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Abstract The aim of this paper is to give upper bounds for the Euclidean minima
of abelian fields of odd prime power conductor. In particular, these bounds imply
Minkowski’s conjecture for totally real number fields of conductor pr , where p is an
odd prime number and r ≥ 2.

1 Introduction

Let K be an algebraic number field, and let OK be its ring of integers. Let N : K → Q

be the absolute value of the norm map. The number field K is said to be Euclidean
(with respect to the norm) if for every a, b ∈ OK with b �= 0 there exist c, d ∈ OK

such that a = bc + d and N(d) < N(b). It is easy to check that K is Euclidean if and
only if for every x ∈ K there exists c ∈ OK such that N(x − c) < 1. This suggests to
look at

M(K ) = supx∈K infc∈OK N(x − c),

called the Euclidean minimum of K .
The study of Euclidean number fields and Euclidean minima is a classical one, see

for instance [9] for a survey. The present paper is concerned with upper bounds for
M(K ) in the case where K is an abelian field of odd prime power conductor. Let us
recall some previous results. Let n be the degree of K and DK the absolute value of its
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1072 E. Bayer-Fluckiger, P. Maciak

discriminant. It is shown in [2] that for any number field K , we have M(K ) ≤ 2−n DK .
The case of totally real fields is especially interesting, and has been the subject matter
of several papers. In particular, a conjecture attributed to Minkowski states that if K
is totally real, then

M(K ) ≤ 2−n
√

DK .

This conjecture is proved for n ≤ 8, cf. [6,7,13]; see also McMullen’s paper [13] for
a proof of the case n ≤ 6 and a survey of the topic.

The point of view taken in the present paper is to study this conjecture for totally
real abelian fields, and more generally give upper bounds for Euclidean minima of
abelian fields. A starting point of this investigation is [2] where it is proved that we
have M(K ) ≤ 2−n√

DK if K is a cyclotomic field of prime power conductor or the
maximal totally real subfield of such a field. The present paper contains some results
concerning abelian fields of odd prime power conductor. In particular, we show that if
K is such a field, then there exist constants C = C(K ) ≤ 1

3 and ε = ε(K ) ≤ 2 such
that

M(K ) ≤ Cn (
√

DK )
ε.

If [K : Q] > 2, then one may choose ε(K ) < 2. Moreover, we show that ε is
asymptotically equal to 1 and that under certain assumptions C is asymptotically
equal to 1

2
√

3
; see Theorem 1 for the precise statement. In Theorem 2 we obtain the

bound

M(K ) ≤ ωn
√

DK ,

where ω = ω(K ) is a constant which under certain assumptions is asymptotically
equal to 1

2
√

3
. In particular, using these bounds we show

Theorem Suppose that K is a totally real field of conductor pr , where p is an odd
prime and r ≥ 2. Let n be the degree of K and let DK be its discriminant. Then

M(K ) ≤ 2−n
√

DK .

In other words, Minkowski’s conjecture holds for this family of fields.
The strategy of the proofs is the following. If K is an algebraic number field, we

consider lattices defined on the ring of integers OK in the sense of [1], Sect. 1. This
leads to a Hermite–like invariant of OK , denoted by τmin(OK ), cf. [1], Definition 9,
and Sect. 4 of the present paper. By [2], Corollary 5.2, we have

M(K ) ≤
(
τmin(OK )

n

)n/2 √
DK ,
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Upper bounds for the Euclidean minima of abelian fields 1073

where n is the degree of K and DK the absolute value of its discriminant. In order to
apply this result, we have to estimate τmin(OK ). The main technical task of this paper
is to do this in the case of abelian fields of odd prime power conductor.

The paper is structured as follows. After a brief section containing the notation used
throughout the paper, Sect. 3 describes the main results (Theorems 1, 2). The rest of the
paper is devoted to their proofs, starting in Sect. 4 with a summary of some notions and
results concerning lattices and number fields, and their relation to Euclidean minima.
Suppose now that K is an abelian field of prime power conductor. In Sect. 5, we
construct integral bases of OK . In Sect. 6, these bases are used to describe the lattice
obtained by the canonical embedding of OK (equivalently, the lattice given by the
trace form). It turns out that this lattice is isomorphic to the orthogonal sum of lattices
similar to the dual of a root lattice of type A and of a lattice invariant by a symmetric
group which already appears in [2]. Using this information, we obtain an estimate of
the Hermite–like thickness of the lattice OK , leading to an upper bound of τmin(OK )

that we apply in Sect. 7 to prove Theorems 1 and 2. Finally, Sect. 8 contains some
partial results and open questions concerning abelian fields of odd prime conductor.

