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Abstract Allocation of resources to growth and defense

against herbivores crucially affects plant competitiveness

and survival, resulting in a specific distribution of assimi-

lates and defense compounds within plant individuals.

Additionally, plants rarely experience stable environmental

conditions, and adaptations to abiotic and biotic stresses

may involve shifts in resistance to herbivores. We studied

the allocation of phytochemicals in Brassica oleracea

(Brussels sprouts) due to leaf age, drought stress and her-

bivore damage and assessed effects on two lepidopteran

herbivores differing in diet breadth: the generalist Spo-

doptera littoralis and the specialist Pieris brassicae.

Glucosinolates as secondary defense compounds and total

nitrogen and carbon were quantified and linked to plant

palatability, i.e., herbivore feeding preference. Herbivore

responses were highly species-specific and partially related

to changes in phytochemicals. Spodoptera littoralis pre-

ferred middle-aged leaves with intermediate levels of

glucosinolates and nitrogen over young, glucosinolate and

nitrogen rich leaves, as well as over old leaves, poor in

glucosinolates and nitrogen. In contrast, P. brassicae pre-

ferred young leaves. Both species preferred severely

drought-stressed plants to the well-watered control,

although analyzed glucosinolate concentrations did not

differ. Both S. littoralis and P. brassicae feeding induced

an increase of indole glucosinolate levels, which may

explain a reduced consumption of damaged plants detected

for S. littoralis but not for P. brassicae. By revealing dis-

tinct, sometimes contrasting responses of two insect

herbivores to within-plant and stress-mediated intraspecific

variation in phytochemistry of B. oleracea, this study

emphasizes the need to consider specific herbivore

responses to understand and predict the interactions

between herbivores and variable plants.
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Introduction

Plants are immobile and therefore unable to physically

escape unfavorable abiotic conditions or herbivore attack.

However, plants possess alternative strategies to cope and

withstand these disadvantageous conditions. Plant resistance

to abiotic and biotic stress involves an optimized allocation

of resources as well as direct protection of plant tissues by

secondary metabolites (Frost and Hunter 2008; Stamp 2003;

van der Meijden 1996). Generally, plants possess constitu-

tive adaptations to their prevailing environment and further

can rapidly adjust to extreme stress situations by inducing an

increase in phytochemical resistance (Heil 2010; Karban and

Baldwin 1997). These constitutive and induced aspects of

plant chemistry comprise a combination of plant traits that

are beneficial (nutritional quality) and detrimental (defense

compounds) to herbivores, and strongly determine plant–

herbivore interactions (Behmer et al. 2002; Bennett and

Wallsgrove 1994). Understanding chemical changes in

plants to abiotic and biotic stresses and their ecological

implications for plant–herbivore interactions is becoming
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increasingly important in the face of growing environmental

instability due to global climate change (Tylianakis et al.

2008).

Plant resistance to insect herbivores involves complex

interactions, and hence, resistance responses may vary

between different plant–insect combinations (Halitschke

et al. 2011; Inbar et al. 2001; Stoeckli et al. 2009) and

strongly depend on plant and herbivore species-specific

characteristics (Agrawal 2000; Underwood 1999). Within-

plant variations of resistance occur between different plant

tissues and organs as well as between different development

stages (Barton and Koricheva 2010; Brown et al. 2003;

Gutbrodt et al. 2011b). Furthermore, responses of plants to

stressful environmental conditions may affect their ability

to resist insect herbivores, either limiting or enhancing plant

defense depending on type and intensity of abiotic stress

(Mody et al. 2009), plant genotype (Ballhorn et al. 2011)

and affected insect herbivore species (Hale et al. 2005). The

two most important herbivore characteristics recognized to

cause variations in the effectiveness of plant resistance are

insect feeding guild (Huberty and Denno 2004; Root 1973)

and specialization to host plants (Gutbrodt et al. 2011a;

Kessler and Halitschke 2007; for feeding guild and spe-

cialization see Bidart-Bouzat and Kliebenstein 2011). The

latter characteristic, herbivore specialization or diet

breadth, is particularly relevant as it often determines

whether potential defensive plant metabolites contribute to

plant resistance (against generalists), or rather increase

attractiveness and suitability of a plant for herbivores

(specialists) (Schoonhoven et al. 2005). Besides physio-

logical adaptations to phytochemicals by specialists

(Ballhorn et al. 2010; Piskorski and Dorn 2011), herbivores

of different diet breadth are known to evade detrimental

effects of plant defense by switching between host plants

(Mody et al. 2007; Unsicker et al. 2008).

