully covered by the services discovered so far. While this is not
the case, new services are retrieved from the directory.

When a full coverage is obtained, the SwitchGen instance provides a number of sub-
problems that all have to be successfully solved in order to get a solution for each possible
combination of input values. The sub-problems are represented as an array of Query objects
returned by getSubProblems(). While there is an unsolved sub-problem, additional ser-
vices are discovered and added to theSwitchGen instance by the methodaddService().

In order to improve algorithm performance, we keep track of successfully solved sub-
problems (dynamic programming). This technique avoids re-computing solutions for already
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solved sub-problems after discovery and addition of a new service description. We use the
set solvable, which is passed to recursive invocations of solveFwdPartial(Direc-
tory, Query, Set), in order to keep track of the sub-problems solved so far.

The algorithm terminates, because the directory is finite and the sub-problems generated
by the SwitchGen instance have more constrained input ranges. Moreover, the solv-
able set prevents repeated processing of the same solved query. Our actual implementation
generates a composition plan from the information stored in the active SearchStruct and
SwitchGen instances.

4.5. Evaluation

We implemented a testbed in order to simulate large-scale service directories as well as ser-
vice composition problems. The testbed offers several simulation models; for the evaluation
presented here, we used the following “media model”:

A user wants to find music providers for an album of good pop music; he is interested only
in a complete album. This scenario involves a recommendation site (e.g., billboard.com) to
find the title of a good album. Next, a library site (e.g., cdcovers.cc) is needed to discover
the set of melodies for the album. Finally, the melodies are obtained from a provider. In
this context, partial type matches allow to select providers that offer only a subset of the
melodies of an album. The generated switch combines those providers that together have all
the melodies of an album. For solving this kind of composition problems, we need at least a
recommendation, an album description, and a provider for the melodies. Hence, a successful
service composition involves at least three directory accesses.

With our testbed, we generated random service descriptions and composition problems.
For each specific type of service (e.g., album recommendation, album description, melody
provider) and for queries (e.g., find good pop album in mp3 format) we had pre-defined sets
of parameters. In order to generate a concrete service description or query, we selected a
random subtype from a set of possible types for each of the pre-defined parameters.

We solved the queries using the two algorithms presented in Sections 4.3 and 4.4 measur-
ing the average number of directory accesses as well as the failure rate. Each measurement
represents 50 runs of our service composition algorithms on randomly generated queries.
Figure 7 shows the average number of directory accesses. Both algorithms scale well with
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the size of the directory, as there is no significant increase in the number of directory accesses
with increasing directory size.

The algorithm using partial type matches performs comparable with the one supporting
only complete type matches. The overhead induced by the support for partial type matches
is not significant and decreases as the directory gets saturated with services. This is due to
the fact that having more choices makes it easier to solve the coverage problem regarding
partial type matches.

The most important result concerns the number of extra problems that can be solved by
supporting partial type matches, as illustrated in Fig. 8. The graph shows that the failure rate
is up to factor 4 higher, if partial type matches are not considered. This result indicates that
the support for partial type matches enables solving many composition problems that cannot
be solved by an algorithm supporting only complete type matches. Measurements from other
simulation models, which had to be omitted due to space limitations, confirm this result.

5. Process execution

We start the discussion on process execution with an overview of our process execution infra-
structure, called AMOR. Section 5.2 then sketches how transactional guarantees are enforced
for ad-hoc processes. Thereafter, Section 5.3 discusses how an execution plan is expanded
dynamically. Finally, Section 5.4 illustrates an example application.

5.1. Processes and execution infrastructure

In the AMOR prototype [13–15], ad-hoc processes are executed based on transactional (mo-
bile) agents. After the user has specified his requirements and the planner has generated an
initial plan, this plan is compiled into a transactional agent. Basically, the planner delivers
an XML file which contains the order of the service invocations to be performed. Each ser-
vice invocation of the plan is mapped to a code fragment which is encapsulated by a Java
class Step. This class provides a wrapper to integrate the particular service invocation in the
AMOR execution infrastructure. Furthermore, the step classes together with the ordering
of the steps are packed into a transaction agent class representing this specific plan. Thus,
AMOR supports ad-hoc processes which satisfy a user need that might not emerge again.
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Though the application focus of ad-hoc processes is different from the one of workflows,2

their definitions are conceptually the same. Ad-hoc processes come along with transactional
guarantees. Thus, we use the term transactional processes throughout this Section equivalent
to ad-hoc processes.

