
Distrib. Comput. (2008) 20:343–358
DOI 10.1007/s00446-007-0043-z

Failure detectors as type boosters

Rachid Guerraoui · Petr Kouznetsov

Received: 1 June 2004 / Accepted: 26 July 2007 / Published online: 9 October 2007
© Springer-Verlag 2007

Abstract The power of an object type T can be measu-
red as the maximum number n of processes that can solve
consensus using only objects of T and registers. This number,
denoted cons(T), is called the consensus power of T . This
paper addresses the question of the weakest failure detector
to solve consensus among a number k > n of processes that
communicate using shared objects of a type T with consen-
sus power n. In other words, we seek for a failure detector that
is sufficient and necessary to “boost” the consensus power
of a type T from n to k. It was shown in Neiger (Procee-
dings of the 14th annual ACM symposium on principles of
distributed computing (PODC), pp. 100–109, 1995) that a
certain failure detector, denoted Ωn , is sufficient to boost the
power of a type T from n to k, and it was conjectured that Ωn

was also necessary. In this paper, we prove this conjecture
for one-shot deterministic types. We first show that, for any
one-shot deterministic type T with cons(T) ≤ n, Ωn is
necessary to boost the power of T from n to n + 1. Then
we go a step further and show that Ωn is also the weakest
to boost the power of (n + 1)-ported one-shot determinis-
tic types from n to any k > n. Our result generalizes, in a
precise sense, the result of the weakest failure detector to
solve consensus in asynchronous message-passing systems

This paper is a revised and extended version of a paper that appeared
in the Proceedings of the 17th International Symposium on
Distributed Computing (DISC 2003), entitled “On failure detectors
and type boosters.”

R. Guerraoui (B) · P. Kouznetsov
Distributed Programming Laboratory, EPFL,
1015 Lausanne, Switzerland
e-mail: rachid.guerraoui@epfl.ch

P. Kouznetsov
Max Planck Institute for Software Systems,
Stuhlsatzenhausweg 85, 66123 Sarbrücken, Germany

(Chandra et al. in J ACM 43(4):685–722, 1996). As a corol-
lary, we show that Ωt is the weakest failure detector to boost
the resilience level of a distributed shared memory system,
i.e., to solve consensus among n > t processes using (t −1)-
resilient objects of consensus power t .

1 Introduction

Background. Key agreement problems, such as consensus,
are not solvable in an asynchronous system where processes
communicate solely through registers (i. e., read–write sha-
red memory), as long as one of these processes can fail by
crashing [9,11,21]. Circumventing this impossibility has
sparked off two research trends:

(1) Augmenting the system model with synchrony
assumptions about relative process speeds and commu-
nication delays [10]. Such assumptions could be
encapsulated within a failure detector abstraction [8].
In short, a failure detector uses the underlying syn-
chrony assumptions to provide each process with (pos-
sibly unreliable) information about the failure pattern,
i.e., about the crashes of other processes. A major miles-
tone in this trend was the identification of the weakest
failure detector to solve consensus in an asynchronous
message-passing system [7]. The result was extended
later to the read–write shared memory model [19]. This
failure detector, denoted Ω , outputs one process at every
process so that, eventually, all correct processes detect
the same correct process. The very fact that Ω is the
weakest to solve consensus means that any failure detec-
tor that solves consensus can emulate the output of Ω .
In a sense, Ω encapsulates the minimum amount of

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/159151643?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

344 R. Guerraoui, P. Kouznetsov

synchrony needed to solve consensus among any num-
ber of processes communicating through registers.

(2) Augmenting the system model with more powerful
communication primitives, typically defined as shared
object types with sequential specifications [14,21]. It
has been shown, for instance, that consensus can be
solved among any number of processes if objects of the
compare&swap type can be used [14]. A major miles-
tone in this trend was the definition of the power of an
object type T , denoted cons(T), as the maximum num-
ber n of processes that can solve consensus using only
objects of T and registers. For instance, the power of the
register type is simply 1 whereas the compare&swap
type has power ∞. An interesting fact here is the exis-
tence of types with intermediate power, like test-and-
set or queue, which have power 2 [14,21].