The myrosinase-glucosinolate defense system, charac-

teristic for Brassicales including Brassica oleracea L., is a

well-studied system involving toxic, growth inhibitory and

deterrence properties to a wide range of herbivores (Halkier

and Gershenzon 2006). Glucosinolates themselves show

little biological activity, but upon hydrolysis by myrosinases

they are transformed to bioactive products responsible for

toxicity and deterrence, such as isothiocyanates, thiocya-

nates, nitriles and epithionitriles (Hopkins et al. 2009;

Scascighini et al. 2005). In plants, myrosinases and gluco-

sinolates are stored in separate cellular compartments,

whereby tissue damage by herbivore feeding causes

hydrolysis and activation of glucosinolates (Bones and

Rossiter 1996; Winde and Wittstock 2011). In wild cabbage

(B. oleracea), glucosinolate profiles strongly determine

herbivore communities mediating distribution and abun-

dances in the field due to consistent but species-specific

preferences of herbivores for certain phenotypes (Newton

et al. 2010). In B. oleracea cultivars, glucosinolate levels are

generally reduced compared to wild plants and their ability

to up-regulate resistance, for example as a response to her-

bivore damage, has been questioned (Coleman et al. 1996;

Gols et al. 2008). Understanding how abiotic and biotic

environmental factors influence concentrations and profiles

of glucosinolates in Brassica crops and assessing conse-

quences for plant defense against different insect herbivores

may contribute to optimizing sustainable pest control. A

recent review on environmentally mediated variations in

phytochemicals of Brassicaceae (Björkman et al. 2011) calls

for more studies under controlled conditions, which address

the multiple effects of abiotic and biotic factors separately.

In this study, we assessed the effects of leaf age, drought

stress and herbivore damage on resistance of B. oleracea

plants (Brussels sprouts; B. oleracea var. gemmifera;

Brassicaceae) to two lepidopteran larval herbivores dif-

fering in their degree of host specialization: the generalist

Spodoptera littoralis Boisduval (Noctuidae) and the spe-

cialist Pieris brassicae L. (Pieridae). We determined the

extent to which secondary compounds and nutrients varied

within plant individuals alone and among plant individuals

exposed to abiotic (drought stress) and biotic (herbivore

damage) environmental stress, and we related this within-

plant and between-plant variability in plant chemistry to

herbivore feeding responses. We expected differences in

causes and consequences of plant resistance for the tested

herbivores due to their host specificity and adaptations to

plant-specific chemical defenses.

Materials and methods

Study organisms and experimental setup

Brassica oleracea plants were grown from seeds and

transplanted individually in pots (9 9 9 9 9.5 cm) filled

with commercial potting soil (Klasmann Substrat 2, con-

taining 200 mg/L nitrogen, 320 mg/L phosphate, 360 mg/L

potassium, 100 mg/L magnesium, Klasmann-Deilmann,

Geeste, Germany) when they reached the 4-leaf-stage.

Plants were subjected to different treatments according to

the factor tested (experiment) and used in bioassays and for

chemical analysis when they were 4-weeks old. The plants

were initially reared in climate chambers. For the experi-

ments, two fully equipped closed greenhouse chambers

with internal air circulation were used. The controlled

climatic conditions were similar in both chambers, with

minor differences in day:night conditions, greenhouse 1:

24:16�C, 60% RH, L16h:D8h; greenhouse 2: 22:19�C,

40–60% RH, L14h:D10h.

Leaf-chewing larvae (caterpillars) of the two lepi-

dopteran species S. littoralis and P. brassicae were used as
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test herbivores. Whereas S. littoralis is a generalist herbi-

vore and feeds on a broad host range (Salama et al. 1971).