2 Notation and a definition

The following notation will be used throughout this paper. The set of all abelian
extensions of Q of odd prime power conductor will be denoted by A. For K ∈ A we
set:

n − the degree of K/Q,

D − the absolute value of the discriminant of K ,

p − the unique prime dividing the conductor of K ,

r − the p-adic additive valuation of the conductor of K ,

ζ − a primitive root of unity of order pr ,

e − the degree [Q(ζ) : K ].

If the dependence on the field K needs to be emphasized, we shall add the index K to
the above symbols. For example, we shall write nK instead of n.

We also need the following definition

Definition 1 Let ψ : D → R be a function, where D ⊂ A. We shall say that ψo ∈ R

is the limit of ψ as nK goes to infinity and write

lim
nK →∞ψ(K ) = ψ0

if for every ε > 0 there exists N > 0 such that for every field K ∈ D

nK > N 
⇒ |ψ(K )− ψ0| < ε.
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1074 E. Bayer-Fluckiger, P. Maciak

We shall also write

lim
pK →∞ψ(K ) = ψ0

if for every ε > 0 there exists N > 0 such that for every field K ∈ D

pK > N 
⇒ |ψ(K )− ψ0| < ε.

3 Euclidean minima—statement of the main results

In this section we present the main results of the paper; the proofs will be given in
Sect. 7. We keep the notation and definitions of the previous sections.

Theorem 1 Let K ∈ A. Then there exist constants ε = ε(K ) ≤ 2 and C = C(K ) ≤ 1
3

such that

M(K ) ≤ Cn (
√

DK )
ε.

If [K : Q] > 2, then one may choose ε(K ) < 2. Moreover,

lim
nK →∞ ε(K ) = 1.

If rK ≥ 2, or rK = 1 and [Q(ζ) : K ] is constant, then we also have

lim
pK →∞ C(K ) = 1

2
√

3
.

Theorem 2 Let K ∈ A. Then there is a constant ω = ω(K ) such that

M(K ) ≤ ωn
√

DK .

If rK ≥ 2, or rK = 1 and [Q(ζ) : K ] is constant, then

lim
pK →∞ω(K ) = 1

2
√

3
.

Moreover, if rK ≥ 2, then ω(K ) ≤ 3−2/3.

Note that this implies that Minkowski’s conjecture holds for all totally real fields
K ∈ A with composite conductor

Corollary 1 Let K ∈ A, and suppose that the conductor of K is of the form pr with
r > 1. Then

M(K ) ≤ 2−n
√

DK .

This follows from Theorem 2, since 3−2/3 < 1/2, and for K totally real this is precisely
Minkowski’s conjecture.

123



Upper bounds for the Euclidean minima of abelian fields 1075

4 Lattices and number fields

We start by recalling some standard notion concerning Euclidean lattices (see for
instance [4] and [12]). A lattice is a pair (L , q), where L is a free Z–module of finite
rank, and q : LR × LR → R is a positive definite symmetric bilinear form, where
LR = L ⊗Z R. If (L , q) is a lattice and a ∈ R, then we denote by a(L , q) the lattice
(L , aq). Two lattices (L , q) and (L ′, q ′) are said to be similar if and only if there exists
a ∈ R such that (L ′, q ′) and a(L , q) are isomorphic, in other words if there exists an
isomorphism of Z-modules f : L → L ′ such that q ′( f (x), f (y)) = aq(x, y).

Let (L , q) be a lattice, and set q(x) = q(x, x). The maximum of (L , q) is defined
by

max(L , q) = sup
x∈LR

inf
c∈L

q(x − c).

Note that max(L , q) is the square of the covering radius of the associated sphere
covering. The determinant of (L , q) is denoted by det(L , q). It is by definition the
determinant of the matrix of q in a Z–basis of L . The Hermite–like thickness of (L , q)
is

τ(L , q) = max(L , q)

det(L , q)1/m
,

where m is the rank of L . Note that τ(L , q) only depends on the similarity class of
the lattice (L , q).

A family of lattices

Let m ∈ N, and b ∈ R with b > m. Let L = Lb,m be a lattice in Rm with Gram matrix

bIm − Jm =

⎛

⎜
⎜
⎜
⎜
⎝

b − 1 −1 . . . −1

−1
. . .

. . .
...

...
. . .

. . . −1
−1 . . . −1 b − 1

⎞

⎟
⎟
⎟
⎟
⎠
,

where Im is the m × m-identity matrix and Jm ∈ {1}m×m is the all-ones matrix.
Then L is a lattice of determinant (b − m)bm−1. Moreover, the automorphism group
of L contains 〈−Im〉 × Sm , where the symmetric group Sm acts by permuting the
coordinates. These lattices were defined in [3], (4.1). Note that the lattice Lm+1,m is
similar to the dual lattice A#

m of the root lattice Am (see for instance [4], Chapter 4,
Sect. 6, or [12] for the definition of the root lattice Am).