Ad-hoc processes are composed of a set of steps. A step can be of one of the following
types:

– Activities correspond to service invocations in the plan. An activity changes the transac-
tional process state or the state of the overall system outside of a transactional process. We
distinguish two types. One type is formed by the service invocation steps. They invoke
services of one or more peers and may retrieve or manipulate data. For instance, they
book a seat in a cinema for a certain movie. User interaction steps present data to the
users respectively allow users to give information to the ad-hoc process, e.g., which kind
of movies the user prefers.

– Expansion steps mark situations when the planner cannot define during the planning
stage how to continue. Thus, the planning and execution cycle (Fig. 10) starts over again.
When the ad-hoc process reaches an expansion step, it stops the execution, hands over the
control to the planner, and delivers the actual execution state and failure information over
to the planner. The planner generates a plan and then returns the steps to the transactional
process, such that the latter one can expand its process description accordingly. Placing
user interaction steps strategically before expansion steps, the planner can use them to
get information from the user.

– Control flow steps define parallel as well as alternative execution paths. Alternative exe-
cution paths can be used for implementing expansion steps. Section 5.3 discusses this
aspect. Here, we are particularly interested in their possibility to support planners which
are able to generate plan variants. If the planner knows that there is user input or influence
from the outside world and the planner can guess which are the options most likely to
be needed, the planner can plan the most probable variants. Additionally, the planner
specifies under which conditions which variant is taken. The benefit of plans with alter-
natives is that the planner is not invoked so often, because each alternative step usually
corresponds to an invocation of the planner. Furthermore, when the planner generates a
plan it might already gain knowledge about less favorable options. Alternatives allow to
materialize this knowledge. Besides the alternative paths, parallel paths can be specified
to define paths being executed concurrently. Each path is executed by a replica of the
ad-hoc process instance (i.e., the mobile agent). From the specification point of view, a
parallel section starts with a fork step and ends at a join step.

AMOR executes ad-hoc processes in a peer-to-peer fashion without any central instance
or component like a workflow engine. Basically, the ad-hoc process (dynamically) decides
which service provider on which computer it contacts. In case of a user interaction step, the
ad-hoc process figures out on which computer the user is working at the moment. Then, the
ad-hoc process instance moves from the peer it currently resides on to the peer the service is
provided respectively the user is working on. Internally, AMOR implements ad-hoc processes
as mobile agents.

In AMOR, each peer is equipped with a local coordination layer (see Fig. 9). The layer
maintains meta-data required by ad-hoc processes to invoke local services. Firstly, the service
repository holds information about locally available services. This allows to find concrete ser-
vice instances implementing the service types specified by the planner. Secondly, the network

2 The term workflow is used for environments where few types of workflows are executed very often. Our
composition planner generates plans for individual situations. Typically, each plan is executed only once.
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repository manages connections to other peers such that the peers are able to establish ad-
hoc communities. The two repositories together allow ad-hoc processes to discover services
locally as well as remotely (see [13] for technical details) which is required for executing
a service invocation step. If many ad-hoc processes require the same service types, we can
speed up the service discovery by letting the peers also locally cache services provided by
other peers.

When an ad-hoc process initiates the execution of a service invocation step, its coordi-
nation layer contacts the local coordination layer of the peer on which the process currently
resides on. The coordination layer returns a reference to the peer providing the determined
service. Each process knows the types of services it has to invoke because each process
contains its service description. Furthermore, each process manages its execution state in its
coordination layer (process coordination layer). Thus, processes can proceed autonomously.
In case the process description contains parallel paths, these are executed by replicas of the
process. For each path, a replica is created.