Pieris brassicae exclusively feeds on plants of a limited

number of families within the order Brassicales such as

Brassicaceae and represents a major pest of Brassica crops

(Chew and Renwick 1995). Spodoptera littoralis larvae

were obtained from Syngenta Crop Protection AG (Stein,

Switzerland), and P. brassicae larvae were reared as

described by Mattiacci et al. (2001a). Before feeding tests

were initiated, larvae of the two test species were allowed

to acclimatize to the experimental conditions for 24 h.

They were fed leaves of well-watered undamaged B. oleracea

plants and maintained at greenhouse conditions described

above.

Three experiments (consisting of one to three plant

series) were conducted to assess the effects of leaf age,

drought stress and herbivore damage on the resistance of

B. oleracea to the two test herbivores. Plant series con-

sisted of a comparable set of B. oleracea plants grown

under consistent greenhouse conditions. Experimental

manipulation of the plants (treatments), and the herbivore

feeding tests were conducted under greenhouse conditions.

Leaf age

Three plant series (I, II and III) each consisting of 20 plants

were grown, resulting in three replicates of the experiment.

Plants were reared in a growth chamber during 4 weeks and

were then transferred to a common greenhouse (greenhouse

1). After an adaptation period of three days, plants were

used in feeding choice tests. From each plant two leaf discs

were excised from the blade of the youngest fully expanded

leaf, a middle-aged leaf (3rd or 4th youngest) and an old but

still green leaf (6th or 7th youngest). Leaf discs of the

three leaf ages were then offered to both S. littoralis and

P. brassicae larvae in triple-choice feeding tests (n = 20

per insect species and plant series). Chemical plant traits

were quantified using the remaining leaf material of plants

used in the feeding tests of plant series III (n = 20).

Drought stress

The plants were grown in two plant series (IV and V) each

consisting of 60 plants in greenhouse 1 (IV) and green-

house 2 (V). When plants consisted of four true leaves,

they were subjected to one out of three pulsed drought

stress treatments: no drought stress (i.e., well-watered

control), moderate drought stress (i.e., low stress) or severe

drought stress (i.e., high stress). Plants of a specific treat-

ment simultaneously received a defined amount of water.

Well-watered control plants received water every 2–3 days

ensuring constantly moistened soil throughout the experi-

ment. Low stress plants were watered when leaves started

drooping and received on average 57.5 ± 7.5% of the

water supplied to well-watered control plants during the

experiment. High stress plants received water every

4–6 days just before necrosis occurred, which corre-

sponded to 30 ± 5% of the amount of water supplied to

well-watered control plants. After 30 days and a minimum

of four drought cycles for high stress plants, the treatment

was terminated and all plants were rehydrated for 24 h to

achieve fully turgescent plants. Leaf discs excised from a

fully expanded young leaf of each drought stress treatment

were offered to S. littoralis and P. brassicae larvae in tri-

ple-choice feeding tests (n = 20 per insect species and

plant series). Chemical analyses were conducted using leaf

material of the plant series V (n = 20).

Herbivore damage

Four-week-old B. oleracea plants were subjected to a con-

trolled herbivore damage treatment in a single series (VI) of 54

plants in greenhouse 1. Two middle-aged (3rd–5th youngest)

leaves of each plant were covered with a perforated plastic

bag, each containing either no insect (i.e., control treatment),

five P. brassicae larvae (L2) (Pieris-damaged treatment), or

ten S. littoralis larvae (L2) (Spodoptera-damaged treatment).

The number of damaging herbivores per treatment was

adjusted according to previous observations of species-spe-

cific feeding behaviors to ensure a consistent damage of

70–90% consumed leaf area within the damaging period.

Larvae of both species started feeding immediately. After a

previously defined effective induction period of 4 days

(Mattiacci et al. 2001a), the plastic bags including all dam-

aging herbivores were removed from the test plants. Leaf

blade discs were excised from undamaged, fully expanded

young leaves (systemic effects of herbivore damage) and

offered to a new set of test insects in dual-choice feeding tests

according to the following cross-comparison setup: control

versus Spodoptera-damaged; control versus Pieris-damaged;

Spodoptera-damaged versus Pieris-damaged (n = 18 per

insect species and combination). Chemical analyses were

conducted using remaining leaf blade material of leaves used

in the feeding tests (n = 18; series VI).