Lattices defined over number fields

In the sequel, we will be concerned with lattices defined on rings of integers of abelian
number fields. Let K be an number field of degree n, and suppose that K is either
totally real or totally complex. Let us denote by : K → K the identity in the first case
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1076 E. Bayer-Fluckiger, P. Maciak

and the complex conjugation in the second one, and let P be the set of totally positive
elements of the fixed field of this involution. Let us denote by Tr : K → Q the trace
map. For any α ∈ P , set qα(x, y) = Tr(αx y) for all x, y ∈ K . Then (OK , qα) is a
lattice. Set

τmin(OK ) = inf{τ(OK , qα) | α ∈ P}.

If DK is the absolute value of the discriminant of K , then, by [2], Corollary 5.2,
we have

M(K ) ≤
(
τmin(OK )

n

) n
2 √

DK , (1)

This upper bound will be used in Sect. 7 to prove Theorems 1 and 2.

5 Gaussian periods and integral bases

Let K ∈ A. In order to exploit the upper bound of Sect. 4, we need some information
concerning the lattices defined on the ring of integers OK , and these will be described
using integral bases of OK . The aim of this section is to find such bases. This will be
done in the spirit of the work of Leopold [10], see also Lettl [11].

Recall that the pr is the conductor of K and that e = [Q(ζ) : K ]. Then e divides
p − 1. This implies that the extension Q(ζ)/K is tamely ramified, and hence the trace
map Tr : Z[ζ ] → OK is surjective.

Set R = Z/pr Z and let us denote by H the unique subgroup of order e of R∗. Then
H acts on R by left multiplication. The orbit H0 will be denoted by 0 and called the
zero orbit.

Definition 2 For x ∈ R/H \ { 0 }, we define a Gaussian period

fx =
∑

x∈x

ζ x .

In addition, we set f0 = e.

If x = H x , then fx = TrQ(ζ)/K (ζ
x ). As the trace map Tr : Z[ζ ] → OK is

surjective., Gaussian periods are generators of OK over Z. The next proposition will
be used to show that OK has actually an integral basis consisting of Gaussian periods.

Set S = Z/pr−1Z, and let π : R → S be the canonical projection. The group H
acts on S by h ·s = π(h)s. Clearly, π is a morphism of H -sets and hence it induces the
unique map between the orbit sets ρ : R/H → S/H such that ρ(H x) = Hπ(x) for
all x ∈ R. In other words, if μR : R → R/H and μS : S → S/H are the canonical
projections, then ρμR = μSπ . In particular, ρ is surjective. For any subset A of R,
set ζ A = {ζ a | a ∈ A}, and let us denote by Ac the complement of A in R. For a finite
set X , we denote by |X | the number of elements of X .

We thank H.W. Lenstra, Jr, for sending us the part (1) ⇔ (2) of the following
proposition.
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Upper bounds for the Euclidean minima of abelian fields 1077

Proposition 1 Let A ⊂ R \ { 0 } be an H-invariant set. The following conditions are
equivalent:

1. ζ A is a basis of Z[ζ ].
2. The restriction π : Ac → S is a bijection.
3. The restriction ρ : Ac/H → S/H is a bijection.
4. For every y ∈ S/H we have

|ρ−1(y) ∩ A/H | = |ρ−1(y)| − 1.

5. TrQ(ζ)/K (ζ
A) = { fx | x ∈ A/H } is a basis of OK .

Proof (1) ⇔ (2) Note that the sum of powers of ζ over any coset of ker π in R equals
zero. Thus, if ζ A is a Z-basis, then A must miss at least one element of each coset.
It cannot miss more than one since then the cardinality of A would be too small.
Conversely, if A misses exactly one element from each coset, then the sum relation
mentioned shows that the Z-span of ζ A contains all roots of unity of order pr . Hence
ζ A forms an integral basis.

(2) ⇒ (3) This follows immediately from the fact that π is a morphism of H -sets
and Ac is H -invariant.

(3) ⇒ (2) First, we shall show that π|Ac is onto. Suppose that this is not true.
Then π must miss at least one full orbit since it is an H -map but in such a case the
restriction of ρ : Ac/H → S/H would not be surjective. Thus π|Ac is onto. We claim
that |Ac| = |S|, which implies that π|Ac is a bijection. Indeed, the set Ac/H maps
bijectively onto S/H , which implies that they have the same cardinality. Since both
Ac/H and S/H contain the respective zero orbits, it is easy to check that

∣
∣Ac/H

∣
∣ = 1 + |Ac| − 1

e
and |S/H | = 1 + |S| − 1

e
,

which readily implies |Ac| = |S|.
(3) ⇔ (4) Since A is H -invariant, it follows that the sets A/H, Ac/H form a

partition of the orbit space R/H . Consequently, for every y ∈ S/H we have

|ρ−1(y) ∩ A/H | = |ρ−1(y)| − |ρ−1(y) ∩ Ac/H |.

