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Abstract This paper proposes a method of finding a

discriminative linear transformation that enhances the

data’s degree of conformance to the compactness hypoth-

esis and its inverse. The problem formulation relies on

inter-observation distances only, which is shown to

improve non-parametric and non-linear classifier perfor-

mance on benchmark and real-world data sets. The

proposed approach is suitable for both binary and multiple-

category classification problems, and can be applied as a

dimensionality reduction technique. In the latter case, the

number of necessary discriminative dimensions can be

determined exactly. Also considered is a kernel-based

extension of the proposed discriminant analysis method

which overcomes the linearity assumption of the sought

discriminative transformation imposed by the initial for-

mulation. This enhancement allows the proposed method to

be applied to non-linear classification problems and has an

additional benefit of being able to accommodate indefinite

kernels.

Keywords Discriminant analysis � Feature extraction �
Iterative majorization � Content-based image retrieval

1 Originality and contribution

In this paper we focus on finding a transformation of the

data that forces it to conform to the compactness hypoth-

esis and its inverse. Relying exclusively on distances

among the observations, we set up the task of deriving a

discriminative transformation as a problem of optimizing a

criterion whose formulation is motivated by the ideas of

version space center methods. The optimization problem,

in turn, is solved via the technique of iterative majoriza-

tion. Once the discriminative transformation has been

found and applied to the data, we use nearest neighbor

classification as well as other non-parametric approaches to

distinguish among different classes of observations.

The main advantages of the proposed approach are its

suitability for both binary and multiple-category discrimi-

nant analysis problems, the flexibility of the formulation

that renders the method as a dimensionality reduction

technique, the ability to determine the necessary dimen-

sionality of the discriminative transformation, and its

non-parametric nature that lets the technique work well for

non-Gaussian data. These and other essential properties of

the proposed method are discussed in comparison with

relevant techniques, such as principal component analysis,

linear discriminant analysis, biased discriminant analysis,

discriminant adaptive nearest neighbor, non-parametric

discriminant analysis, etc. In addition to that, we also

consider a kernel-based extension of the proposed discri-

minant analysis method thereby overcoming the limiting

linearity assumption of the sought discriminative transfor-

mation imposed by the initial formulation. Performance

tests of the proposed method on a number of standard UCI

benchmark data sets and in the application to image

retrieval show a favorable improvement in classification

accuracy.

2 Introduction

This article describes a method for finding a discriminative

transformation based on the compactness hypothesis [1]

and motivated by the ideas of the version space center
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methods. The proposed method specifically aims at

improving the accuracy of the non-parametric type of

classifiers, such as nearest neighbor (NN) [17], and is

sought to have the following characteristics:

• ability to perform discriminative feature extraction and

dimensionality reduction, while possessing the means

to determine how many dimensions are sufficient to

distinguish among a given set of classes,

• assymetry of formulation suitable for the most popular

deployment scenarios in 1-against-all classification, as

well as in the case of data set imbalance,

• transformational and non-parametric method specifi-

cation that would allow for extensions, use as a

discriminative data pre-processing technique, minimal

assumptions on data distribution, and maximum utili-

zation of the capabilities of the prospective classifier to

be used with the transformed data,

• ease of extension to a non-linear problem setting via

kernels, as well as multiple-category case.

The following sections provide a detailed account of the

proposed method and the various aspects relating to its

formulation, algorithmic specification, numerical imple-

mentaion, extensions, and experimental evaluation. We

deliberately defer the comparison of the proposed method

with other relevant techniques until Sect. 5 in an express

effort to provide a more thorough and deatiled discussion

later on.

3 Problem formulation

Suppose that we seek to distinguish between two classes

represented by data sets X and Y having NX and NY m-

dimensional observations, respectively. For this purpose,

we are looking for such transformation matrix

T 2 R
m�k; k� m; such that fX 7!X0; Y 7!Y 0g; that places

instances of a given class near each other while relocating

the instances of the other class sufficiently far away. In

other words, we want to ensure that the compactness

hypothesis [1] holds for either of the two classes in ques-

tion, while its opposite is true for both.

While the above preamble may fit just about any class-

separating discriminant analysis method profile (e.g., [7,

14, 21, 27, 38, 59]), we must emphasize several important

assertions that distinguish the presented method and natu-

rally lead to the problem formulation that follows. First of

all, we must reiterate that one of our primary goals is to

improve the performance of a non-parametric classifier,

such as NN. Therefore, the sought problem formulation

must relate only to the factors that directly influence the

decisions made by the classifier, such as the distances

among observations. Secondly, in order to benefit as much

as possible from the non-parametric nature of the NN, the

sought formulation must not rely on the traditional class

separability and scatter measures that use class means,

weighted centroids or their variants [20] which, in general,

connote quite strong distributional assumptions. Finally, an

asymmetric product form should be more preferable, jus-

tified as consistent with the properties of the data

encountered in many target application areas, such as

content-based image retrieval and categorization [63], as

well as beneficial from the viewpoint of insightful parallels

to some version space center methods discussed later in

this section.

Let dij
W(T) denote a Euclidean distance between obser-

vations i and j from transformed data set X0 given a

transformation matrix T, and, analogously, dij
B (T) specify a

distance between the ith observation from data set X0 and

the jth observation from data set Y0, where superscripts

‘‘W’’ and ‘‘B’’ stand for within-class and between-class

type of distance, respectively:

dW
ij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxi � xjÞTTTTðxi � xjÞ
q

; ð1Þ

dB
ij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxi � yjÞTTTTðxi � yjÞ
q

; ð2Þ

for xif gNX

i¼1 2 R
m; yj

� �NY

j¼1
2 R

m: Using this notation, the

sought discriminative data transformation can be obtained

by minimizing the following criterion:1

JðTÞ ¼
QNX

i\j W dW
ij ðTÞ

� �� � 2
NX ðNX�1Þ

QNX

i¼1

QNY

j¼1 dB
ijðTÞ

� � 1
NX NY

; ð3Þ

where the numerator and denominator of (3) represent the

geometric means of corresponding distances, and W(dW
ij (T))

denotes a Huber robust estimation function [29]

parametrized by a positive constant c and defined as:

WðdW
ij Þ ¼

1
2

dW
ij

� �2

if dW
ij � c;

cdW
ij � 1

2
c2 if dW

ij [ c:

8

<

:

ð4Þ

The choice of Huber function in (3) is motivated by the fact

that at c the function switches from quadratic to linear

penalty allowing to mitigate the consequences of an

implicit unimodality assumption that the formulation of the

numerator of (3) leads to. Additionally, Huber function has

several attractive properties, such as strong convexity and

bounded second derivative, that greatly facilitate the deri-

vation of the majorizing inequalities, as will be shown in

Sect. 3.2.

1 Here and in several other places we will use shorthand
QNX

i\j to

designate double product
QNX

i¼1

QNX

j¼iþ1 :
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In the logarithmic form, criterion (3) is written as:

log JðTÞ ¼ 2

NXðNX � 1Þ
X

NX

i\j

log W dW
ij ðTÞ

� �

� 1

NXNY

X

NX

i¼1

X

NY

j¼1

log dB
ij ðTÞ

¼ aSWðTÞ � bSBðTÞ;

ð5Þ

which highlights the theoretical underpinnings motivating

the above formulation. Indeed, the between-class part of

log J(T), being a weighted sum of log-barrier functions

[42], may be viewed as an extended formulation of analytic

center machine (ACM) method that finds a separating

hyperplane as an analytic center of the classifier version

space [55]. Namely, by setting the transformation matrix T

to be a column vector defining some separating hyperplane,

(5) may be shown to include an approximation of the

objective of the ACM method. Thus the above formulation

has a valuable connection to the version space center

methods, yet manages to avoid some of their

disadvantages.2

For notational convenience, the first and the second

summation terms of (5) are going to be referred to as SW(T)

(‘‘within’’ distances) and SB(T) (‘‘between’’ distances) in

the following discussion to allow for a more convenient

notation and due to their apparent functional similarity with

the notions of within- and between-class scatter measures

used in a number of well-known discriminant analysis

techniques [14, 16, 21, 27]. We will also shorten the

notation by reassigning the normalizing quantities 2
NXðNX�1Þ

and 1
NXNY

to a and b, respectively.