Plant traits

Glucosinolate concentrations, total leaf nitrogen and car-

bon as well as leaf mass per area were quantified for leaves

used in herbivore feeding tests for plants of each treatment

in single plant series of each experiment. Additionally,

carbon stable isotope values were quantified for plants in

the drought stress experiment, as increased d 13C values

indicate decreased photosynthetic activity due to stomatal

closure and can hence be used as a measure of plant

drought stress (Farquhar et al. 1989).

Species-specific responses of herbivores 103

123



For glucosinolate analysis, 20–25 mg finely ground

lyophilized leaf material was extracted with 80% methanol

(1.2 ml) containing 50 lM 4-hydroxybenzylglucosinolate

as internal standard. After centrifugation (2,500g 10 min)

the supernatants were loaded on columns containing 10%

suspension of DEAE Sephadex A25 in H2O (0.4 ml).

Columns were washed with 80% methanol (1 ml), water

(2 ml), and 0.02 M MES buffer (1 ml pH 5.2), before

sulfatase solution (50 ll) was applied. After overnight

incubation, desulfated glucosinolates were eluted with

water (1 ml) and analyzed by HPLC on an Agilent HP

1100 Series instrument (Agilent, Waldbronn, Germany)

equipped with diode-array detector and a LiChrospher

RP18ec column (250 9 4.6 mm, 5 lm, Merck, Darmstadt,

Germany). A gradient of water (solvent A) and acetonitrile

(solvent B) was used: 5–20% B (10 min), 20–100%

(0.1 min), 100% B (1.9 min), 100–5% B (0.1 min), and 5%

B (3.9 min). Spectra were acquired from 190–360 nm and

compounds quantified at 229 nm (Burow et al. 2006).

Total leaf nitrogen and carbon as well as carbon isotope

values were determined by CHN elementary analysis using

a Flash EA 1112 Series elemental analyzer (Thermo Italy,

Rhodano, Italy) coupled to a Finnigan MAT Delta plus XP

isotope ratio mass spectrometer (Finnigan, Bremen, Ger-

many) as described in Plath et al. (2011). Ratios of carbon

to nitrogen (C:N) were calculated for each test leaf.

Leaf mass per area as a measure for leaf density and

thickness was calculated for remaining leaf discs used in

herbivore feeding tests, based on the dry mass and unit area

of remaining leaf discs (Poorter et al. 2009). Values of the

two leaf discs excised per test leaf (or four in case of the

herbivore damage experiment) were averaged.

Herbivore feeding tests

Test leaves were cut at petiole level, and from each leaf blade

two (or four in the herbivore damage experiment) leaf discs

of 18 mm diameter were excised, of which one was offered

to individual larvae of each insect species in feeding tests.

The remaining leaf material was immediately flash frozen

and used for chemical analysis. Leaf discs were offered to

single (L2–L3) insect larvae in triple-choice or dual-choice

feeding tests and followed the procedure described by Mody

et al. (2009). Choice tests were conducted under standard-

ized greenhouse conditions in plastic Petri dishes of 9 cm

diameter, containing a moist filter paper on top of a 3-mm

thick styrofoam layer. Petri dishes were randomly positioned

and covered with a cloth to allow feeding in shaded condi-

tions. Test insects were not starved prior to feeding tests and

started feeding promptly. After 24 h (9 a.m.–9 a.m.), larvae

were removed, digital photographs of leaf discs were taken

and consumed leaf mass (CM) was quantified for each leaf

disc based on the consumed area (CA), the dry mass of the

remaining leaf disc (RM) and the remaining leaf disc area

(RA): CM = CA 9 (RM/RA).