Motivation. At first glance, the two trends appear to be
fundamentally different. Failure detectors encapsulate syn-
chrony assumptions and provide information about failure
patterns, but cannot however be used to communicate infor-
mation between processes. On the other hand, objects with
sequential specifications can be used for inter-process com-
munication, but they do not provide any information about
failures. It is intriguing to figure out whether these trends
can be effectively combined [23]. Indeed, in both cases, the
goal is to augment the system model with abstractions that
are powerful enough to solve consensus, and it is appealing
to determine whether abstractions from different trends add
up. For instance, one can wonder whether the weakest fai-
lure detector to solve consensus using registers and queues
is strictly weaker than Ω .

One way to effectively combine the two trends is to deter-
mine a failure detector hierarchy, Dn , n ∈ N such that Dn

would be the weakest failure detector to solve consensus
among n + 1 processes using objects of any type T such
that cons(T) = n. In the sense of [15], Dn would thus be the
weakest failure detector to boost the power of T to higher
levels of the consensus hierarchy.

A reasonable candidate for such a failure detector hie-
rarchy was introduced by Neiger in [23]. This hierarchy is
made of weaker variants of Ω , denoted Ωn , n ∈ N, where
Ωn is a failure detector that outputs, at each process, a set of
processes so that all correct processes eventually detect the
same set of at most n processes that includes at least one cor-
rect process. Clearly, Ω1 is Ω . It was shown in [23] that Ωn

is sufficient to solve consensus among k processes (k > n)
using any set of types T such that cons(T) = n and regis-
ters. It was also conjectured in [23] that Ωn is the weakest
failure detector to boost the power of T to the level n + 1
of the consensus hierarchy. As pointed out in [23], the proof
of this conjecture appears to be challenging and was indeed

left open. The motivation of this work was to take up that
challenge.

Contributions. In this paper, we assume that processes com-
municate using read-write shared memory (registers) and
one-shot deterministic types [15]. Although these types res-
trict every process to invoke at most one deterministic ope-
ration on each object, they include many popular types such
as consensus and test-and-set, and they exhibit complex
behavior in the context of the type booster question [5,15,
17,20].

We show that Ωn is necessary to solve consensus in a
system of k = n + 1 processes using objects of any one-
shot deterministic type T (cons(T) = n) and registers. Then
we generalize the result by showing that Ωn is the weakest
failure detector to solve consensus in a system of k (k >

n) processes using registers and (n + 1)-ported objects of
type T .

Our result is a strict generalization of the fundamental
result of [7] where Ω was shown to be necessary to solve
consensus in a message-passing system. We assume that,
instead of reliable channels, processes communicate through
registers and objects of a powerful sequential type T . The
only information available on T is the fact that cons(T) = n
and T is one-shot and deterministic. This lack of information
forced us to reconsider the proof of [7]. In particular, we reuse
and generalize the notions of simulation tree, decision gadget
and deciding process introduced in [7].

As a side effect, we get a formal proof that any failure
detector that can be used to solve consensus among k ≥ 2
processes in the read-write memory model can be transfor-
med to Ω . The result was first stated in [19] but, to our know-
ledge, its proof has never appeared in the literature.

As another interesting corollary of our result, we identify
the weakest failure detector to boost the resilience level of a
distributed shared memory system. More precisely, consider
a systems of n processes that communicate through read-
write registers and t-resilient objects. Informally, an object
implementation is called t-resilient if any operation on the
object terminates unless more than t processes fail, where
t is a specified parameter. We show that Ωt+1 is necessary
and sufficient to solve consensus among n > t +1 processes
using t-resilient objects of consensus power t + 1.

Related work. The notion of consensus power was introdu-
ced by Herlihy [14] and then refined by Jayanti [17]. Chandra
et al. [7] showed in that Ω is the weakest failure detector to
solve consensus in asynchronous message-passing systems
with a majority of correct processes. Lo and Hadzilacos sho-
wed that Ω can be used to solve consensus with registers
and outlined a proof that any failure detector that can be
used to solve consensus with registers can be transformed
to Ω [19]. Neiger [23] introduced the hierarchy of failure

123

Failure detectors as type boosters 345

detectors Ωn and showed that objects of consensus power n
can solve consensus among any number of processes using
Ωn . Neiger also conjectured in [23] that Ωn was actually
necessary for solving consensus using objects of consensus
power n and gave a high-level outline of a potential proof of
this conjecture. An indirect proof that it is impossible to boost
the resilience of atomic objects without using failure detec-
tors appeared first in [13] (this fact was independently and
concurrently observed by P. Jayanti (private communication,
2003). A direct self-contained proof of this result appeared
in [2], and then it was extended to more general classes of
distributed services in [3].