Although a straightforward differentiation of (5) might

appear sufficient in order to proceed with a generic opti-

mization search technique such as gradient descent, our

preliminary experiments showed that the quality of the

found solutions is severely impaired by the problems due to

local minima and considerable degree of dependence on

the initial starting value, as detailed in Sect. 7. Moreover,

the computational costs of such an endeavor very quickly

become prohibitive and are further exacerbated if, in

addition to the descent direction, a proper step length must

be calculated, so that gradient descent does not overshoot

and actually manages to improve the optimization crite-

rion, while the latter outcome is guaranteed by the

introduced below iterative majorization technique (and,

hence its alternative name: ‘‘guaranteed descent’’). Fur-

thermore, some of the tested state-of-the-art optimization

routines, such as SQP and Quasi-Newton with line search,

did not scale well either and happened not to be able to

converge, even on fairly simple data sets.

In order to avoid the above pitfalls, it was decided to

derive some useful approximations of criterion (5) that

would make the task of its optimization amenable to a

straightforward procedure based on the iterative majoriza-

tion method, which we discuss in the following section.

4 Iterative majorization

4.1 General overview of the method

As stated in [6, 28, 56], the central idea of the majorization

method is to replace the task of optimizing a complicated

objective function f(x) by an iterative sequence of simpler

minimization problems in terms of the members of the

family of auxiliary functions lðx; �xÞ; where x and �x vary in

the same domain X. In order for lðx; �xÞ to qualify as a

majorizing function of f(x), the auxiliary function lðx; �xÞ is

required to fulfill the following conditions, for x; �x 2 X :

• the auxiliary function lðx; �xÞ should be simpler to

minimize than f(x),

• the original function must always be less or equal to the

auxiliary function:

f ðxÞ� lðx; �xÞ; ð6Þ

• the auxiliary function should touch the surface of the

original function at the supporting point3 �x :

f ð�xÞ ¼ lð�x; �xÞ: ð7Þ

To understand the principle of minimizing a function by

majorization, consider the following observation [6]. Let

the minimum of lðx; �xÞ over x be attained at x*. Then, (6)

and (7) imply the chain of inequalities

f ðx�Þ� lðx�; �xÞ� lð�x; �xÞ ¼ f ð�xÞ: ð8Þ

This chain of inequalities is named the sandwich inequality

by De Leeuw [33], because the minimum of the majorizing

function lðx�; �xÞ is squeezed between f(x*) and f ð�xÞ: A

graphic illustration of these inequalities is shown in Fig. 1

for two subsequent iterations of iterative majorization of

function f(x). Thus, given an appropriate function lðx; �xÞ;
the iterative majorization (IM) algorithm proceeds as

follows:

2 For instance, in contrast to the ACM technique, the DDA

formulation applies naturally to the cases where there is no strict

class separability, whereas the ACM method fails because the version

space becomes an empty set.

3 The similar notation will be used further on, where a dash over a

variable name will signify that the variable either depends on or is

itself a supporting point.
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1. Assign an initial supporting point �x ¼ �x0 2 X; choose

tolerance e;
2. Find a successor point xs : xs ¼ arg minx2X lðx; �xÞ;
3. If f ð�xÞ � f ðxsÞ\�; then stop;

4. Set �x ¼ xs; go to 2.

The essential property of the above procedure is that it

generates a non-increasing sequence of function values,

which converges to a stationary point whenever f(x) is

bounded from below and x is sufficiently restricted. As noted

by Fletcher [18], the found point is in most cases a local

minimizer. Furthermore, according to the results reported by

Van Deun et al. [56], the majorization method has a valuable

property of a low to negligible dependence on the initial

value, compared to other applicable techniques. Another

advantage of the majorization approach is due to the fact that

there exist a number of specifically tailored global optimi-

zation techniques, such as objective function tunneling [6],

that can be applied if the problem domain is abundant with

low quality local minima. In the next section we will derive

the majorizing expressions of (5) and show how they are used

for optimizing the chosen criterion.

4.2 Majorizing the optimization criterion

It can be verified that majorization remains valid under

additive decomposition. Therefore, a possible strategy for

majorizing (5) is to deal with SW(T) and –SB(T) separately

and subsequently recombine their respective majorizing

expressions.

We begin by noting that the logarithm, as much as any

other concave function, can always be majorized by a

straight line y = ax + b whose coefficients a ¼ 1=�x and

b ¼ logð�xÞ � 1 are determined from the majorization

requirements (6) and (7) rendering

logðxÞ� �x�1xþ logð�xÞ � 1: ð9Þ

Also, as previously reported in [9, 28], Huber distance (4)

is convex and has a bounded second derivative, and hence

can be majorized by a convex quadratic function:

WðxÞ� 1

2
�wx2 þ 1

2
�vþ signð�x� cÞ�vð Þ; ð10Þ

where x [ 0, and coefficients �v and �w are defined as:

�v ¼ 1

2
c�x� 1

2
c2; ð11Þ

�w ¼ 1 if �x� c;
c
�x if �x [ c:

�

ð12Þ

Combining (9) and (10) together while substituting the

result into the formulation of SW(T), we can obtain its

majorizing expression lSW
ðT ; �TÞ :

SWðTÞ ¼
X

NX

i\j

log W dW
ij ðTÞ

� �

�
X

NX

i\j

�wij � dW
ij ðTÞ

� �2

2W dW
ij ð �TÞ

� � þ K1

¼ lSW
ðT ; �TÞ;

ð13Þ

where T ; �T 2 R
m�m; �T is a supporting point for T ; �wij is a

weight of the Huber function majorizer, that in this case is

equal to 1 if WðdW
ij ð �TÞÞ\c or c=WðdW

ij ð �TÞÞ otherwise, and

K1 is a constant term that collects all of the other terms that

are irrelevant from the point of view of minimization with

respect to T. Switching to matrix notation (see ‘‘Appendix’’

for derivation details), we define a square symmetric matrix

R:

rij ¼
� �wij

W dW
ij ð �TÞð Þ if i 6¼ j;

�
P

NX

k¼1;k 6¼i

rik if i ¼ j;

8

>

<

>

:

ð14Þ

which lets us rewrite the majorizing expression of SW(T) in

its final form, as follows:

lSW
ðT; �TÞ ¼ 1

2
tr TTXTRXT
� �

þ K1: ð15Þ

An attempt to majorize –SB(T) directly runs into

problems due to the difficulties of finding a proper

X1

X1

X 0

X 0

x

f(x)

x

µ(   ,     )

xµ(   ,      )

Fig. 1 Illustration of two subsequent iterations of the iterative

majorization method. The first iteration starts by finding the auxiliary

function l(x, X0), which is located above the original function f(x)

and touches at the supporting point X0. The minimum of the auxiliary

function l(x, X0) is attained at X1, where f(X1) can never be larger

than l(X1, X0). This completes one iteration. The second iteration

proceeds analogously from supporting point X1, and so on, until

convergence
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quadratic majorizing function of the negative logarithm. As

a practical solution we consider two alternative

replacements of –log(x) in –SB(T):

• a piece-wise linear approximation,

• a second order Taylor expansion.

According to the first alternative, we replace the neg-

logarithm with its piece-wise linear approximation (see an

illustration in Fig. 2), which, in turn, can be represented as

a sum of the functions defined as:

gðx; x0; l; rÞ ¼
rðx� x0Þ if x� x0;
�lðx� x0Þ if x\x0;

�

ð16Þ

where l + r [ 0, to ensure convexity. It is easy to see that

the family of functions defined in (16) is one of the many

possible generalizations of the absolute value function |x|,

the former being equivalent to the latter whenever x0 = 0

and l = r = 1. Similarly to |x|, g(x;x0,l,r) can be majorized

by a quadratic ax2 + bx + c with coefficients

a ¼ r þ l

4j�x� x0j
; ð17Þ

b ¼ r � l

2
� ðr þ lÞx0

2j�x� x0j
; ð18Þ

c ¼ ðr þ lÞx2
0

4j�x� x0j
þ ðl� rÞx0

2
þ ðr þ lÞj�x� x0j

4
; ð19Þ

for a supporting point �x and a [ 0, b and c determined

directly from the majorization requirements (6) and (7).