Statistical analyses

Data were transformed to meet the assumptions of nor-

mality and heteroscedasticity when necessary. Consumed

dry mass values were log10(x ? 1) transformed, nitrogen

values and C:N ratios were arcsin(x) transformed, and

glucosinolate concentrations were log10(x) transformed

prior to analysis. Consumed dry mass values of triple-

choice feeding tests in the leaf age and drought stress

experiment were analyzed by repeated measures mixed

model ANOVAs with ‘leaf age’ and ‘drought stress treat-

ment’, respectively, as repeated fixed factor, and ‘plant

series’ as random factor. Differences between factors were

assessed by LSD post hoc tests and covariance estimates

were used to assess effects of the random factor. In the

induction experiment consumed dry masses of dual-choice

feeding tests were analyzed using paired samples t tests.

Plants traits such as glucosinolate concentrations, total leaf

nitrogen, C:N ratios, d 13C values and leaf mass per area

were analyzed by means of one-way ANOVAs, followed

by LSD post hoc tests. All statistical analyses were con-

ducted using PASWStatistics 18.0.

Results

Leaf age

Leaf age had a significant effect on the concentration of six

out of eight detected glucosinolate compounds, of which

glucobrassicin showed the highest concentration (Fig. 1a).

Total glucosinolate concentration as well as the concentra-

tions of the six age-affected compounds, were significantly

lower in old leaves compared to young leaves. The levels

of two compounds, the indole glucosinolates hydroxyg-

lucobrassicin and 4-methoxyglucobrassicin, were not

significantly affected by leaf ages. Total leaf nitrogen was

lower in old leaves compared to young leaves (Table 1).

Total leaf carbon was comparably reduced in old leaves

leading to a stable C:N ratio across the three tested leaf ages.

Leaf mass per area was not different between leaf ages.

Spodoptera littoralis consumed middle-aged leaves

most, intermediate amounts of young leaves and old leaves

least (mixed model; F2,52 = 57.2, P \ 0.001; Fig. 2a).

Pieris brassicae consumed highest amounts of young and

middle-aged leaves and lowest amounts of the old leaves

(mixed model; F2,51 = 83.8, P \ 0.001; Fig. 2b). No sig-

nificant effect of the random factor ‘plant series’ was

detected for either insect species (covariance estimate;

S. littoralis: P = 0.7, P. brassicae: P = 0.4).
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Drought stress

Drought stress had no significant effect on the concentration of

total glucosinolates and of the individual compounds in the

plants (Fig. 1b). A total of six glucosinolates were identified,

with highest levels of glucobrassicin (Fig. 1b). Aliphatic

compounds were found in low concentrations, and two com-

pounds observed in the ‘leaf age’ and the ‘herbivore damage’

studies (glucoraphanin and gluconapin) were not detectable.

Total leaf nitrogen was unaffected by drought but significant

differences were found for C:N ratios with lower values in

well-watered control compared to stressed plants (Table 1).

Differences in d 13C values were significant between all three

watering schemes, with lowest d 13C values in well-watered

control and highest values in high stress plants. Leaf mass per

area was unaffected by drought treatment.

Spodoptera littoralis consumed significantly more leaf

disc mass of high stress plants compared to low stress and

control plants (mixed model; F2,29 = 17.9, P \ 0.001;

Fig. 3a). Similarly, P. brassicae consumed significantly

more of high stress plants compared to control plants, while

low stress plants were not significantly different from other

treatments (mixed model; F2,28 = 3.7, P \ 0.05; Fig. 3b).

No significant effect of the random factor ‘plant series’ was

detected for either insect species (covariance estimate;

S. littoralis, P = 0.7; P. brassicae, P = 0.7).

Herbivore damage

In B. oleracea plants subjected to herbivore damage

treatments, eight glucosinolate compounds identical to

compounds detected in the ‘leaf age experiment’ were
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found, with highest levels of glucobrassicin (Fig. 1c).

Glucobrassicin concentrations significantly increased in

Spodoptera-damaged plants compared to the undamaged

control. In Pieris-damaged plants mean glucobrassicin

levels were also elevated compared to control plants;

however, the levels were not statistically different and did

not reach the levels found in Spodoptera-damaged plants

(Fig. 1c). On average, control plants in this experiment

showed elevated glucosinolate concentrations, including

glucobrassicin, in comparison to plants of the leaf age and

drought stress experiment. Herbivore damage had no effect

on total nitrogen, C:N ratio or leaf mass per area (Table 1).