Roadmap. Section 2 presents necessary details of the model
used in this chapter. We also recall here the hierarchy of fai-
lure detectors Ωn . Section 3 shows that Ωn is necessary to
boost the consensus power of one-shot deterministic objects
one level up. Section 4 generalizes the result to any num-
ber of levels. Section 5 applies our result to the question of
boosting the resilience of a distributed system with respect to
the consensus problem. Section 6 concludes the paper with a
discussion on how our proof relates to the Neiger’s original
outline of how to approach such a proof [23].

2 Model

Our model of processes communicating through shared
objects is based on that of [16,17] and our notion of failure
detectors follows from [7]. Below we recall what is substan-
tial to show our result.

Processes

We consider a set Π of k asynchronous processes p1, . . . , pk

(k ≥ 2) that communicate using shared objects. To simplify
the presentation of our model, we assume the existence of a
discrete global clock. This is a fictional device: the processes
have no direct access to it. (More precisely, the information
about global time can come only from failure detectors.) We
take the range T of the clock’s ticks to be the set of natural
numbers and 0 (T = {0} ∪ N).

2.1 Objects and types

An object is a data structure that can be accessed concurrently
by the processes. Every object is an instance of a type which is
defined by a tuple (Q, O, m, R, δ). Here Q is a set of states,
O is a set of operations, m is a positive integer denoting the
number of ports (used as the interface between processes and
objects), R is a set of responses, and δ is a relation known as
the sequential specification of the type: it carries each port,

state and operation to a set of response and state pairs. We
assume that objects are deterministic: the sequential specifi-
cation is a function δ : Nm × Q × O → Q × R. A type is said
to be m-ported if it has m ports. If not explicitly specified,
we assume that the number of ports of any object is k, i.e.,
the object is connected to every process.

A process accesses objects by invoking operations on the
ports of the objects. A process can use at most one port of
each object. A port can be used by at most one process.

We say that type T = (Q, O, m, R, δ) is one-shot if
⊥ ∈ R, Q = 2Nm × Q′, for some Q′, such that for all
(S, q) ∈ Q, j ∈ Nm , and op ∈ O , if j /∈ S, then δ(j,
(S, q), op) = ((S ∪ { j}, q ′), r) where q ′ ∈ Q′ and r ∈ R,
otherwise (if j ∈ S), δ(j, (S, q), op) = ((S, q),⊥). Infor-
mally, a port of a one-shot object can return meaningful (non-
⊥) response at most once in any execution: every subsequent
operation applied on the port does not impact the object and
returns ⊥.

We consider here linearizable [4,16] objects: even though
operations of concurrent processes may overlap, each opera-
tion takes effect instantaneously between its invocation and
response. If a process invokes an operation on a linearizable
object and fails before receiving a matching response, then
the “failed” operation may take effect at any future time.
Any execution on linearizable objects can thus be seen as
a sequence of atomic invocation-response pairs, where the
last operation invoked by a failed process may be linearized
(appointed to take effect) at any time after the invocation.

Unless explicitly stated otherwise, we assume that the
objects are wait-free: any operation invoked by a correct pro-
cess on a wait-free object eventually returns, regardless of
failures of other processes.

2.2 Failures and failure patterns

Processes are subject to crash failures. We do not consider
Byzantine failures: a process either correctly executes the
algorithm assigned to it, or crashes and stops forever execu-
ting any action.

A failure pattern F is a function from the global time
range T to 2Π , where F(t) denotes the set of processes that
have crashed by time t . Once a process crashes, it does not
recover, i.e., ∀t : F(t) ⊆ F(t + 1).

We define correct(F) = Π − ∪t∈TF(t), the set of cor-
rect processes in F . Processes in Π − correct(F) are called
faulty in F . A process p /∈ F(t) is said to be up at time t .
A process p ∈ F(t) is said to be crashed at time t . We say
that a subset U ⊆ Π is alive if U ∩ correct(F) �= ∅. We
consider here all failure environments [7], i.e., we make no
assumptions on when and where failures might occur. Howe-
ver, we assume that there is at least one correct process in
every failure pattern.