Figure 3 depicts an example of a function from g(x;x0,l,r)

family alongside its majorizer. The final expression of the

majorizer based on the piece-wise linear approximation, as

derived by carrying out calculations similar to those given

in ‘‘Appendix’’, is quite unwieldy and computationally

costly even for a moderate number of g-family functions

comprising the approximation. For this reason, we chose

the other solution provided by a Taylor series expansion, as

a faster and more stable alternative.4

Following the second approach, we express every term

of SB(T) using a second order Taylor series expansion of

the logarithm function around a supporting point �T :

log dB
ij ðTÞ

� �

� � 1

2

dB
ij ðTÞ

dB
ij ð �TÞ

 !2

þ2
dB

ijðTÞ
dB

ijð �TÞ

þ log dB
ij ð �TÞ

� �

� 3

2
:

ð20Þ

Substituting (20) into the expression of –SB(T) leads to:

�SBðTÞ ¼ �
X

NX

i¼1

X

NY

j¼1

log dB
ij ðTÞ

� 1

2

X

NX

i¼1

X

NY

j¼1

dB
ijðTÞ

dB
ijð �TÞ

 !2

� 2
X

NX

i¼1

X

NY

j¼1

dB
ij ðTÞ

dB
ij ð �TÞ

þ K2;

ð21Þ

where K2 is a constant term that collects all of the other

terms that are irrelevant from the point of view of mini-

mization with respect to T. One may notice that in (21)

only the second term, the sum of appropriately scaled

negative Euclidean distances, requires majorization since

the other two are either constant with respect to T or given

as a quadratic which is simple enough to handle as is.

In order to find a majorizing expression of (21) we will

make use of a well-known fact frequently mentioned in

2 4 6 8

−2

−1

0

1

2

3
−log(x)
piece−wise linear approximation

Fig. 2 Piece-wise linear approximation of –log(x)

−4 −2 0 2 4
0

2

4

6

8

10

12

14 quadratic majorizer
g(x;0,3,1)

x
support

=1.8

Fig. 3 Example of a quadratic majorizer of g(x;0, 3, 1) around

supporting point �x ¼ 1:8

4 A more detailed analysis may demonstrate that resorting to the

Taylor series approximation might break conformance to the major-

ization requirements in the strict sense. However, the empirical

evidence proved otherwise (see section 7), confirming the technique

as an alternative of preference.
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literature [6, 9, 28, 56], stating that the negative of a

Euclidean distance is linearly majorizable:

�jjxjj � � �xTx

jj�xjj ð22Þ

which is a direct consequence of the Cauchy–Schwarz

inequality jjxjjjj�xjj � �xTx: Switching to matrix notation (see

‘‘Appendix’’ for derivation details), we define a square

symmetric matrix G of size N = NX + NY, such that:5

gij ¼

� 1

dB
ij ð �TÞð Þ2 for i 2 ½1; NX 	

and j 2 ½NX þ 1; N	;
� 1

dB
ij ð �TÞð Þ2 if i 2 ½NX þ 1; N	

and j 2 ½1; NX	;

�
P

NXþNY

k¼1;k 6¼i

gik if i ¼ j;

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

ð23Þ

which, combined with the result of (22) substituted into

(21), lets us derive the majorizing expression for –SB(T) in

its final form, as follows:

l�SB
ðT; �TÞ ¼ 1

2
trðTTZTGZTÞ

� 2trðTTZTGZ �TÞ þ K2;
ð24Þ

where Z is the matrix obtained by joining X and Y together,

row-wise:

Z ¼ X
Y

	 


: ð25Þ

Finally, combining results (15) and (24), we obtain a

majorizing function of the log J(T) optimization criterion:

llog JðT ; �TÞ ¼ alSW
þ bl�SB

¼ a
2

tr TTXTRXT
� �

þ b
2

trðTTZTGZTÞ

� 2btrðTTZTGZ �TÞ þ K3;

ð26Þ

that can be used to find an optimal transformation T min-

imizing log J(T) criterion via the iterative procedure

outlined in Sect. 3.1. Similarly to the expressions shown in

(13) and (21), K3 is a constant term that collects all of the

other terms that are irrelevant from the point of view of

minimization with respect to T.

4.3 Minimization of the majorizer of log J(T)

It is possible to minimize (26) with respect to T in a

straightforward fashion by setting its derivative to zero and

solving the resulting system of linear equations with any of

the computationally efficient methods, such as QR

decomposition [22]. However, it is often recommended [3,

31, 32] that a length-constrained (or, regularized, as usually

referred to in the domains of signal processing, inverse

problems [4] and regularized risk minimization [57])

solution be found by deploying such techniques as weight-

limiting, weight decay, etc., especially in the case of

classifiers capable of achieving zero training error, to

prevent overfitting and thus improve generalization per-

formance of the classifier. In order to find an optimal

transformation T that satisfies the length constraint, we first

form the Lagrangian function

L ¼ llog JðT ; �TÞ þ kðtrðTTTÞ � DÞ; ð27Þ

where k is a Langrangian multiplier and D is the value of

the length constraint that is estimated from the

classification performance on a validation data set [39]. It

follows from (27) that an optimal solution T is:

T ¼ ðM þ 2kIÞ�1L ð28Þ

where M is defined as a
b XTRX þ ZTGZ; L is equal to

2ZTGZ �T ; and I is an identity matrix. Plugging (28) back

into the expression of the length constraint, we obtain the

following:

D ¼ tr LTðM þ 2kIÞ�1ðM þ 2kIÞ�1L
� �

¼ tr LTU
1

ð2kI þ DÞ2
UTL

 !

:

ð29Þ

where U and D are the respective matrices of eigenvectors

and eigenvalues of M. Here, we have used the fact that

symmetric matrices M and M + 2k I have the same

eigenvectors, while the eigenvalues of M + 2k I are equal

to those of M increased by 2k. Also, to simplify the notation

of (29), the reciprocal and squaring operations should be

understood as applied to the diagonal matrix D on the

element by element basis taking into account the magnitudes

of each eigenvalue so as to avoid division by zero problems.

Clearly (29), is an equation of one variable k with a

computable derivative, that is easily solved by any suitable

root-finding technique, such as Newton-Raphson method, or

with a method specifically tailored to solving this type of

problems, commonly referred to as a TRS, i.e. trust region

problem [40, 46]. Once the constraint-satisfying value k has

been found, the optimal transformation T, i.e. the successor

point in the iterative majorization algorithm is recovered as:

5 The elements gij of matrix G not affected by the first two rules of

(23) are assumed to have been initially set to zero.
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Ts ¼ U 2kI þ Dð Þ�1UTL; ð30Þ

where the bracketed expression is a diagonal matrix whose

inverse is easily computed through the reciprocal of the

diagonal elements.

It should be mentioned that for the problems such as

minimization of (26) the universally suggested approach

[28, 30] is to decompose the design matrices of each

quadratic component of the function being optimized into a

sum of a diagonal positive definite and a negative definite

matrices, and use the definiteness property to derive

another majorizing inequality. This method, although the-

oretically sound and well-justified, in our experiments

demonstrated a significantly slower rate of convergence

induced by larger condition number of the matrices

involved, and thus was subsequently replaced by the

solution defined in (30), even though the latter method

involves a costly eigendecomposition operation.

5 Putting it all together

5.1 Complete algorithm

Considering all of the derivations we have desribed so far,

the complete distance-based discriminant analysis (DDA)

algorithm for iterative majorization of log J(T) criterion (5)

can be specified as follows:

Algorithm DDA.

1. Assign an initial supporting point �T ¼ �T0 2 R
m�m;

2. Find a successor point Ts using (30);

3. If log Jð �TÞ � log JðTsÞ\�; then stop;

4. Set �T ¼ Ts; go to 2.

5.2 Dimensionality reduction

Observe that setting the column size of T to an arbitrary

value k � m renders the presented method of DDA a

dimensionality reduction technique6 that may be used in a

variety of applications such as feature selection, low-

dimensional data visualization, etc. Moreover, the value of

k, i.e., the exact number of dimensions the data can be

reduced to without loss of discriminatory power with

respect to (5), is precisely determined by the number of

non-zero singular values of T. Indeed, the distances

between the transformed observations may be viewed as

distances between the original observations in a different

metric TTT, that can be expressed as TTT = USVTVSUT =

UkS
2
kUk

T using the singular value decomposition of T. The

obtained expression reveals that the effect of the full-

dimensional transformation T is captured by the first k left-

singular vectors of T scaled by the corresponding non-zero

singular values, whose number gives an answer to the

question of how many dimensions are needed in the

transformed space.