Spodoptera littoralis consumed significantly more leaf

disc mass of undamaged control plants than of Spodoptera-

damaged (paired samples t test; t = 2.9, P \ 0.01, n = 18)

and Pieris-damaged plants (paired samples t test; t = 3.6,

P \ 0.01, n = 18; Fig. 4a). In dual-choice tests comparing

Spodoptera-damaged with Pieris-damaged plants, no sig-

nificant difference was found in the feeding preference of

S. littoralis (paired samples t test; t = -1.2, P = 0.3,

n = 17). The feeding choice of P. brassicae was not

affected by previous damage of either insect species

(paired samples t test; undamaged vs. Spodoptera-dam-

aged: t = -0.2, P = 0.9, n = 18, undamaged vs. Pieris-

damaged: t = 1.7, P = 0.1, n = 18, Spodoptera-damaged

vs. Pieris-damaged: t = 0.1, P = 0.9, n = 18; Fig. 4b).

Discussion

The results of our study suggest that B. oleracea plants

express significantly within-plant, leaf age-related variation

of resistance to insect herbivores and in plant chemistry.

Furthermore, we found that the abiotic environmental

Table 1 Leaf traits (mean ± SE) of Brassica oleracea var. gemmifera for the different experiments and treatments

Experiment Treatment Plant trait

N (%) C:N d 13C (%) LMA (mg/cm2)

Leaf age Young 6.2 ± 0.3a 7.1 ± 0.4 – 2.4 ± 0.1

Middle-aged 5.1 ± 0.3a, b 8.5 ± 0.7 – 2.6 ± 0.2

Old 4.3 ± 0.3b 8.7 ± 0.8 – 2.3 ± 0.1

Drought stress Control 5.5 ± 0.2 6.9 ± 0.3b 236.7 ± 0.1c 1.6 ± 0.1

Low stress 4.6 ± 0.4 9.5 ± 0.6a 236.1 ± 0.1b 1.7 ± 0.1

High stress 4.8 ± 0.3 8.7 ± 0.3a 235.7 ± 0.2a 1.9 ± 0.1

Herbivore damage Control 4.3 ± 0.2 10.0 ± 0.6 – 3.2 ± 0.2

Spodoptera-damaged 4.2 ± 0.2 10.4 ± 0.7 – 3.1 ± 0.1

Pieris-damaged 4.3 ± 0.2 10.0 ± 0.6 – 3.1 ± 0.1

N total leaf nitrogen, C:N ratio of total carbon to total nitrogen, d 13C measure of carbon isotope ratios, LMA leaf mass per area

Different letters indicate significant differences between treatments within an experiment (values shown in bold) (one-way ANOVA, LSD post

hoc test)
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factor ‘drought stress’ as well as the biotic environmental

factor ‘herbivore damage’ evoked significant variation in

B. oleracea resistance. The variation of the analyzed

defense compounds largely corresponded with the detected

herbivore feeding preferences, although differences in the

effects of glucosinolate concentrations on the generalist

and the specialist were apparent. The generalist S. littoralis

and the specialist P. brassicae showed diverging feeding

responses to different leaf ages and to herbivore-damaged

plants. This finding supports the general notion that plant

resistance strongly depends on herbivore species identity

and that the contribution of particular defense traits to a

plant’s overall resistance may strongly vary with the spe-

cific herbivores actually attacking a plant.