123

346 R. Guerraoui, P. Kouznetsov

2.3 Failure detectors

A failure detector history H with range R is a function from
Π×T toR. H(p, t) is the value of the failure detector module
of process p at time t . A failure detector D with range RD
is a function that maps each failure pattern to a set of failure
detector histories with range RD (usually defined by a set
of requirements that these histories should satisfy). D(F)

denotes the set of possible failure detector histories permitted
by D for failure pattern F . Note that we do not make any
assumption a priori on the range of a failure detector. When
any process p performs a step of computation, it can query
its module of D, denoted Dp, and obtain a value d ∈ RD
that encodes some information about failures.

The leader failure detector Ω outputs the id of a process
at each process. There is a time after which it outputs the id of
the same correct process at all correct processes [7]. Formally,
for each failure pattern F , H ∈ Ω(F) if and only if ∃t ∈
T ∃q ∈ correct(F)∀p ∈ correct(F)∀t ′ ≥ t : H(p, t ′) = q.

2.4 Algorithms

We define an algorithm A using a failure detector D as a
collection of k deterministic automata, one for each process
in the system. A(p) denotes the automaton on which process
p runs the algorithm A. Computation proceeds in atomic
steps of A. In each step of A, process p

(i) invokes an operation on a shared object and receives a
response from the object, or queries its failure detector
module Dp and receives a value from Dp (in the latter
case, we say that the step of p is a query step), and

(ii) applies its current state, the response received from
the shared object or the value output by Dp to the
automaton A(p) to obtain a new state.

A step of A is thus identified by a pair (p, x), where x is
either λ (the empty value) or, if the step is a query step, the
failure detector value output at p during that step.

2.5 Configurations, schedules and runs

A configuration of A defines the current state of each process
and each object in the system. An initial configuration of A
specifies the initial state of every A(p) and every object used
by the algorithm.1

The state of any process p in C determines whether in any
step of p applied to C , p queries its failure detector module

1 The consensus power of type T does not depend on whether or not
the algorithms are allowed to choose the initial states of objects of type
T [5].

or accesses a shared object. Respectively, a step (p, x) is said
to be applicable to C if and only if

(a) x = λ , and p invokes an operation o on a shared object
X in its next step in C (we say that p accesses X with
o in C), or

(b) x ∈ RD, and p queries its failure detector Dp in its
next step in C (x is the value obtained from Dp during
that step).

For a step e applicable to C , e(C) denotes the unique confi-
guration that results from applying e to C .

A schedule S of algorithm A is a (finite or infinite)
sequence of steps of A. S⊥ denotes the empty schedule. We
say that a schedule S is applicable to a configuration C if
and only if (a) S = S⊥, or (b) S[1] is applicable to C , S[2] is
applicable to S[1](C), etc. For a finite schedule S applicable
to C , S(C) denotes the unique configuration that results from
applying S to C .

Let S be any schedule applicable to a configuration C . We
say that S applied to C accesses X if S has a prefix S′ · (p, λ)

where p accesses X in S′(C).
For any P ⊆ Π , we say that S is a P-solo schedule if only

processes in P take steps in S.
A partial run of algorithm A using a failure detector D is

a tuple R = 〈F, H, I, S, T 〉 where F is a failure pattern, H ∈
D(F) is a failure detector history, I is an initial configuration
of A, S is a finite schedule of A, and T ⊆ T is a finite list of
increasing time values such that |S| = |T |, S is applicable to
I , and for all 1 ≤ k ≤ |S|, if S[k] = (p, x) then:

(1) Either p has not crashed by time T [k], i.e., p /∈ F(T [k]),
or x = λ and S[k] is the last appearance of p in S, i.e.,
∀k < k′ ≤ |S|: S[k′] �= (p, ∗) (the last condition takes
care about the cases when an operation of p is lineari-
zed after p has crashed, and there can be at most one
such operation in a run);

(2) if x ∈ RD, then x is the value of the failure detec-
tor module of p at time T [k], i.e., d = H(p, T [k]).

A run of algorithm A using a failure detector D is a tuple
R = 〈F, H, I, S, T 〉 where F ∈ E is a failure pattern, H ∈
D(F) is a failure detector history, I is an initial configuration
of A, S is an infinite schedule of A, and T ⊆ T is an infinite
list of increasing time values indicating when each step of S
has occurred. In addition to satisfying properties (1) and (2)
of a partial run, R should guarantee that

(3) every correct (in F) process takes an infinite number of
steps in S.