The restriction ρ : Ac/H → S/H is a bijection if and only if |ρ−1(y)∩ Ac/H | = 1
for every y ∈ S/H .

(1) ⇒ (5) Assume now that ζ A is a basis of Z[ζ ]. We shall show that TrQ(ζ)/K (ζ
A)

is an integral basis of K . Since 0 /∈ A, it follows that A is a union of n orbits, each of
cardinality e. Consequently,

|TrQ(ζ)/K (ζ
A)| ≤ n = rank OK .

Since Q(ζ)/K is tamely ramified, TrQ(ζ)/K (ζ
A) generates OK , which in turn

implies that we have in fact |TrQ(ζ)/K (ζ
A)| = n and that TrQ(ζ)/K (ζ

A) is an inte-
gral basis of K .
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1078 E. Bayer-Fluckiger, P. Maciak

(5) ⇒ (1) Since TrQ(ζ)/K (ζ
A) is a basis, we have |TrQ(ζ)/K (ζ

A)| = n. It follows
that |A| ≥ ne = pr−1(p − 1). Suppose by contradiction that ζ A is not a basis. Then
π : Ac → S is not a bijection. Since

|Ac| = |R| − |A| ≤ pr − pr−1(p − 1) = pr−1 = |S|,

it follows that π : Ac → S is not a surjection. Consequently, there exists x0 /∈ ker π
such that the coset C = x0 + ker π is contained in A. Note that the intersection of C
with any H -orbit is either empty or a singleton. Indeed, if x0 + z1 = h(x0 + z2) for
some z1, z2 ∈ ker π and h ∈ H \ { 1 }, then (1 − h)x0 ∈ ker π . Note that 1 − h is
invertible. Hence x0 ∈ ker π , which is a contradiction. Therefore the set HC = { hc |
h ∈ H, c ∈ C } is contained in A and it has |H | · |C | elements. Furthermore, HC/H
is contained in A/H and

∑

x∈HC/H

fx =
∑

hc∈HC

ζ hc =
∑

h∈H

∑

c∈C

ζ hc = 0,

which contradicts the linear independence of elements of TrQ(ζ)/K (ζ
A). Thus ζ A is a

basis of Z[ζ ]. ��
This proposition implies that OK has an integral basis consisting of Gaussian

periods. Indeed, we have

Corollary 2 There exists an H–invariant set A ⊂ R \ { 0 } such that

TrQ(ζ)/K (ζ
A) = { fx | x ∈ A/H }

is a basis of OK .

Proof For all y ∈ S/H with y �= 0, let us choose xy ∈ R/H such that ρ(xy) = y.
Set x0 = 0, and let B = ∪y∈S/H xy. Then B is an H–invariant subset of R containing
0, and the restriction ρ : B/H → S/H is a bijection. Set A = Bc; then A is an
H–invariant subset of R \ { 0 }, and the restriction ρ : Ac/H → S/H is a bijection.
By Proposition 1, this implies that TrQ(ζ)/K (ζ

A) = { fx | x ∈ A/H } is a basis of
OK . ��

6 Geometry of the ring of integers

We keep the notation of the previous section; in particular, K ∈ A and p = pK . Recall
that OK is the ring of integers of K , and let us consider the lattice (OK , q), where
q is defined by q(x, y) = TrK/Q(x y). As we have seen in Sect. 4, the Hermite–like
thickness of this lattice can be used to give an upper bound of the Euclidean minimum
of K . The purpose of this section is to describe the lattice (OK , q) using the results
of Sect. 5, so that we can compute its Hermite–like thickness.

We will see that (OK , q) decomposes in a natural way into the orthogonal sum of
a lattice ΓK , which is similar to the orthogonal sum of copies of the dual lattice of
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Upper bounds for the Euclidean minima of abelian fields 1079

the root lattice Ap−1, and of a lattice ΛK , which is similar to a certain lattice of type
Lb,m defined in Sect. 4. The Hermite–like thickness of these lattices can be estimated,
cf. [3], Theorem 4.1. This allows us to give good upper bounds for the Euclidean
minima of fields K ∈ A, following the strategy outlined in the introduction and in
Sect. 4.

Let ΓK be the orthogonal sum of pr−1−1
e copies of the lattice pr−1 A#

p−1. Set d =
p−1

e , and let ΛK = epr−1L p
e ,d

(note that the scaling is taken in the sense of Sect. 4,
that is it refers to multiplying the quadratic form by the scaling factor).

Theorem 3 The lattice (OK , q) is isometric to the orthogonal sum of ΓK and ofΛK .