A summary of various other properties that distinguish

DDA from existing dimensionality reduction methods is

provided in Sect. 5.

5.3 Multiple class discriminant analysis

While the above discussion is concentrated mostly on the

two-class configuration, it is straightforward to generalize

the presented formulation to a multiple-class discriminant

analysis setting, for the number of classes K ‡ 2:

log JKðTÞ ¼
X

K�1

i¼1

aðiÞSWðTÞðiÞ � bðiÞSBðTÞðiÞ
� �

; ð31Þ

for per-class quantities of (5) indexed by superscript (i).

Note that (31) becomes exactly (5) for the two-class

formulation, when K = 2. Again, similarly to the latter

case, the particular class to be left out may be determined

using domain knowledge, or via statistical techniques, i.e.,

by maximum within-class variance in the original feature

space, etc. In order to accommodate the changes required

for adopting (31), the individual matrices R and G from

(15) and (24) will be replaced with

RK ¼
X

K�1

i¼1

aðiÞ

bðiÞ
RðiÞ; and ð32Þ

GK ¼
X

K�1

i¼1

GðiÞ; ð33Þ

respectively, where each of the matrices R(i) is computed

according to (14) using observations from class i, while

matrices G(i) are calculated as indicated in (23) with proper

index interval adjustment for computing distances between

data points of a given class i and the rest of the data set.

6 Discussion

In this section we briefly review some of the previously

developed approaches of discriminant analysis and

dimensionality reduction, demonstrating on simple exam-

ples the essential differences between existing techniques

and the proposed DDA method.

6 A word of caution is in order as for the choice of k = 1, which

corresponds to an ill-posed combinatorial problem [6].
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First, we consider principal component analysis (PCA),

a fundamental tool for dimensionality reduction that finds a

set of orthogonal vectors that account for as much as

possible of the data’s variance. Apparently, the PCA

method disregards class membership information alto-

gether and consequently is of limited use as a

discriminatory transform. This conjecture is easily con-

firmed by comparing 2D projections of the Hepatitis

dataset by the PCA and DDA methods illustrated in Fig. 4,

which shows a perfect class separation for the latter

approach explaining its 100% classification accuracy

reported earlier (see Table 2). The singular value decom-

position of the resulting transformation reveals that there is

only one significantly different from zero singular value,

meaning that in order to distinguish between the two

classes one may use just one dimension, i.e., project the

data set onto a line, as seen in Fig. 4(b).

Fisher’s linear discriminant analysis (LDA) [14, 16, 20]

projects original data into a smaller number of dimensions,

while trying to preserve as much discriminatory informa-

tion as possible by maximizing the ratio of between-class

scatter over within-class scatter. Based on the second order

statistical information, the method is proven to be optimal

whenever data classes are represented by unimodal Gaus-

sians with well-separated means. A violation of this

assumption drastically deteriorates LDA’s performance, as

seen in Fig. 5 that compares class separation achieved by

the projections found by LDA and DDA methods for the

classical XOR problem [53]. As for the DDA approach,

Fig. 5 illustrates that the proposed technique does not

require data Gaussianity assumption. Furthermore, the

method can determine discriminative projection transfor-

mations of up to as many dimensions as there are in the

data, whereas LDA is limited by rank restrictions on the

between-class scatter matrices to have no more than K–1

dimensions, where K is the number of classes.

A biased discriminant analysis (BDA) approach [62, 63]

developed with a goal in mind to improve efficiency of

interactive multimedia retrieval applications, is based on an

appealing idea of asymmetric treatment of positive and

negative relevance feedback examples that is brilliantly

conveyed by a famous citation: ‘‘All happy families are

alike, each unhappy family is unhappy in its own fashion’’

(L. Tolstoy, Anna Karenina). According to this metaphor,

the approach seeks a compact representation of the class of

positive examples, while the only constraint placed on

negative examples is to stay away as far as possible from

the positives. This technique excels in overcoming several

important drawbacks of LDA induced by scatter matrix

rank restrictions and Gaussianity assumptions and, con-

ceptually, is closest to the two-class version of the

proposed DDA method. However BDA’s implementation

is occasionally offset by suboptimal solutions whenever the

observations from the two classes overlap considerably

along the direction orthogonal to that of minimal variance

of the positive examples. An illustration of this adverse

condition is depicted in Fig. 6).

Another advantage of relying exclusively on the dis-

tances among the observations lets us relax the sought

transformation orthogonality condition often found neces-

sary in other methods. For instance, feature transformation

based on maximizing mutual information between trans-

formed data and their corresponding class labels proposed

by Torkkola et al. [54] parametrizes the transformation via

planar rotations and hence is by design orthogonal, as are

those of other methods, which operate on orthogonal

subspaces.

There also exist other discriminant analysis methods that

are specifically designed to work well for non-Gaussian

data sets (e.g., NDA [21]) and target the nearest neighbor

classifier performance (e.g., a recent enhancement of NDA

proposed in [7]), whose main difference from DDA lies in

the fact that these methods still rely on parametric within-

class scatter matrices. This is likely to explain why these

approaches are generally outperformed by the SVM tech-

niques, while DDA demonstrates comparable results (see

Table 4).
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Among iterative techniques, DANN [27] and CDW [45]

methods must be highlighted. Similarly to the proposed

DDA, the class-dependent weighted (CDW) dissimilarity

approach seeks to optimize a certain criterion for improv-

ing NN classification accuracy, which is done by deploying

the Dinkelbach’s algorithm [13] combined with gradient

descent. Effectively, a transformation found by the CDW

method may be considered a restricted case of the DDA

transformation where no dimensionality reduction is

allowed and T is required to be diagonal. As opposed to

CDW, the discriminant adaptive nearest neighbor (DANN)

approach does permit global dimensionality reduction. It

operates according to an iterative scheme to obtain a metric

modifying local neighborhoods, which makes it different

from the DDA in the way that DANN does not optimize

any global criterion or objective function. However, both

DDA and DANN in many cases lead to similar results, as

demonstrated in Fig. 7. This illustration shows how DDA

transformation corrects the decision of an NN classifier

and, conceptually, is an exact reproduction of the motiva-

tional example used by the authors in [27] to describe the

intuition behind their technique.

Manifold techniques, such as Isomap [52] and locally-

linear embedding (LLE) [47], also present a viable alter-

native means for dimentionality reduction. However,

belonging mostly to the family of unsupervised learning

algorithms, they cannot be regarded as directly comparable

with the proposed technique that actively uses the class

information while deriving the sought discriminative

transformation.

In addition to the important differences of the proposed

DDA method summarized above, there is yet another

advantage to its distance-based formulation which makes it

easily applicable for solving more complex non-linear

problems via introduction of kernels, as discussed in the

section that follows.

7 Kernel reformulation of DDA

In this section, we seek to overcome a linearity assumption

of the transformation derived by the previously described

DDA approach, leading to a formulation of its kernel

extension, KDDA. Additionally we focus on a particular

aspect of KDDA that opens up a possibility of using

indefinite kernels, which stems from a theoretical property

of KDDA problem formulation convexity that holds irre-

spective of the definiteness of the kernel in question.