123

Failure detectors as type boosters 347

2.6 Problems and solvability

A problem is a predicate on a set of runs (usually defined by a
set of properties that these runs should satisfy). An algorithm
A solves a problem M in an environment E using a failure
detector D if the set of all runs of A in E using D satisfies
M . We say that a failure detector D solves problem M in E if
there is an algorithm A which solves M in E using D.

2.7 A weakest failure detector

Informally, D is the weakest failure detector to solve a pro-
blem M in an environment E if (a) D is sufficient to solve
M in E , i.e., D can be used to solve M in E , and (b) D is
necessary to solve M in E , i.e., any failure detector D′ that
can be used to solve M can be transformed into D.

More precisely, let D and D′ be failure detectors, and E
be an environment. If, for failure detectors D and D′, there
is an algorithm TD′→D that transforms D′ into D in environ-
ment E , we say that D is weaker than D′ in E , and we write
D �E D′.

If D �E D′ but D′
�E D, we say that D is strictly weaker

than D′ in E , and we write D ≺E D′. If D �E D′ and
D′ �E D, we say that D and D′ are equivalent in E , and we
write D ≺E D′.

Algorithm TD′→D that emulates histories of D using his-
tories of D′ is called a reduction algorithm. Note that TD′→D
does not need to emulate all histories of D; it is required that
all the failure detector histories it emulates be histories of D.

We say that a failure detector D is the weakest failure
detector to solve a problem M in an environment E if the
following conditions are satisfied:

(a) D is sufficient to solve M in E , i.e., D solves M in E ,
and

(b) D is necessary to solve M in E , i.e., if a failure detector
D′ solves M in E , then D is weaker than D′ in E .

There might be a number of distinct failure detectors satis-
fying these conditions. (Though all such failure detectors are
in a strict sense equivalent.) With a slight abuse of grammar,
it would be more technically correct to talk about a weakest
failure detector to solve M in E .

2.8 Consensus

The (binary) m-process consensus problem [11] consists for
m processes to decide on some final values (0 or 1) based
on their initial proposed values in such a way that: (Agree-
ment) no two processes decide on different values, (Validity)
every decided value is a proposed value of some process, and
(Termination) every correct process eventually decides.

It is sometimes convenient to think of the consensus pro-
blem in terms of a one-shot object type. Formally, the m-
process consensus type is specified as a tuple (Q, O, m, R,

δ), where Q = 2Nm × {λ, 0, 1}, O = {propose(v) : v ∈
{0, 1}}, R = {⊥, 0, 1}, and for all v, v′ ∈ {0, 1}, S ∈ 2Nm ,
and j ∈ Nm−S, : δ(j, (S, λ), propose(v)) = ((S∪{ j}, v), v)

and δ(j, (S, v′), propose(v)) = ((S ∪ { j}, v′), v′).
We say that T solves m-process consensus if there is an

algorithm that solves m-process consensus using registers
and objects of type in T .

The consensus power [14,17] of an object type T , denoted
cons(T), is the largest number m of processes such that T
solves m-process consensus. If no such largest m exists, then
cons(T) = ∞.

To prove our result, we also use a restricted form of consen-
sus, team consensus. This variant of consensus always
ensures Validity and Termination, but Agreement is ensu-
red only if the input values satisfy certain conditions. More
precisely, assume that there exists a (known a priori) parti-
tion of the processes into two non-empty sets (teams). Team
consensus requires Agreement only if all processes on a team
have the same input value. Obviously, team consensus can
be solved whenever consensus can be solved. Surprisingly,
the converse is also true [23,24]:

Lemma 1 Let T be any type. If T solves team consensus
among m processes, then T also solves consensus among m
processes.

Proof We proceed by induction on m. For m = 2, team
consensus is consensus. Assume that, (1) for some m > 2,
T solves team consensus among m processes (for non-empty
teams A and B), and (2) for all 2 ≤ l < m, T solves l-process
consensus. Thus, A and B can use, respectively, |A|-process
consensus and |B|-process consensus to agree on the teams’
input values (A and B are non-empty, thus, |A| < m and
|B| < m). Once the team input value is known, the pro-
cesses run the team consensus algorithm among m processes
(with teams A and B). Since all processes on the same team
propose the same value, Agreement of m-process consensus
is satisfied. ��

2.9 Hierarchy of failure detectors Ωn

The hierarchy of failure detectors Ωn (n ∈ N) was introduced
in [23]. Ωn (n ∈ N) outputs a set of at most n processes at
each process so that, eventually, the same alive (including at
least one correct process) set is output at all correct processes.