Before proving this theorem, we need a few lemmas. Recall that R denotes the ring
Z/pr Z, and let m = pZ/pr Z be the maximal ideal of R. Note that if r = 1, then m is
the zero ideal. For x ∈ R/H we set ordp(x) = max{k ∈ N | x ⊂ mk}. Let us denote
by μ the Möbius function.

Lemma 1 Let x ∈ R/H. Then,

TrK/Q( fx) = φ(pr )

φ(pr−s)
· μ(pr−s),

where s = ordp(x)

Proof Let x0 ∈ x. We have

TrK/Q( fx) = TrK/Q(TrQ(ζ)/K (ζ
x0)) = TrQ(ζ)/Q(ζ

x0)

Assume first that s = 0. Then, x ⊂ R∗ and hence x0 ∈ R∗. Consequently,

TrK/Q( fx) =
∑

x∈R∗
ζ x0x =

∑

x∈R∗
ζ x = μ(pr ) = φ(pr )

φ(pr−s)
· μ(pr−s).

Now, assume that 1 ≤ s < r . Then, x0 = ps x1 with x1 ∈ R∗. Set ξ = ζ ps
and

T = Z/pr−sZ. Then ξ is a primitive root of unity of order pr−s . If τ : R∗ → T ∗ is
the natural map with kernel G, and the set Y ⊂ R∗ is mapped by τ bijectively onto
(Z/pr−sZ)∗, then

TrK/Q( fx) =
∑

x∈R∗
ξ x1x =

∑

x∈R∗
ξ x =

∑

g∈G

∑

y∈Y

ξ gy =
∑

g∈G

∑

y∈Y

ξ y

= |G| ·
∑

t∈T ∗
ξ t = φ(pr )

φ(pr−s)
· μ(pr−s).

Finally, if s = r , then x = 0 and x0 = 0 and hence

TrK/Q( fx) = TrQ(ζ)/Q(1) = φ(pr ) = φ(pr )

φ(pr−s)
· μ(pr−s).

��
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Proposition 2 Let x1, x2 ∈ R/H \ { 0 }. Then,

TrK/Q( fx1 fx2) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

pr − pr−1 if x1 = x2 and ρ(x1) = ρ(x2) �= 0,
pr − epr−1 if x1 = x2 and ρ(x1) = ρ(x2) = 0,
−pr−1 if x1 �= x2 and ρ(x1) = ρ(x2) �= 0,
−epr−1 if x1 �= x2 and ρ(x1) = ρ(x2) = 0,
0 if x1 �= x2 and ρ(x1) �= ρ(x2).

Proof Let x1 ∈ x1 and x2 ∈ x2. For h ∈ H we set x(h) = H(x1 − x2h) and
s(h) = ordpx(h). Then,

fx1 fx2 =
⎛

⎝
∑

h1∈h̄

ζ x1h1

⎞

⎠

⎛

⎝
∑

h2∈h̄

ζ−x2h2

⎞

⎠ =
∑

h1∈h̄

∑

h2∈h̄

ζ x1h1−x2h2

=
∑

h1∈h̄

∑

h∈h̄

ζ x1h1−x2hh1 =
∑

h1∈h̄

∑

h∈h̄

ζ (x1−x2h)h1

=
∑

h∈h̄

∑

h1∈h̄

ζ (x1−x2h)h1 =
∑

h∈h̄

fx(h).

By Lemma 1, we have

TrK/Q( fx1 fx2) =
∑

h∈H

TrK/Q( fx(h)) =
∑

h∈H

φ(pr )

φ(pr−s(h))
· μ(pr−s(h)). (2)

If x1 = x2, we can take x1 = x2 and then x(h) = H x1(1 − h). Clearly, s(1) = r . If
h �= 1, then we have s(h) = ordpx1. Thus, if ordpx1 < r − 1, then ρ(x1) �= 0 and the
only non-zero term of the sum (2) is the one corresponding to h = 1. Thus, we have

TrK/Q( fx1 fx2) = φ(pr )

φ(pr−s(1))
· μ(pr−s(1)) = φ(pr ) = pr − pr−1.

If ordp(x1) = r − 1, then ρ(x1) = 0 and the sum (2) becomes

TrK/Q( fx1 fx2) =
∑

h∈H

φ(pr )

φ(pr−s(h))
· μ(pr−s(h))

= φ(pr )+ (e − 1) · φ(pr )

φ(pr−1)
· μ(p)

= pr − epr−1.

Suppose now that x1 �= x2. Observe that ρ(x1) = ρ(x2) if and only if there is
an h ∈ H such that s(h) = r − 1. Moreover, in such a case an element h with this
property is unique unless ρ(x1) = 0, in which case we have s(h) = r − 1 for all
h ∈ H . Thus, assuming that ρ(x1) = ρ(x2) and ρ(x1) �= 0, we have
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Upper bounds for the Euclidean minima of abelian fields 1081

TrK/Q( fx1 fx2) =
∑

h∈H

φ(pr )

φ(pr−s(h))
· μ(pr−s(h))

= φ(pr )

φ(p)
· μ(p) = −pr−1.