The coordination among the replicas is based on an additional component of the process
coordination layer named process board. It manages variables (objects addressed by their
names) of the process. Inter-process synchronization (e.g., for ensuring transactional guaran-
tees which are handled transparently for the user) is performed by cooperation of the process
synchronization components of the corresponding processes and peers.

5.2. Transactional guarantees for process executions

AMOR supports transactional properties, i.e., guaranteed termination [21] and isolation for
process executions which can be understood as a generalization of the classical ACID prop-
erty [1] known in the context of databases. In the following, we concentrate on the isola-
tion property which prevents undesirable interference between different transactional agents.
Thus, the planner does not have to care about this issue (and also complicated failure han-
dling). It can simply assume that its plan will be executed as specified. Otherwise, the system
will re-instantiate (by rolling back certain steps) a situation before the interference occurred.
From this point, the system can plan over again. The following illustrates the benefit: A
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transactional agent retrieves in a step sr the information that there are exactly two free seats
for the desired movie. However, before the agent definitely tries to book these seats, another
transactional agent might have done this, too. Conventionally, such failure situations must
be detected and dealt with by the planner. Thus, the planner has to check after the booking
if it was successfully and has to specify how to deal with problems. In contrast, AMOR
compensates the execution before the step sr and then restarts again. AMOR is able to derive
from the process description whether additional steps have to be cancelled cascadingly. This
is done by AMOR transparently for the planner.

Technically, AMOR detects such failures by using a serialization graph [1]. The nodes
of this graph correspond to the processes of the schedule while the directed edges refer to
the conflicts occurred between these processes. The execution (schedule) is correct if the
corresponding serialization graph is acyclic.

Traditionally, cycle checking is performed by a central coordinator which maintains a
global serialization graph. AMORs uniqueness is that it does not rely on a global coordinator
for checking the acyclicity of the global serialization graph. Bridging this gap between the
available, local view of transactional agents and the global knowledge needed to enforce the
correctness criterion is therefore an import contribution of our novel protocol. The challenge
is to enforce global correctness, although the transactional agents are acting autonomously
and thus do not necessarily have up-to-date global knowledge.

In the following, we provide a brief overview of the algorithm which is described in detail
in [15]. We equip each transactional agent with a local serialization graph which is kept up-
to-date by communication between the transactional agents. However, for reasoning whether
or not a transactional agent is allowed to commit, it must rely only on information which
is guaranteed to be available at commit time. The incoming edges in the serialization graph
are up-to-date, because they are caused by service invocations of the particular transactional
agent on a peer and are therefore detected by the peer and returned to the invoking transac-
tional agent. If there is no incoming edge (from an uncommitted process), the corresponding
process is allowed at commit time. This property can be checked and enforced autonomously
by each process. As performance results presented in [15] show, the communication overhead
for graph exchange can be neglected in comparison to the duration of long-running processes.

The commit processing of a transactional agent Tc ensures that the peers clean up their
logs used for conflict detection and inform the transactional agents which are waiting for the
commit of Tc. The knowledge about these commit dependencies is delivered by the peers as
a reply to the commit message of Tc. Then, Tc informs the dependent transactional agents
about its commit.

Besides, AMOR must ensure that transactional agents, which are involved in a cycle,
are able to detect this. Since none of the agents involved in a cyclic waiting situation is
allowed to commit, this situation would last forever when not detected explicitly. Note that
just knowing from which a transactional agent depends on is not sufficient to detect cycles.
The transactional agents have to exchange their knowledge (conflict information).3 A trans-
actional agent must inform all other transactional agents it depends on whenever any change
happens in its local serialization graph, e.g., due to some service invocation, compensation,
or its commit. An agent receiving such a message updates its local graph using additional
information of the received one. In case its local graph has changed, a transactional agent
transitively propagates its graph further to the agents it depends on. We refer to [15] for more
details on the protocol and the recovery strategy when a cycle has been detected.