Formally, RΩn = {P ⊆ Π : |P| ≤ n}, and for each
failure pattern F , H ∈ Ωn(F) ⇔
∃t ∈ T ∃P ∈ RΩn , P ∩ correct(F) �= ∅,

∀p ∈ correct(F)∀t ′ ≥ t : H(p, t ′) = P

123

348 R. Guerraoui, P. Kouznetsov

Clearly, Ω1 is equivalent to Ω . It was furthermore shown
in [23] that, for all k ≥ 2 and 1 ≤ n ≤ k − 1:

(a) Ωn+1 ≺ Ωn ;
(b) for any type T such that cons(T) = n, Ωn can be used

to solve k-process consensus using registers and objects
of type T .

3 Boosting types to level n + 1

In this section, we assume that k = n+1 processes communi-
cate through registers and objects of a one-shot deterministic
type T such that cons(T) ≤ n. We show that Ωn is necessary
to solve consensus in this system. Our proof is a natural gene-
ralization of the proof that Ω is necessary to solve consensus
in message-passing asynchronous systems [7].

3.1 An overview of the reduction algorithm

Let ConsD be any algorithm that solves consensus using
registers, objects of a one-shot determinstic type T , and a
failure detector D. Our goal is to define a reduction algorithm
TD→Ωn that emulates the output of Ωn using D and ConsD .
The reduction algorithm should have all correct processes
eventually agree on the same alive set of at most n processes.

TD→Ωn consists of two parallel tasks: a communication
task and a computation task.

In the communication task, each process p periodically
queries its failure detector module of D and exchanges the
failure detector values with the other processes values using
read-write memory. While doing so, p knows more and more
of the other processes’ failure detector outputs and temporal
relations between them. All this information is pieced toge-
ther in a single data structure, a directed acyclic graph (DAG)
G p.

In the computation task, p uses its DAG G p to periodi-
cally simulate locally, for any initial configuration I and any
set of processes P ⊆ Π , a number of finite runs ConsD .
These runs constitute an ever-growing simulation tree, deno-
ted Υ

P,I
p . Since registers provide reliable (though asynchro-

nous) communication, all such Υ
P,I
p converge to the same

infinite simulation tree Υ P,I .
It turns out that the processes can eventually detect the

same set P ⊆ Π , such that P includes all correct processes
and either there exists a correct critical process whose propo-
sal value in some initial configuration I defines the decision
value in all paths in Υ P,I , or some Υ P,I has a finite subtree
γ , called a complete decision gadget, that provides sufficient
information to compute a set of at most n processes one of
which is correct process. This set of processes is called the
deciding set of γ . Eventually, the correct processes either

detect the same critical process or detect the same complete
decision gadget and agree on its deciding set. In both cases,
Ωn is emulated.

A difficult point here is that sometimes the deciding set is
encoded in an object of type T . We cannot use the sequential
specification of type T , and we hence cannot use the case
analysis suggested by Lo and Hadzilacos [7] to compute the
deciding set. Fortunately, in this case, it is possible to locate
a special kind of decision gadget, which we introduce here
and which we call a rake.

Leaves of the rake are configurations that result after each
process applies one operation on the same object of type T
to a given configuration of ConsD. Moreover, every leave x
of the rake is univalent, i.e., there is exactly one value that
can be decided in any run of ConsD extending x , and there
is at least one 0-valent and at least one 1-valent leave of the
rake. Using the assumptions that T is a one-shot deterministic
type and cons(T) ≤ n, we derive that there must be at least
one “confused” process pi that is not able to distinguish, in
any solo execution, two univalent configurations x0 and x1

of opposite valence. Thus, pi will never be able to decide on
its own starting from x0 or x1. This implies that the set of n
other processes (the deciding set of the rake) must include
at least one correct process that would provide pi with the
decision value.

3.2 The communication task and DAGs

The communication task of algorithm TD→Ω is presented
in Fig. 1. This task maintains an ever-growing DAG that
contains a finite sample of the current failure detector history.
(For simplicity, the DAG is stored in a register G p which can
be updated by p and read by all processes.)