If ρ(x1) = 0, then

TrK/Q( fx1 fx2) =
∑

h∈H

φ(pr )

φ(pr−s(h))
· μ(pr−s(h))

=
∑

h∈H

φ(pr )

φ(p)
· μ(p) = −epr−1.

Finally, if ρ(x1) �= ρ(x2), then s(h) ≤ r − 2 for all h ∈ H , which gives

TrK/Q( fx1 fx2) = 0.

��
Lemma 2 Let y ∈ S/H. Then,

|ρ−1(y)| =
{

1 + p−1
e if y = 0,

p if y �= 0.

Proof Let X = ρ−1(y). Note that 0 ∈ X if and only if y = 0, hence

|μ−1
R (X)| =

{
1 + e · (|X | − 1) if y = 0,
|X | · e if y �= 0.

On the other hand, μ−1
R (X) = μ−1

R (ρ−1(y)) = (ρμR)
−1(y) = (μSπ)

−1(y).
If y = 0, then

μ−1
R (X) = (μSπ)

−1(0) = { x ∈ R | Hπ(x) = 0 } = mr−1

and hence |(μSπ)
−1(0)| = p, which implies that |X | = 1 + p−1

e .
If y �= 0, then there is an element x0 ∈ R \ mr−1 such that y = Hπ(x0). Conse-

quently,

μ−1
R (X) = (μSπ)

−1(y) = { x ∈ R | Hπ(x) = Hπ(x0) }
= { x ∈ R | x = k + hx0 for some k ∈ mr−1 and h ∈ H }.

Let k1, k2 ∈ mr−1 and h1, h2 ∈ H . If k1 +h1x0 = k2 +h2x0, then h1(1−h−1
1 h2)x0 ∈

mr−1. Since x0 /∈ mr−1, it follows that 1 − h−1
1 h2 is not invertible. Hence h1 = h2,

which in turn implies that k1 = k2. Therefore |(μSπ)
−1(y)| = |mr−1| · |H | = pe,

which gives |X | = p. ��
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Proof of Theorem 3 Let A ⊂ R \ { 0 } be an H -invariant set such that TrQ(ζ)/K (ζ
A)

is a basis of OK . For y ∈ S/H we set

By = { fx ∈ TrQ(ζ)/K (ζ
A) | ρ(x) = y } and Ly = spanZ By.

By Proposition 2, we have

OK = ⊥y∈S/H Ly, (3)

in other words the lattice (OK , q) is the orthogonal sum of the lattices obtained by
the restriction of q to Ly for y ∈ S/H . Combining Lemma 2 and the condition (4) of
Proposition 1, we obtain that

|By| =
{

p−1
e if y = 0,

p − 1 if y �= 0.

Furthermore, using Proposition 2 again, we conclude that the Gram matrix of the lattice
Ly with respect to By is pr−1(pIp−1 − Jp−1) unless y = 0 in which case it equals
epr−1(

p
e Id − Jd), where d = p−1

e . Consequently, we have L0 = ΛK . Moreover, S/H

has pr−1−1
e nonzero orbits. As a result,

⊥y �=0 Ly � ΓK .

Thus the equality (3) implies that (OK , q) is isometric to the orthogonal sum of ΓK

and ΛK .

We now apply Theorem 3 to give an upper bound of the Hermite–like thickness of
the lattice (OK , q). The following is well–known

Lemma 3 We have

det(OK , q) = pυ,

where

υ = rn − (pr−1 − 1)

e
− 1.

Proof Note that det(OK , q) is the absolute value of the discriminant of K . The result
follows from Theorem 4.1 in [14]. Alternatively, one can compute det(OK , q) directly
using Theorem 3. ��
Lemma 4 We have

max(OK , q) ≤ n · pr+1 + pr + 1 − e2

12p
.
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Proof By Theorem 4.1 in [3], we have

max(L p
e ,d
) ≤ d(p2 + p + 1 − e2)

12ep
.

Furthermore, max(L p,p−1) = p2−1
12 . Consequently,

max(OK , q) =
∑

y∈S/H

max(Ly)

≤ pr−1 − 1

e
· pr−1 · p2 − 1

12
+ pr−1 · d(p2 + p + 1 − e2)

12p

= dpr−1
[(

pr−1 − 1

p − 1

)
·
(

p2 − 1

12

)
+ p2 + p + 1 − e2

12p

]

= n · (p
r−1 − 1)(p + 1)p + (p2 + p + 1 − e2)

12p

= n · pr+1 + pr + 1 − e2

12p
.