Suppose there is a space F where samples of training

data can be mapped via U : Rm ! F ; such that there exists

a kernel function k(x,y) = (U(x))T U(y), where x; y 2 R
m

and k : Rm � R
m ! R: We will also assume that the dis-

criminative transformation is sought in F as a projection

matrix x of size ½NF � d	; where NF is the dimension-

ality of F ; and d is the dimension of the derived

discriminative projection subspace, such that the columns

of x lie in the span of all training samples mapped in F ; by

virtue of the Representer Theorem:

x ¼
X

N

i

að1Þi UðziÞ
X

N

i

að2Þi UðziÞ � � �
X

N

i

aðdÞi UðziÞ
" #

; ð34Þ

where zi is one of the NX + NY samples from the training

data compound matrix Z, as defined in (25). The distances

between images of samples x and y projected from F by

solution x are thus expressed as:

D2
xyðxÞ ¼ UðxÞ � UðyÞð ÞTxxT UðxÞ � UðyÞð Þ

¼ tr xTðUðxÞ � UðyÞÞðUðxÞ � UðyÞÞTx
� �

¼
X

d

j

X

N

i

aðjÞi ðkðzi; xÞ � kðzi; yÞÞ
 !2

:

ð35Þ

In matrix notation (35) can be simplified as:

D2
xyðxÞ 
 D2

xyðPÞ ¼ tr PTHxyP
� �

ð36Þ
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Fig. 6 Solution of the ‘‘dominant variance direction’’ problem

obtained by the BDA and DDA methods

Fig. 7 Effect of DDA on local neighborhoods—a comparison to

DANN [27]. a NN region of A (shaded area) in the original space

leads to an error b NN region of A after applying DDA produces a

correct classification decision
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where P 2 R
N�d is the sought nonlinear transformation

represented as a matrix collecting all of the ai
(j) coefficients,

Hxy = (Kx–Ky)(Kx–Ky)
T, and Ks = [k(z1,s),k(z2,s),...,k(zN,s)]T

denotes a vector of kernel evaluations for sample s over all of

the training data.

In view of (36), the logarithm of the DDA optimization

criterion (3) can now be expressed in terms of distances

projected from a richer, possibly infinite-dimensional fea-

ture space F :

log JðPÞ ¼ 2

NXðNX � 1Þ
X

NX

i¼1

X

NX

j¼iþ1

log W DW
ij ðPÞ

� �

� 1

NXNY

X

NX

i¼1

X

NY

j¼1

logDB
ijðPÞ

ð37Þ

The treatment of the obtained criterion differs only slightly

compared to the linear case. Similarly to the way it is done

in the DDA method, as described in equations (9)–(26) in

Sects. 2 and 3, we express convex parts of the criterion by

their respective approximations majorized by quadratics

[28], while the concave parts are linearized. The former

simple algebraic manipulation relies on the Cauchy-

Schwarz inequality, while the latter is a direct

consequence of the concavity of the log-function,

whose combined application leads to the following

approximation:

llog JðP; �PÞ ¼ 1

NXðNX � 1Þ tr PT
KXBð �PÞKT

XP
� �

þ 1

2NXNY
tr PT

KXY CK
T
XY P

� �

þ 2

NXNY
tr PT

KXY Gð �PÞKT
XY

�P
� �

þ const;

ð38Þ

where �P is the current solution, KX ; KXY are Gram matrices

of kernel inner products evaluated over X and all data,

respectively, and B, C, G are positive semi-definite design

matrices independent of P that are derived in a way similar

to that shown in ‘‘Appendix’’. Elements bij of B are defined

as:

bij ¼
� �wij

W DW
ij ð �PÞð Þ if i 6¼ j;

�
PNX

k¼1;k 6¼i bik if i ¼ j;

8

<

:

ð39Þ

where �wij is a weight of the Huber function majorizer, that

in this case is equal to 1 if WðDW
ij ð �PÞÞ is less than the

robustness threshold c, or c=WðDW
ij ð �PÞÞ otherwise. For

matrices C and G, their non-zero elements mij are defined

as:

mij ¼

rij for i 2 ½1; NX	
and j 2 ½NX þ 1; N	;

rij for i 2 ½NX þ 1; N	
and j 2 ½1; NX	;

�
PNXþNY

k¼1;k 6¼i mik for i ¼ j;

8

>

>

>

>

<

>

>

>

>

:

ð40Þ

where rij is equal to –1 and �1
DB

ijð �PÞ
for C and G, respectively.

Finally, taking into account theoretical considerations

mentioned in Sect. 3.3 confirmed by experimental results

in Sect. 7.3, we define a regularized formulation

lreg
log JðP; �PÞ ¼ 1

NXðNX � 1Þ tr PT
KXBð �PÞKT

XP
� �

þ 1

2NXNY
tr PT

KXY CK
T
XY P

� �

þ 2

NXNY
tr PT

KXY Gð �PÞKT
XY

�P
� �

þ k trðPT
KXY PÞ � D

� �

;

ð41Þ

where a Lagrange multiplier k introduces an L2 norm

regularizer expressible as a trace (Representer Theorem).

The approximations used to derive llog JðP; �PÞ are cho-

sen so as to ensure that the resulting expression’s value is

never less than the objective to be minimized, and thus

provides an upper bound of the criterion (37). By opti-

mizing (38) iteratively, every subsequent iteration achieves

a goal function value that is better or at least as good as the

one from the previous iteration, which leads to covergence

under the practically reasonable objective boundedness

assumption.

More formally, such an iterative scheme that constitutes

the core of the KDDA, the kernelized extension of the

distance-based discriminant analysis method, can be writ-

ten as the following algorithm:

Algorithm KDDA

1. Assign an initial starting point �P ¼ �P0 2 R
N�d; set

convergence tolerance e;
2. Find a successor point Ps : Ps ¼ arg minP llog JðP; �PÞ

subject to a regularization constraint;

3. If log Jð �PÞ � log JðPsÞ\�; then stop;

4. Set �P ¼ Ps; go to 2.

7.1 Indefinite kernels via hyperkernels

In contrast to the vast majority of kernel-based tech-

niques for discriminant analysis and classification whose

numerical stability, convergence and theoretical perfor-

mance guarantees depend crucially on the positive

semi-definiteness (PSD) of the underlying kernel func-

tion, the KDDA method is free from such a restriction.

Indeed, the computationally convenient convexity of the
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described above approximation (38) is due to the PSD

property of matrices B and C only, which is true by

construction (see ‘‘Appendix’’), and hence is not affected

even when the so-called indefinite kernels [23, 44] are

applied. These kernels do not satisfy Mercer’s theorem in

the strict sense and hence may produce indefinite Gram

matrices, presenting some difficulties to the traditional

computational methods [23]. Nevertheless, an impressive

suite of indefinite kernel methods have been proposed

and proven effective in practice by successfully applying

jittered [11], tangent distance [24], Kullback-Leibler

divergence [41], dynamic time warping [2], distance

substitution [25] indefinite kernel functions. In addition

to these empirical results, there exist some important

theoretical contributions and facts on indefinite kernels as

well, such as the recent studies on Reproducing Kernel

Krein Spaces (RKKS) [44], the indefiniteness of the

sigmoid kernel k(x,x0) = tanh(axTx0 + b) of neural net-

works for certain paramter range [36, 57], or convenient

convex SVM problem formulations obtained with a

broad class of conditionally positive definite kernels [48],

the geometric margin interpretation attainable for indefi-

nite kernels producing co-oriented projected and feature

space separating hyperplane normal vectors [23], as well

as many other results and efforts that motivate further

examination of indefinite kernels in the KDDA frame-

work, especially given the fact that KDDA by design is

built to tolerate indefinite kernels. In the discussion that

follows we consider the application of the hyperkernel

method [43] within the KDDA framework with an

important modification—the removal of the kernel PSD

constraint.

7.2 Overview of hyperkernel method

The approach of hyperkernels [43] automatically adjusts

kernel parameters in a data-dependent fashion and uses the

kernel trick on the space of kernels in order to be able to

control the complexity of the learned kernel function via a

regularized quality functional Qreg. By analogy with the

definition of the regularized risk functional Rreg commonly

used in the support vector machines [10, 58]:

Rreg ¼ Remp þ kjjf jj2H ð42Þ

the regularized quality functional Qreg is a sum of a quality

functional Qemp and a regularization term:

Qreg ¼ Qemp þ kQjjkjj2H ð43Þ

where the former term tells how well matched kernel k is to

the given data set, while the latter is the norm of the kernel

in Hyper-RKHS H for some positive regularization con-

stant kQ. The insight of the hyperkernel approach that

specifies H and finds an appropriate kernel in an infinite

space of possible solutions much in the same way a suitable

hypothesis is found in the RKHS induced by a fixed kernel

in the regularized risk minimization problem, is based on

an appealing and elegant idea. Namely, the method defines

a compound set X ¼ X � X treating kernel k as a function

k : X ! R; which allows to extend the definition of an

RKHS for the case of a hyperkernel k : X � X ! R; thus

arriving at the concept of Hyper-RKHS, H: More impor-

tantly, it is shown that the Representer Theorem holds for

Hyper-RKHS. In other words, even though the optimiza-

tion of Qreg may be carried over a whole space of kernels, it

is still possible to find an optimal solution of (43) by

choosing among a finite number.