DAG G p has some special properties which follow from
its construction [7]. Let F be the current failure pattern in E
and H be the current failure detector history in D(F). Then
for any correct process p and any time t (x(t) denotes the
value of variable x at time t):

(1) The vertices of G p are of the form [q, d, k] where
q ∈ Π , d ∈ RD and k ∈ N. There is a mapping τ :

Fig. 1 Building a DAG: the code for each process p

123

Failure detectors as type boosters 349

vertices ofG p(t) �→ T, associate a time with every
vertex of G p(t), such that:
(a) For any vertex v = [q, d, k], q /∈ F(τ (v)) and

d = H(q, τ (v)). That is, d is the value output by
q’s failure detector module at time τ(v).

(b) For any edge (v, v′), τ(v) < τ(v′). That is, any
edge in G p reflects the temporal order in which
the failure detector values are output.

(2) If v′ = [q, d, k] and v′′ = [q, d ′, k′] are vertices of
G p(t) and k < k′ then (v, v′) is an edge of G p(t).

(3) G p(t) is transitively closed: if (v, v′) and (v′, v′′) are
edges of G p(t), then (v, v′′) is also an edge of G p(t).

(4) For all correct processes q, there is a time t ′ ≥ t , a
d ∈ RD and a k ∈ N such that, for every vertex v of
G p(t), (v, [q, d, k]) is an edge of G p(t ′).

Note that properties (1)–(4) imply that for any set of ver-
tices V of G p(t), there is a time t ′ such that G p(t ′) contains a
path g such that every correct process appears in g arbitrarily
often and ∀v ∈ V , v ·g is also a path of G p(t ′). Furthermore,
every prefix of g is also a path in G p(t ′).

3.3 Simulation trees

Let I l (l = 0, . . . , n + 1) denote an initial configuration of
ConsD in which processes p1, . . . , pl propose 1 and pro-
cesses pl+1, . . . , pn+1 propose 0. Let P ⊆ Π be any set
of processes, and g = [q1, d1, k1], [q2, d2, k2],. . .[qs, ds, ks]
be any path in G p such that∀i ∈ {1, 2, . . . , s} : qi ∈ P . Since
algorithms and shared objects considered here are determi-
nistic, g and I l induce a unique schedule S = (q1, x1),

(q2, x2), . . . , (qs, xs) of ConsD applicable to I l such that:

∀i ∈ {1, 2, . . . , s} : xi ∈ {λ, di }.

For every P ⊆ Π , the set of all P-solo schedules of ConsD
induced by Il and paths in G p are pieced together in a tree
Υ

P,l
p , called the simulation tree induced by P, I l and G p,

and defined as follows. The set of vertices of Υ
P,l
p is the set

of finite P-solo schedules that are induced by I l and paths in
G p. The root of Υ

P,l
p is the empty schedule S⊥. There is an

edge from a vertex S to a vertex S′ whenever S′ = S · e for
some step e; the edge is labeled e. Thus, every vertex S of
Υ

P,l
p is associated with a unique schedule S = e1e2, . . . , es .

We tag every vertex S of Υ
P,l
p according to the values

decided in the descendants of S in Υ
P,l
p : S is assigned a tag v

if and only if it has a descendant S′ such that p decides v in
S′(I l). The set of all tags of S is called the valence of S and
denoted val(S). If S has only one tag {u} (u ∈ {0, 1}), then
S is called u-valent. A 0-valent or 1-valent vertex is called
univalent. A vertex is called bivalent if it has both tags 0 and

1. The tree Υ
P,l
p is called u-valent (resp., bivalent) if S⊥ is

u-valent (resp., bivalent) in Υ
P,l
p .

Thanks to reliable communication provided by the read/
write shared memory, for any two correct processes p and q
and any time t , there is a time t ′ ≥ t such that Υ

P,l
p (t) ⊆

Υ
P,l

q (t ′). As a result, the simulation trees Υ
P,l
p of correct

processes p tend to the same limit infinite simulation tree
which we denote Υ P,l .

Assume that correct(F) ⊆ P . By the construction, every
vertex of Υ P,l has an extension in Υ P,l in which every cor-
rect process takes infinitely many steps. By the Termination
property of consensus, this extension has a finite prefix S′
such that every correct process has decided in S′(I l). Thus,
every vertex S of Υ P,l has a non-empty valence, i.e. S is
univalent or bivalent.