��
As a direct consequence of the above lemmas, we obtain the following upper bound

of τmin(OK )

Corollary 3 We have

τmin(OK ) ≤ τ(OK , q) ≤ n · pr− υ
n · pr+1 + pr + 1 − e2

12pr+1 .

This bound will be used in the next section to prove Theorems 1 and 2.

7 Euclidean minima—proof of the main results

In this section we prove the main results of the paper, namely the upper bounds for
Euclidean minima stated in Sect. 3. Recall that for any number field K of degree n,
we have

M(K ) ≤
(
τmin(OK )

n

) n
2 √

DK ,

where DK is the absolute value of the discriminant of K . For K ∈ A, we now have
an upper bound (see Corollary 3) and this will be used in the proofs.

Proof of Theorem 1 Set

f = pr+1 + pr + 1 − e2

12pr+1 , C = √
f , ε = rn

υ
.
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Then, by the inequality (1) and Corollary 3, we get

M(K ) ≤
(
τ(OK )

n

) n
2 √

DK ≤ Cn · (√DK )
ε.

First we shall prove that ε(K ) has the stated properties. If r = 1, then υ = n − 1
and ε = n

n−1 , which implies that ε ≤ 2 with the equality only for n = 2. It is also
clear that ε → 1 if n → ∞. Assume that r ≥ 2. A simple calculation shows that

2υ − rn = rdpr−1 − 2d

(
pr−1 − 1

p − 1

)
− 2.

Clearly,

pr−1 − 1

p − 1
≤ (r − 1)pr−2,

which gives

2υ − rn ≥ rdpr−1 − 2d(r − 1)pr−2 − 2 = rdpr−2(p − 1)+ pr−2d − 2 > 0,

which implies that ε < 2. Another simple calculation shows that

ε = r
(
1 + 1

υ

)

(r − δ)
, (4)

where

δ = pr−1 − 1

pr−1(p − 1)
.

Observe that

ln n < r ln p < r(p − 1) ≤ r p − 1.

Since 0 ≤ δ < 1
p , it follows that for n ≥ 3 we have

0 ≤ r

r − δ
− 1 <

1

r p − 1
<

1

ln n
.

Thus we get

lim
n→∞

r

r − δ
= 1. (5)

Finally, it follows from (4) that υ + 1 = (r − δ)n. Since r − δ > r − 1 ≥ 1, we get
υ > n − 1. Consequently

lim
n→∞

(
1 + 1

υ

)
= 1. (6)

123



Upper bounds for the Euclidean minima of abelian fields 1085

Combining the equalities (5), (6), we obtain

lim
nK →∞ ε(K ) = 1.

Now we prove the properties of C(K ). We have

f = pr+1 + pr + 1 − e2

12pr+1 ≤ pr+1 + pr

12pr+1 = p + 1

12p
≤ 1

9

and hence C ≤ 1
3 . We can also write

f = pr+1 + pr + 1 − e2

12pr+1 = 1

12

(
1 + 1

p
+ 1

pr+1 − e2

pr+1

)
.

If r = 1 and e is constant, then f clearly approaches 1
12 as p → ∞ and hence

C(K ) → 1
2
√

3
. Assume now that r ≥ 2. Since 1 ≤ e ≤ p − 1, it follows that

0 < f − 1

12
≤ 1

12p

and thus

0 < C(K )− 1

2
√

3
≤

√
3

12p
.

Consequently,

lim
pK →∞ C(K ) = 1

2
√

3

and this concludes the proof of the theorem.

Proof of Theorem 2 We shall use the same notation as in the proof of Theorem 1. In
addition, we set

ω(K ) = C(K ) · (√p)δ+
1
n .

A simple calculation using Corollary 3 and formulas derived in the proof of Theorem 1
gives

(
τ(OK )

n

) 1
2 ≤ ω(K )

Then, by the inequality (1), we have

M(K ) ≤ ωn
√

DK .
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If r ≥ 2, then δ + 1
n ≤ 2

p and hence

1 < (
√

p)δ+
1
n ≤ p

√
p.

Consequently, using Theorem 1, we obtain

lim
p→∞ω(K ) = lim

p→∞ C(K ) · lim
p→∞(

√
p)δ+

1
n = 1

2
√

3
. (7)

Moreover, using Theorem 1 and the fact that the sequence { p
√

p}p≥3 is decreasing, we
also get

ω(K ) ≤ C(K ) · p
√

p ≤ 1

3
3
√

3 = 3−2/3.

If r = 1, then δ = 0 and

(
√

p)δ+
1
n = (

√
pe)

1
p−1 .

Thus assuming that e is constant, we see that (7) holds as well. This concludes the
proof of the theorem.