7.3 Indefinite KDDA

Note that the kernel obtained as a free linear combina-

tion of hyperkernels is not necessarily positive semi-

definite [37], which is why the original hyperkernel

method imposes an additional constraint and ends up

solving a semidefinite optimization problem when Qemp

is replaced with a standard formulation of regularized

risk functional (42). However, in the case of KDDA, we

are not restricted by this PSD requirement and by virtue

of the Representer Theorem for Hyper-RKHS can

replace Qemp with (41). Furthermore, the co-orientation

condition [23] is automatically fulfilled by the regulari-

zation term of the KDDA formulation. Thus, the

regularized quality functional minimization problem in

the KDDA case becomes:

QKDDA
reg ¼ llog JðP; �P; b; �bÞ

þ k trðPTKðbÞPÞ � D
� �

þ kQbTKb

ð44Þ

where the approximation of the criterion sought to be

minimized llog JðP; �P; b; �bÞ now depends on hyperkernel

expansion coefficients bi,j collected in vector b in addition

to P;K is a hyperkernel Gram matrix, K(b) is a N · N

kernel matrix obtained by reshaping an N2-element vector

Kb; and k and D are regularization parameters. Finally, a

practical solution scheme is obtained by breaking down

(44) into a two-stage alternating optimization problem with

a projection stage, that solves (44) for P while fixing cur-

rent b, and a hyperkernel stage, that solves (44) for b while

fixing current P. In summary, the iterative procedure of the

KDDA method with indefinite kernels can be stated as

follows:
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Algorithm Indefinite KDDA.

1. Assign an initial starting point �P ¼ �P0 2 R
N�d;

�b ¼ �b0 2 R
N2

; set tolerance e
2. Fix b and solve projection stage:

P ¼ arg min
P

llog JðP; �PÞ

3. Fix P and solve hyperkernel stage:

b ¼ arg min
b

llog Jðb; �bÞ

4. If log Jð �P; �bÞ � log JðP;bÞ\�; then stop

5. Set �P ¼ P; �b ¼ b and go to 2

Notably, step 2 of the above algorithm involves the same

optimization formulation as the one detailed in the previous

section 6, provided that the new Gram matrices have been

recomputed and fixed, such that KXY 
 KðbÞ: The problem

from step 3 essentially reduces to a large-scale convex

quadratic minimization problem with a single linear

constraint, instead of the original hyperkernel method’s

SDP problem solving which, in general, takes longer than

solving a quadratic program [43]. Similarly to the other

variants of the algorithm discussed before, the iterative

procedure for indefinite KDDA converges because of the

boundedness of the objective function and stage-wise

improvement at each iteration.

8 Experimental results

8.1 UCI Benchmark data set performance

Our preliminary empirical analysis was based on data sets

from the UCI Machine Learning Repository [5]. First of

all, we verified that the solutions of the optimization

problem formulated in Sect. 2 found by the proposed

method were of better quality and less dependent on the

choice of the initial value compared to those of generic

techniques, confirming the results reported by Van Deun

[56] and Webb [60]. Indeed, numerous random initializa-

tions of the gradient descent, together with its stochastic

variant, led to inferior as well as unstable results reflected

in higher values of log J (see examples of 2D discriminant

projection of Sonar data set in Fig. 8), while the IM-based

method regularly reached far lower criterion values, as seen

in Fig. 9, and proved nearly insensitive to the choice of the

initial supporting point. In addition to that, we thoroughly

verified that the convergence property of the IM procedure

was indeed preserved, as illustrated in Fig. 9, despite the

use of a Taylor series approximation in the derivation of

(26). Finally, we validated the proposed dimensionality

reduction technique by analysing how the classification

performance varied with respect to k, the dimensionality of

the transformed space, and how it was related to the

number of non-zero singular values of the full-dimensional

transformation, an example of which for the Sonar data set

is depicted in Fig. 10.

Figure 10b plots 10 largest singular values of the full-

dimensional transformation, in descending order, while

Fig. 10 documents the results of 10-fold cross-validation

performance with respect to the transformed space

dimensionality. It is easy to see that the singular values

beyond the seventh one are virtually zero, which corre-

sponds to the point after which increasing the transformed

space dimensionality, by either setting k to a particular

value (dot-filled bars) or using a larger number of appro-

priately scaled left-singular vectors (shaded bars), no

longer significantly improves the classification perfor-

mance, as confirmed by Chow test for structural change [8]

at 99% confidence.

Further, the results of classification performance in

terms of error rate of two types of experiments were

compared. For the first type of experiments, which we will

refer to as simply ‘‘NN’’ experiments, we measured clas-

sification error rate of the NN classifier using 10-fold cross-

validation [61]. In the second type of experiments, that are

going to be called ‘‘DDA+NN’’ experiments, an additional

stage of applying a discriminating transformation T derived

with the proposed DDA method prior to measuring the

cross-validation performance of the NN classifier was

introduced. Therefore, the goal of this analysis was to

assess the effect of applying a DDA transformation on the

accuracy of the NN classifier.

Several well-known data sets from the UCI Machine

Learning Repository [5] were used in our experiments. All

of the available data from each data set were utilized on the

‘‘as is’’ basis without performing any preprocessing, such
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Fig. 8 Sonar data: local

minima-prone solutions found

by the gradient descent method.

The target dimensionality of the

sought discriminative subspace

was set to k = 2. a log

J = –0.17, b log J = –0.22,

c log J = –0.19
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as feature expansion for categorical, discrete or binary

attributes. For some datasets, specific instructions were

supplied as for partitioning the data into the training and

testing portions, in which cases cross-validation procedure

was not applied. The summary of important characteristics

of the data sets used for testing is shown in Table 1. The

error rates of NN and DDA+NN data classification

experiments averaged over twenty trial cross-validation

runs are presented in Table 2. The obtained results confirm

our conjecture about the positive effect of applying the

DDA transformation on the accuracy of the NN classifier

showing an improvement in performance (see Table 2).

8.2 Low-level feature representation

In order to assess the proposed DDA method in the context

of the semantic augmentation domain, we perform a

number of basic experiments of visual object recognition,

categorization and semantic retrieval, where multimedia

data is provided in the form of digital images and an

algorithm is examined to determine how well it can learn

the associated semantic information. Before detailing these

experiments, however, we take a closer look at the low-

level visual feature representation of the said image data, as

extracted by the Viper system [51].

Viper uses a palette of 166 colors, derived by uniformly

quantizing the cylindrical HSV color space into 18 hues, 3

saturations, and 3 values. These are augmented by four

gray levels. This choice of quantization means that more

tolerance is given to changes in saturation and value, which

is desirable since these channels can be affected by lighting

conditions and viewpoint. The choice of the HSV color

space is due to its perceptual uniformity and a relatively

low complexity of computation and inversion in compari-

son to such alternatives as CIE-LUV and CIE-LAB [50].

As for the texture features, Viper employs a bank of real,

circularly symmetric Gabor filters, proposed by Fogel and

Sagi [19] and used successfully in image processing

applications for image retrieval [26], texture segmentation

[15] and face recognition [49]. These filters are defined in

the spatial domain as follows:
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Fig. 9 Convergence of the iterative majorization procedure in the

DDA method. The horizontal and vertical axes correspond to the

iteration number and optimization criterion value, respectively
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Fig. 10 Dimensionality reduction experiments: classification perfor-
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Table 1 Summary of data set characteristics

Data set Classes Attributes Examples

Hepatitis 2 19 155

Ionosphere 2 34 200

Diabetes 2 8 768

Heart 2 13 270

Monk’s Problem 1 2 6 432

Balance 3 4 625

Iris 3 4 150

DNA 3 180 2000

Vehicle 4 18 846
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fmnðx; yÞ ¼
e
�x2þy2

2r2
m

2pr2
m

cos½2pðu0m
x cos hn þ u0m

y sin hnÞ	; ð45Þ

where m indexes the scales of the filters, and n their

orientations. The center frequency of the filter is specified

by u0_m. The half-peak radial bandwidth is given by:

Br ¼ log2

2prmu0m
þ

ffiffiffiffiffiffiffiffiffiffiffi

2 ln 2
p

2prmu0m
�

ffiffiffiffiffiffiffiffiffiffiffi

2 ln 2
p

 !