We found an overall decrease in leaf glucosinolate and

nitrogen concentrations from young to old leaves as well as

diverging herbivore feeding preferences for different leaf

ages. The generalist S. littoralis preferred feeding on

middle-aged leaves with intermediate glucosinolate and

intermediate nitrogen concentrations, while the specialist

P. brassicae preferred feeding on young leaves that were

characterized by higher glucosinolate and nitrogen con-

centrations in comparison. Reduced levels of defense

compounds as well as carbon and nitrogen in old leaves

have previously been described for several Brassicales,

including B. oleracea (Gols et al. 2007; Travers-Martin and

Müller 2008). Higher levels of defense compounds in

younger, more valuable leaves (Harper 1989), are expected

according to the optimal defense hypothesis, which states

that plant defenses are adjusted to the risk of damage, the

cost of a module and its value to a plant (McCall and

Fordyce 2010; Rhoades 1979). However, specialist herbi-

vores, such as P. brassicae, often rely on these compounds

as host recognition cues and may be attracted to high levels

of specific defense compounds in young leaves, resulting in

an inverse effect to the optimal defense hypothesis (Lankau

2007; Renwick and Lopez 1999). Furthermore, P. brassi-

cae as a specialist herbivore is known to tolerate high

concentrations of glucosinolates due to successful detoxi-

fication mechanisms (Agerbirk et al. 2006) and may even

gain a nutritional benefit when feeding on diets of higher

glucosinolate concentrations (Smallegange et al. 2007).

Hence, our findings are in line with previous conclusions of

studies reporting a phytochemically mediated diverging

feeding preference for leaf age of specialists and general-

ists, with young leaves being attractive for specialists but

avoided by generalists (Blüthgen and Metzner 2007;

Lambdon and Hassall 2005). Interestingly, however,

although our findings confirm that generalists may avoid

strongly protected glucosinolate-rich leaves (young leaves)

(Arany et al. 2008; Gols et al. 2008; Gutbrodt et al. 2011a),

in the current study S. littoralis did not simply choose the

lowest glucosinolate concentration available (old leaves),

which may indicate that a certain threshold level defines

deterrence properties of glucosinolates for this generalist

species. In conclusion, both generalists and specialists may

perceive leaf age-related variations in defense compounds,

possibly resulting in feeding preferences for a specific leaf

age of host plants.

Drought stress clearly affected certain plant properties

and resistance to insect herbivores, with a significant

increase in d 13C values and in C:N ratios, and increased

feeding by herbivores compared to well-watered condi-

tions, but did not affect glucosinolate concentrations. Many

hypotheses address drought-induced alterations of plant

chemistry (Gutbrodt et al. 2011a) and suggest stressed

plants to be nutrient-richer (White 1984), but also to show

an accumulation in defense compounds (Huberty and

Denno 2004; Rhoades 1979), especially at intermediate

levels of drought stress (Herms and Mattson 1992). Hence,

consequences of drought stress for insect herbivores are

difficult to predict and generally depend on complex

interactions of numerous factors (Gutbrodt et al. 2011a;

Mody et al. 2009). In this study, changes in d 13C values

indicated drought treatments to impair photosynthetic

activity in stressed plants. Total nitrogen was highest and

C:N ratio lowest in well-watered control plants, which

contradicts the plant stress hypothesis (White 1984). A

significant shift in the C:N ratio may indicate the impor-

tance of primary metabolites in mediating feeding

preferences for stressed plants, as certain sugar compounds

are known to increase under drought conditions (Gutbrodt

et al. 2012). Furthermore, concentrations of main second-

ary defense compounds, glucosinolates, were unaffected by

drought stress. These findings contrast general theory and

previous studies reporting increased (Schreiner et al. 2009;

Zhang et al. 2008) or decreased (Gutbrodt et al. 2011a;
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Fig. 4 Leaf dry mass (mean ± SE) consumed of systemically

induced Brassica oleracea plants by a Spodoptera littoralis and

b Pieris brassicae. Dual-choice feeding tests: undamaged control

versus Spodoptera-damaged (C–S); undamaged control versus Pieris-
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(S–P). Asterisks indicate significant differences between bars in dual-

choice tests (t test): *P \ 0.05, **P \ 0.01
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Khan et al. 2011) glucosinolate levels in drought-stressed

Brassicales, including Brussels sprouts (Ciska et al. 2000;

Heaney et al. 1983). Nevertheless, both tested herbivore

species in our study showed a similar feeding preference for

severely drought-stressed plants. Hence, plant resistance

was reduced in plants suffering severe stress but not

increased in intermediately stressed plants as proposed by

the growth-differentiation balance hypothesis (Herms and

Mattson 1992). Our results suggest other drought-sensitive

compounds to additionally mediate feeding preferences in

the B. oleracea-herbivore system, such as, for example,

flavonoids or sugars (Gutbrodt et al. 2012), which have

previously been identified as feeding stimulants for herbi-

vores of B. oleracea (Bartlet et al. 1994; van Loon et al.