3 This cooperation and information exchange does not include semantic knowledge. It is like an information
exchange needed to form a self-organizing peer-to-peer infrastructure, just on a higher level.
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5.3. Plan expansion

Plan expansion is the glue to put planning and process execution together. We illustrate
the interplay and thereby the power of the concept of expansion steps in a small example
in Fig. 10. This figure contains an initial process consisting of three activities. The process
starts with the user input of his preferences for spending the evening. A step for collecting the
necessary information (e.g., about cinemas, restaurants, and public transportation) follows,
before the process actually makes reservations in the third step. Additionally, the process
contains two expansion steps. If the process reaches an expansion step, it invokes the planner
which adds new steps to the process.

The two expansion steps illustrate two possibilities to benefit from expansions steps by
late or post modeling [9]:

– Late modeling means that the planner knows at planning time that it is not able to define
the whole plan in advance because additional information is required respectively there
are too many options at the moment. Consequently, the planner places an expansion step
after the steps which collect the required information.

– Post modeling is the conceptual term used for unexpected situations caused by implicitly
made assumptions which turned out to be wrong. One example could be a blackout in
the city such that cinemas cannot show any movie and busses run late because there are
no traffic lights working. Expansion steps define strategic fallback points from which the
planner assumes to be able to re-plan in a sensible way. In this way, expansion steps allow
a kind of postponed contingency planning.

Placing an expansion step requires to know the semantics of the process and thus has to
be done by the planner. Adding an alternative path with an expansion step (e.g., after “collect
information”) after each step is the simplest approach. However, placing many not helpful
plan expansion steps implies that in case of a failure the planner is called many times without
having a change. For example, in Fig. 10, placing an alternative path with an expansion step
after the “user input” step would not be helpful. If the step “collecting information” fails
because the databases for cinemas, restaurants, etc. are not available, re-planning would not
help (but waste time and resources).
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Fig. 10 Example of a process expansion
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5.4. Enhanced user support

Research in the area of peer-to-peer computing has become quite fashionable. Whereas
one of the first adopters concentrated in finding objects characterized by a single string, we
concentrated from the beginning on finding objects (or more precisely services) characterized
by a set of attributes [13]. However, we do not concentrate so much on the implementation
techniques but in generating added value for users by providing new possibilities. Firstly, we
support users by ad-hoc processes with support for ubiquitous applications. We accept users
as “. . . nomads, moving between office, home, airplane [. . .] In doing so, we often find our-
selves decoupled from our ‘home base’ computing and communication environment” [16].
Furthermore, we accept that a user may log out from one device and log in on a different
PC and that he wishes to continue his old session on the new device. Technically, when
a process reaches a user interaction step, it normally cannot know which device the user
currently employs, who is responsible for the next user interaction step. So in our technical
solution the process has to figure this out, i.e., it has to discover the particular user in the
network.

Therefore, the process sends a query for a service “Interaction with the user X”, because
each user is modeled as a service “Interaction with . . .” on the device he uses at the moment.
These services are stored in the user repository of the local coordination layer, which acts as
a user manager. When such a user interaction service and thereby the user’s actual location
is identified, the ad-hoc process migrates to the corresponding peer and opens a window for
the user interaction. Certainly, such windows must be closed if the user logs out. Moreover,
they must be transferred to another peer if the user logs in there.

As a second enhanced user support feature, we provide a framework for location-aware
respectively context-aware services. They are necessary, because the nomadicity of users
also implies that their information needs might depend on their current location. Weiser [26]
stated “If a computer merely knows what room it is in, it can adapt its behavior in significant
ways without requiring even a hint of artificial intelligence”. Realizing this vision requires
to determine the user location. We realize this functionality in two steps. Firstly, each local
coordination layer provides a location module providing for the physical coordination. This
module relies on GPS information or in case of desktop PCs it might be implemented as a
simple data field with a fixed value. The physical coordination might be sufficient for simple
scenarios, but sophisticated applications require logical places like “The nearest train station
is the main railway station”. The transformation from the physical to the logical location
depends on the user (e.g., “home” is usually at a different location for different persons) and
the application (for a railway schedule application, “home” is the nearest station and not the
GPS coordinates of the user’s flat). Thus, the mapping from physical to logical coordination
is done by the process. Whereas a generic mapping solution is not possible, putting this
functionality in a module allows to reuse such a mapping module in different processes and
applications.