; ð46Þ

where Br is chosen to be 1, i.e. a bandwidth of one octave,

which then allows us to compute rm:

rm ¼
3
ffiffiffiffiffiffiffiffiffiffiffi

2 ln 2
p

2pu0m

: ð47Þ

The highest center frequency is u01
¼ 0:5

1þtanð1=3Þ � 0:5; so

that it is within the discrete frequency domain. The center

frequency is halved at each change of scale, which implies

that r is doubled (47). The orientation of the filters varies

in steps of p/4, and three scales are used. These choices

result in a bank of 12 filters, which renders appropriate

coverage of the frequency domain with little overlap

between the filters. Given the 10 band energy quantization,

this design provides 120 global texture characteristics of

the image. Combining this information with the color data,

we obtain a common 286-dimensional feature vector rep-

resentation for every image.

8.3 Application to visual object recognition

For our object recognition experiments we chose a

recently developed database ETHZ80 for object catego-

rization and recognition composed of entities

corresponding to the basic level of human knowledge

organization [34]. The database contains high-resolution

color images of 80 objects from eight different classes,

for a total of 3,280 images, an overview of which is

shown in Fig. 11.

The training set comprised images taken one per class

object viewed from a fixed position, while the rest (3,200

images) was allocated to the test set. An illustration of a

training set image from class ‘‘car’’ and several test set

images is provided in Fig. 12. Again, similarly to the setup

described above (see Sect. 7.1), we compared performance

results for ‘‘NN’’and ‘‘DDA+NN’’ experiments for each of

the eight classes, but this time, using a one-against-all

classification configuration typically encountered in

ensemble learning [12], and setting target dimensionality to

2D according to the magnitude of the transformation sin-

gular values as explained in Sect. 4.2. The results are

summarized in Table 3.

It is importnant to emphasize here that image repre-

sentation for these experiments was reduced via DDA to

two dimensions only. Nevertheless, as shown in the last

column of Table 3, the proposed technique still was able to

descrease recognition error rate, which improved the

overall performance average. The results in Table 3 also

reveal the importance of the length constraint (or, regu-

larization), introduced in (27), for the purpose of avoiding

data over-fitting problems. Both unconstrained and length-

constrained solutions found by the DDA procedure lead to

zero error rate on the training data, but, as can be easily

seen from Table 3, their performance turned out to be

drastically different on the test data sets, demonstrating an

adequate generalization capability induced by the length-

constrained version of the proposed method. Consistent

with the figures reported earlier for color- and texture-

based feature sets [34], the error rates are highest for

classes 3, 5 and 6. An example of the 2D representation of

the training set for image class 2 obtained by DDA is

shown in Fig. 13. As can be easily seen from the figure, the

target class images are well separated from those of all of

Table 2 Classification results for UCI data sets

Data set % Error of NN % Error of DDA+NN

Hepatitis 29.57 0.00

Ionosphere 13.56 7.14

Diabetes 30.39 27.11

Heart 40.74 21.11

Monk’s P1 14.58 0.69

Balance 21.45 3.06

Iris 4.00 3.33

DNA 23.86 6.07

Vehicle 35.58 24.70

Fig. 11 The eight classes of objects of the ETHZ-80 database. Each class contains 10 objects with 41 views per object, for a total of 3,280

images
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the other classes seen to be freely mixed together in the

derived 2D discriminative subspace, which is exactly the

requirement one seeks to satisfy in one-against-all classi-

fication. Additionally, the separation margin visually

noticeable in the shown projection suggests that the pro-

posed method may perform as well or better as margin-

based techniques.

8.4 Application to semantic image retrieval

In addition to the tests mentioned above, we also explored

empirically the influence of the DDA transformation on the

performance of other classification methods, including NN

as a baseline, on the task of semantic image retrieval. For

these experiments, three potentially overlapping image sets

were selected from the Washington University annotated

image collection [35], based on the presence of keywords

‘‘trees’’, ‘‘cars’’ and ‘‘ocean’’ in their annotation. Every

classifier was then tested by 10-fold cross-validation. The

results of these experiments demonstrate that applying the

DDA transformation not only consistenly improves NN

classifier accuracy, but also provides a boost in perfor-

mance to some more advanced non-linear classification

methods, such as SVM [10], as shown in Table 4.

The latter finding emphasises the importance of the

alternative interpretation we gave to the DDA method in

Sect. 4.2. That is, in addition to the explicitly sought

transformation T, the technique may also be seen as pro-

viding a discriminative distance metric TTT that accounts

for differences in the scales of different features, removes

global correlations and redundancies among features to

some extent, and adapts to the fact that some features may

be much more informative about the class labels than

others. This observation is easily illustrated by the example

of SVM classifier with a Gaussian kernel:

kRðxi; xjÞ ¼ e�ðxi�xjÞTR�1ðxi�xjÞ; ð48Þ

for some covariance matrix R and observations xi, xj

represented as column vectors. A typical choice of R here

is an identity matrix multiplied by some constant factor.

However, when the DDA technique is applied to

preprocess the training data before the SVM learning

occurs, the SVM classifier fully takes advantage of the

discriminative features extracted by the DDA method since

Fig. 12 An illustration of images of the same class used in the training (leftmost) and test (the rest) sets

Table 3 Object recognition

results for the ETHZ80 image

database

Object class % Error of NN % Error of DDA+NN

(unconstrained)

%Error of DDA+NN

(constrained)

Apple 4.47 18.66 0.75

Car 14.47 18.72 5.78

Cow 12.12 16.91 10.97

Cup 3.09 16.94 2.22

Dog 14.00 16.66 12.72

Horse 14.47 14.84 13.16

Pear 6.13 18.94 3.84

Tomato 2.50 16.87 1.88

Fig. 13 Result of applying a discriminative dimensionality-reducing

(286 to 2) DDA transformation to the training set for recognition of

objects from class (2) ‘‘car’’. Images from class 2 are projected close

to each other while images belonging to the other classes are freely

scattered maintaining a certain distance margin from class 2
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the kernel products can now be seen as evaluated in a new

discriminative metric TTT:

kRðxi; xjÞ ¼ e�ðxi�xjÞTTTTðxi�xjÞ: ð49Þ

This eventually results in SVM being able to find a simpler

solution involving fewer support vectors and better gen-

eralization properties, which naturally leads to an

improvement in classification performance, as shown in

Table 4.

From the empirical point of view, in order to verify that

non-trivial collection-independent learning has occurred,

we also examined the categorization performance of the

derived above category-specific DDA transformations on a

completely separate image set taken from the COREL

database. The empirical evidence demonstrates that the

application of the DDA transformation leads to robust

categorization of unseen images producing semantically

relevant matches that may (Fig. 14, row one) or may not

(Fig. 14, row two) share the same vocabulary with the

query category, as well as allowing images to be assigned

to multiple relevant categories (Fig. 14, the last two images

in both rows).

8.5 Evaluation of kernel-based extensions

As a basis for comparison with the proposed method of

Indefinite KDDA, Sect. 6.3, we used related discriminant

analysis techniques, already mentioned in the previous

sections: Kernel Fisher Discriminant (KFD), Kernel Biased

Discriminant Analysis (BiasMap), and KDDA with a fixed

kernel function. Kernel parameters for these approaches

were determined by cross-validation, and fixed throughout.

The parameters for the Indefinite KDDA technique were

set to D = 1 by using a validation data set, while hyper-

kernel parameters were specified as kh = 0.6 to provide an

adequate coverage of various kernel widths by the Gauss-

ian harmonic hyperkernel and kQ = 1 according to the

recommendations from the authors of the hyperkernel

approach [43]. The obtained results for each method in

terms of geometric mean accuracy evaluated on the

ETHZ80 digital image collection are given in Table 5.