2002). Additionally, water availability can considerably

affect leaf surface waxes (Björkman et al. 2011), which may

pose an important form of defense against both specialist and

generalist insect herbivores (Hariprasad and van Emden

2010). Irrespective of the responsible underlying mecha-

nisms, the finding of a drought-mediated feeding preference

for both the specialist and generalist insect herbivore may

indicate possible future shifts in plant susceptibility in case

of increased and prolonged drought events.

Herbivore damage resulted in increased concentrations

of the main indole glucosinolate glucobrassicin, while the

levels of the other glucosinolates and of nitrogen and car-

bon remained unaffected. Glucobrassicin was elevated in

plants following damage by both the generalist and the

specialist herbivore. However, in quantitative terms, the

increase in glucobrassicin concentration in damaged plants

compared to undamaged control was significant only fol-

lowing damage by S. littoralis with intermediate

concentrations in plants damaged by P. brassicae.

Although herbivore damage to B. oleraceae seems to

trigger a rather general induction pathway of the myrosi-

nase-glucosinolate defense system, leading to increased

levels of indole glucosinolates independent of herbivore

specialization (Poelman et al. 2008; Textor and Gershen-

zon 2009), generalist and specialist herbivores may exert

oppositional selection pressures on the expression of

induced resistance (Lankau 2007). Considering that larvae

of S. littoralis as generalist herbivores are strongly repelled

by indole glucosinolates, including glucobrassicin, while

larvae of P. brassicae as specialist herbivores are attracted

to these compounds (Müller et al. 2010; Schlaeppi et al.

2008), it may be beneficial for a plant to respond more

strongly to damage by generalist herbivores. Nevertheless,

in our study herbivore responses indicated previous dam-

age by both conspecifics and heterospecifics to enhance the

resistance of B. oleracea to the generalist S. littoralis.

Moreover, the feeding preference of the specialist

P. brassicae was not affected by herbivore damage, indicat-

ing the increase in glucobrassicin to have neither attractant

nor deterrent effects. This finding contrasts with former

studies that report pierid species to be attracted to previ-

ously damaged plants, promoting oviposition as well as

larval feeding on induced, glucosinolate-enriched plants

compared to undamaged plants (Mattiacci et al. 2001b;

Poelman et al. 2010). However, we cannot exclude that

induced resistance in B. oleracea may negatively affect

pierid performance in the long run, for example by pro-

longed development on damaged plants (Agrawal and

Kurashige 2003; Mattiacci et al. 2001b; Qiu et al. 2009).

According to our study, glucobrassicin seems to be a likely

candidate compound responsible for induced resistance in

B. oleracea at least to generalist insect herbivores.

In conclusion, the direct comparison of specialist and

generalist herbivore feeding behavior on plants varying in

their chemistry due to different abiotic and biotic factors

provides new insights into the individual effects of some of

the multiple interacting factors that may influence plant–

herbivore interactions. Our study highlights that even

domesticated B. oleracea plants may show strong within-

plant and stress-mediated between-plant variation in

resistance to different insect herbivores and in defense-

related plant chemistry, and that they show marked phe-

notypic plasticity, as indicated by the large amount of

variation in glucosinolate concentrations observed across

the different experiments even under controlled growth

conditions. Variation in glucosinolates was also partially

related to herbivore feeding preferences, and the gluco-

sinolate glucobrassicin was found to be a potential key

compound in conveying induced resistance to lepidopteran

larvae. The observation that contrasting feeding responses

of the specialist and generalist herbivore were only found

when the glucosinolate levels of tested leaves were high,

points to a possible threshold level up to which generalist

herbivores can tolerate defense compounds. The study

emphasizes the need to consider specific herbivore and

plant characteristics to understand and predict responses of

herbivores to plants affected by variable abiotic and biotic

stressors.
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