In our prototype (for details see [12]), we implemented a timetable information service
as a simple location-aware service. The current physical location of a user accessing this
service is received from the peer information the user is logged in. This information is static
for stationary peers like desktop PCs or dynamically determined for mobile devices like a
notebook. Therefore, we equipped a notebook with an Haicom HI-202E USB GPS mouse
(used together with the Chaeron GPS Library and IBM’s Java Communication Library). For
the mapping from the physical to the logical place, we use a table which contains in the first
column the logical name of the place and in the following columns points representing a
rectangle. The logical name of the place corresponds to a stop of a bus or a train station and
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therefore can be used as an input to timetable information service. Certainly, for our evening
planner we also have to provide the nearest stations respectively bus stops for all cinemas
and restaurants.

6. Related work

Below we review related work in the area of service composition and service execution.

6.1. Service composition

Prevailing approaches to service composition are based on planning techniques that rely either
on theorem proving (e.g., Golog [19]) or on hierarchical task planning (e.g., SHOP-2 [27]).
These approaches assume that the relevant service descriptions are initially loaded into the
reasoning engine and that no discovery is performed during composition. In contrast, our
service composition algorithms interact with an external directory in order to dynamically
retrieve relevant service descriptions.

While our approach aims at functional-level service composition by selecting and combin-
ing services to match given user requirements, process-level service composition [25] is able
to handle complex service interactions. These two approaches are complementary: Integrat-
ing process-level service composition (after an initial functional-level service composition
step) would allow to deal with complex service protocols.

6.2. Service execution

The overall goal of our execution engine is to provide a decentralized implementation for con-
currency control and recovery. This is closely related to distributed deadlock detection [17],
which is however optimized for short-living transactions. Following an optimistic approach,
our system also addresses long-running transactions. As stated before, our serialization graph-
based approach does not block processes using locks. Processes are executed in an optimistic
manner. If an isolation failure is detected, the process execution is rolled backed by com-
pensation. Our analytical as well as experimental results [14,15] show that this strategy even
becomes better in comparison to locking-based approaches when the duration of processes
increases.

To support atomic applications in large-scale environments, the Transaction Internet Pro-
tocol (TIP) has been proposed [10]. Recent extensions, such as Web Service Transactions
(WS-Transactions) [3], also support ‘Business Activities’, which are based on an optimistic
service execution model with compensation. However, both TIP and WS-Transactions do
not consider isolation.

In [5] the authors discuss how multiple (non-mobile) agents can cooperate in order to guar-
antee atomic (but not necessarily isolated) workflow execution. The idea of mobile agents
executing workflows — first published in [4] — is similar to our approach to build trans-
actional agent applications on top of services made available by different resource agents.
Other approaches even address the integration of mobile agent technology and transaction
management. First results were achieved by enforcing atomicity and fault tolerance based
on replication techniques [23]. More recent approaches, such as [22], also provide support
for concurrency control. However, all these efforts focus on short-living transactions. Hence,
they do not consider isolation and consequently lack support for the reliable execution of
ad-hoc processes in large-scale environments.
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7. Conclusion

This article presented a novel service composition approach to complex value-added ser-
vices. Our approach bundles services provided by peers in a peer-to-peer network to ad-hoc
processes, which fulfill user needs. Our execution platform runs ad-hoc processes in a com-
pletely distributed way with transactional guarantees. If the execution engine cannot resolve
a failure situation, it interacts with the service composition engine to find an alternative solu-
tion. Here, dynamic process expansion (redefinition) takes place. An important contribution
of this article is that it combines service composition techniques (from the A.I. community)
with mechanisms for reliable ad-hoc process execution (from the database community) to
realize a system, which can support users in their daily live and work everywhere and anytime.
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