Here, we see that the indefinite kernel extension of the

KDDA technique enhances the baseline KDDA method

fine-tuned by cross-validation with a resulting increase of

accuracy from 76.78 to 83.06%. In addition to that, one

may observe that the proposed approach outperforms,

albeit sometimes by a small margin, all other alternative

discriminant analysis techniques considered. It also should

be noted that in all eight semantic category classes, the

spectra of the Gram matrices at convergence contained

Table 4 Semantic image retrieval results

Classifier % Error on image data set

Trees Ocean Cars

Fisher’s LDA 43.89 45.56 17.72

SVM (linear) 31.11 21.11 1.58

DDA+SVM (linear) 17.78 11.11 1.40

SVM (gaussian) 23.89 16.67 1.58

DDA+SVM (gaussian) 17.78 11.11 1.40

NN 38.33 19.44 2.46

DDA+NN 18.89 18.33 1.23

Fig. 14 Examples of semantic image retrieval. The semantic query specified as a natural language keyword is shown on the left. The true

(manually assigned) annotation keywords are listed underneath each image. The annotation keywords overlapping with the query are in bold font
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both negative and positive eigenvalues, thus confirming the

hypothesis on the usefulness of indefinite kernels.

9 Concluding remarks

We have described a formulation, extensions and applica-

tions of a non-parametric distance-based discriminant

analysis technique. The presented method focuses on find-

ing a transformation of the original data that enhances its

degree of conformance to the compactness hypothesis and

its inverse, which has been shown to lead to a better rec-

ognition performance. The classification accuracy has been

demonstrated to improve when combined with popular

classifiers such as NN and SVM. The latter result underlines

the important alternative use of the derived transformation

in the capacity of a discriminative metric that accounts for

differences in the scales of different features, removes to

some extent global correlations and redundancies, and

adapts to the fact that some features may be much more

informative about the class labels than others.

The presented DDA formulation extends naturally from

binary to multiple class discriminant analysis problems. The

method can also serve as a discriminating dimensionality

reduction technique with the ability to overcome the limi-

tation of the classical parametric approaches that typically

extract at most K–1 features for a K-class problem, while

possessing the means to determine in a data-dependent

fashion how many dimensions are sufficient to distinguish

among a given set of classes. Also considered are the pos-

sible extensions of the proposed approach to more complex

non-linear problems via kernels, as well as applicability of

the technique for the case of non-positive definite kernels.

We have verified the classification performance of the

proposed method and its extensions on a number of the

benchmark data sets from UCI Machine Learning Reposi-

tory [5] and on the real-world semantic image retrieval

tasks. The encouraging results demonstrated that the method

outperforms several popular methods, and improves clas-

sification accuracy, sometimes dramatically, making it an

excellent candidate for a number of application in pattern

recognition, classification, categorization domains.

10 Appendix

This section focuses on the intuition behind the definitions

of design matrices R and G specified in (14) and (22). The

derivations listed here are mostly based on those developed

for the SMACOF multi-dimensional scaling algorithm [6].

Let us consider matrix R that is used in calculation of the

majorizing expression of SW(T) represented by a weighted

sum of within-distances. In the derivations that follow, we

will assume all weights to be equal to unity, and show

afterwards how this assumption can be easily corrected for.

We, thus, begin by rewriting a squared within-distance in

the vector form:

dW
ij ðTÞ

� �2

¼
X

m

a¼1

ðx0ia � x0jaÞ
2 ¼ ðx0i � x0jÞðx0i � x0jÞ

T; ð50Þ

where xi

0
and xj

0
denote rows i and j from matrix X0 = XT,

representing the corresponding observations transformed

by T. Noticing that xi

0
– xj

0
= (ei–ej)

T X0, (50) becomes:

dW
ij ðTÞ

� �2

¼ ðei � ejÞTX0X0Tðei � ejÞ

¼ tr X0Tðei � ejÞðei � ejÞTX0
� �

¼ tr X0TAijX
0� �

;

ð51Þ

where Aij is a square symmetric matrix whose elements are

all zeros, except for those four indexed by the

combinations of i and j that are either 1 (diagonal) or –1

(off-diagonal). For instance, A13 for i = 1, j = 3 and NX = 3

will have the following form:

A13 ¼
1 0 �1

0 0 0

�1 0 1

2

6

4

3

7

5

: ð52Þ

Taking into account (51), the sum of the squared within-

distances can be expressed as:

X

NX

i\j

dW
ij ðTÞ

� �2

¼
X

NX

i\j

tr X0TAijX
0� �

¼ tr X0TVX0
� �

¼ tr TTXTVXT
� �

;

ð53Þ

where V ¼
PNX

i\j Aij; for which there exists an easy

computational shortcut. Namely, V is obtained by placing

Table 5 Object categorization results for the ETHZ80 image data-

base in terms of geometric mean accuracy (in %)

Object class KFD BiasMap KDDA Indef. KDDA

Apple 90.35 61.56 86.02 83.21

Car 76.62 72.27 66.39 82.86

Cow 59.02 53.40 56.51 69.25

Cup 94.69 56.37 87.06 93.49

Dog 76.09 40.09 70.86 78.31

Horse 81.25 39.06 67.00 76.95

Pear 86.76 68.73 86.91 86.39

Tomato 96.66 72.73 93.45 94.05

Average 82.68 58.03 76.78 83.06
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–1 in all off-diagonal entries of the matrix, while the

diagonal elements are calculated as negated sums of their

corresponding off-diagonal values in rows or columns.

That is:

vij ¼
�1; if i 6¼ j;

�
P

NX

k¼1;k 6¼i

vik ¼ NX � 1; if i ¼ j;

8

<

:

ð54Þ

For instance, coming back to our previous NX = 3 example,

this technique produces:

V ¼
X

NX¼3

i\j

Aij

¼
1 �1 0

�1 1 0

0 0 0

2

6

4

3

7

5

þ
1 0 �1

0 0 0

�1 0 1

2

6

4

3

7

5

þ
0 0 0

0 1 �1

0 �1 1

2

6

4

3

7

5

0

B

@

1

C

A

¼
2 �1 �1

�1 2 �1

�1 �1 2

2

6

4

3

7

5

:

ð55Þ

It is not difficult to see that the same result applies to the

case of non-unitary weights associated with each distance,

the only difference being that instead of –1 placed into the

off-diagonal elements of V, one should use the negated

values of the corresponding weights. And this is exactly

how the matrix formulation of lSW
ðT ; �TÞ; (15), and design

matrix R, (14), are obtained:

lSW
ðT ; �TÞ ¼

X

NX

i\j

�wij � dW
ij ðTÞ

� �2

2W dW
ij ð �TÞ

� � þ K1

¼
X

NX

i\j

�wij

W dW
ij ð �TÞ

� �

1

2
tr TTXTAijXT
� �

þ K 01

	 


¼ 1

2
tr TTXT

X

NX

i\j

�wij

W dW
ij ð �TÞ

� �AijXT

0

@

1

Aþ K1

¼ 1

2
tr TTXTRXT
� �

þ K1

ð56Þ

In order to derive the formulation of matrix G, as

specified for the majorizer of –SB(T) based on Taylor series

expansion (23), we rewrite (22) using the same techniques

as we did in (51) arriving at:

�dB
ij ðTÞ� �

tr TTZTCijZ �T
� �

dB
ij ð �TÞ

; ð57Þ

where Cij = (ei–eN_X+j) (ei–eN_X+j)
T is a between-class

analog of matrix Aij. From (55), it is apparent that the

same type of a computational shortcut used above to obtain

V may be exploited here too. Indeed, matrix

F ¼
PNX

i¼1

PNY

j¼1 Cij can be quickly constructed by placing

–1 in the off-diagonal elements that correspond to index

locations of the between-distances, and subsequently

summing with negation to obtain the diagonal entries. An

illustration of the technique for NX = 2, NY = 3 is shown

below:

F ¼
X

NX¼2

i¼1

X

NY¼3

j¼1

Cij

¼

3 0 �1 �1 �1

0 3 �1 �1 �1

�1 �1 2 0 0

�1 �1 0 2 0

�1 �1 0 0 2

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

:

ð58Þ

This is the case of unitary weights. Again, the extension to

the non-unitary weight formulation is trivial, and will

involve pre-multiplying the off-diagonal entries by the

appropriate quantities, which in the case of G are the

reciprocals of the squares of the corresponding distances,

as shown in (23).
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