8 Abelian fields of prime conductor

If K is an abelian field of conductor pr with r ≥ 2, then we have seen that
M(K ) ≤ 2−n√

DK , cf. Corollary 1. In particular, if K is totally real, then Minkowski’s
conjecture holds for K . If r = 1, that is if the conductor of K is prime, then our results
are less complete. The aim of this section is to have a closer look at this case. As we
will see, one can prove Minkowski’s conjecture in a number of special cases when K
is totally real.

8.1 Totally real fields

Let us consider the set Se of all totally real abelian fields of prime conductor such
that [Q(ζ) : K ] = e, where e is an even positive integer. The Dirichlet prime number
theorem implies that the set Se is infinite. By Theorem 2, we have

lim
pK →∞ω(K ) = 1

2
√

3
.

In particular, for each e there exists N = N (e) such that for every field K ∈ Se

with pK > N we have

ω(K ) ≤ 1

2
.
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and hence Minkowski’s conjecture holds for these fields. The next result shows that
we can take N (e) = 2e2.

Proposition 3 Let e be an even positive integer and K ∈ Se. If pK > 2e2, then

M(K ) ≤ 2−n
√

DK

Proof We shall use the same notation as in the proofs of Theorems 1 and 2. Addition-
ally, let

T = { (x, y) ∈ R2 | x ≥ 2 and y ≥ 2x + 1 }

and h : T → R be a function given by

h(x, y) = y2 + y + 1 − x2

3y2 · y
x

y−1 .

Then we have

ω(K ) = C(K ) · p1/2n = 1

2
· √

h(e, p).

Thus it is enough to show that h(e, p) ≤ 1 for p > 2e2. We set

h1(x, y) = y2 + y + 1 − x2

3y2

h2(x, y) = y
x

y−1 .

For every x ≥ 2 and every y > 2(x2 − 1) we have

∂h1

∂y
(x, y) = 1

3

(
2(x2 − 1)

y3 − 1

y2

)
< 0.

Furthermore, for every x ≥ 2 and every y ≥ 2x + 1 we have

∂h2

∂y
(x, y) = xh2(x, y)

(y − 1)2

(
y − 1

y
− ln y

)
< 0.

Consequently, for every x ≥ 2 and every i = 1, 2 the function y �→ hi (x, y) is
positive and decreasing on the interval [2x2,∞). Hence the function y �→ h(x, y) is
decreasing on the interval [2x2,∞). Moreover,

h(x, 2x2) = (2x2)
x

2x2−1 · 4x4 + x2 + 1

12x4 < (2x2)
1

2x−1
1

2
≤ 1.

Consequently, h(x, y) < 1 for all x ≥ 2 and y ≥ 2x2. The result follows. ��
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We can have h(e, p) ≤ 1 even if p < 2e2, which in many cases allows us to show
that Minkowski’s conjecture holds for every K ∈ Se.

Example 1 If e ≤ 1202 is an even integer, then Minkowski’s conjecture holds for
every K ∈ Se.

Proof If p > 2e2, then the result follows from Proposition 3. For p < 2e2, it has been
verified using Magma Computational Algebra System [5] that either h(e, p) ≤ 1 or
nK ≤ 8. In the first case, the result follows from the proof of Proposition 3. In the
second case, it follows from the fact that Minkowski’s conjecture is known to hold for
fields of degree not exceeding 8.

The previous results are based on upper bounds of τmin(OK ) obtained through the
lattice (OK , q). Another approach is to estimate τmin(OK ) using a scaling factor α,
giving rise to the lattice (OK , qα), see Sect. 4. A computation shows that if p < 400,
then for an appropriate α ∈ P the lattice (OK , qα) is isomorphic to the unit lattice.
Then [2], Corollary (5.5) implies that Minkowski’s conjecture holds. ��

8.2 Totally imaginary fields

If p ≡ 3 (mod 4), then K = Q(
√−p) ∈ A. Using formulas derived in the proof of

Theorem 1, we get

M(K ) ≤ (p + 1)2

16p
.

Note that this bound is known to be the exact value of the Euclidean minimum of K
(see for instance Proposition 4.2 in [9]). In particular, the inequality

M(K ) ≤ 2−n
√

DK

does not hold in general for number fields that are not totally real. Just as in the totally
real case, we have

M(K ) ≤ 3−2n/3
√

DK < 2−n
√

DK (8)

for all totally imaginary fields K ∈ A with composite conductors. If the conductor of
K is prime and nK > 2, then by Theorem 1 we have

M(K ) ≤ 3−n(
√

DK )
ε (9)

with ε < 2. Note that given the asymptotic behavior of the expressions ε(K ),C(K ),
ω(K ), using the formulas derived in the proofs of Theorems 1 and 2 directly will often
lead to better bounds.
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