More generally:

Lemma 2 Let correct(F)⊆ P ⊆Π , m ≥ 1, and S0, S1, . . . ,

Sm be any vertices of Υ P,l . There exists a finite schedule S′
containing only steps of correct processes such that

(1) S0 · S′ is a vertex of Υ P,l and all correct processes have
decided in S0 · S′(I l), and

(2) for any i ∈ {1, 2, . . . , m}, if S′ is applicable to Si (I l),
then Si · S′ is a vertex of Υ P,l .

The following lemma will facilitate the proof of correctness
of our reduction algorithm.

Lemma 3 Let correct(F) ⊆ P ⊆ Π . Let S0 and S1 be two
univalent vertexes of Υ P,l of opposite valence and V ⊂ Π

be a set of processes. If S0(I l) and S1(I l) differ only in the
states of processes in V , then V includes at least one correct
process.

Proof Since S0(I l) and S1(I l) differ only in the states of
processes in V , any (Π − V)-solo schedule applicable to
S0(I l) is also applicable to S1(I l). By contradiction, assume
that V includes only faulty processes. By Lemma 2, there
is a schedule S containing only steps of correct processes
(and thus no steps of processes in V) such that all correct
processes have decided in S0 · S(I l) and S1 · S is a vertex of
Υ P,l . Since no process in Π − V can distinguish S0 · S(I l)

and S1 · S(I l), the correct processes have decided the same
values in these two configurations—a contradiction. ��

3.4 Decision gadgets

A decision gadget γ is a finite subtree of Υ P,l rooted at S⊥
that includes a vertex S̄ (called the pivot of the gadget) such
that one of the following conditions is satisfied:

(fork) There are two steps e and e′ of the same process q,
such that S̄ · e and S̄ · e′ are univalent vertices of Υ P,l of

123

350 R. Guerraoui, P. Kouznetsov

Fig. 2 A fork, a hook, and a
rake

(a)

0-valent 0-valent

0-valent

1-valent

1-valent 1-valent

(b) (c)

opposite valence. Then S̄ · e and S̄ · e′ constitute the set
of leaves of γ .
Note the next step of q in S̄(I l) can only be a query step.
Otherwise, S̄ · e(I l) = S̄ · e′(I l) and thus S̄ · e and S̄ · e′
cannot have opposite valence.

(hook) There is a step e of a process q and step e′ of a process
q ′ (q �= q ′), such that:

(i) S̄ · e′ · e and S̄ · e are univalent vertices of Υ P,l of
opposite valence.

(ii) q and q ′ do not access the same object of type T in
S̄(I l).

Then S̄ · e and S̄ · e′ · e constitute the set of leaves of γ .
Note (ii) implies that either at least one step in {e, e′} is a
query step, or q and q ′ access different objects in S̄(I l),
or q and q ′ access the same register in S̄(I l).
If for every x ∈ RD ∪ {λ}, S̄ · e · (q ′, x) is not a vertex
of Υ P,l , then q ′ is called missing in the hook γ . Clearly,
if q ′ is correct, then it cannot be missing in γ .

(rake) There is a set U ⊆ P , |U | ≥ 2, and an object X
of type T such that, for any q ∈ U , the next step of q
accesses X in S̄(I l) (U is called the participating set of
γ). Let E denote the set of all vertices of Υ P,l of the
form S̄ · S where S = (q1, λ), (q2, λ), . . . , (q|U |, λ) and
q1, q2, . . . , q|U | is a permutation of processes in U . Note
that every such S is applicable to S̄(I l). S̄, U and E satisfy
the following conditions:

(i) There do not exist a (Π − U)-solo schedule S′ and
a process q ′ ∈ Π − U , such that ∀S ∈ {S̄} ∪ E ,
S · S′ · (q ′, λ) is a vertex of Υ P,l and q ′ accesses X
in S · S′(I l).

(ii) If S ∈ E , then S is univalent.
(iii) If |E | = (|U |)!, i.e., E includes all vertices S̄ ·(q1, λ)·

(q2, λ) · · · (q|U |, λ) such that q1, q2, . . . , q|U | is a per-
mutation of processes in U , then there is at least one
0-valent vertex and at least one 1-valent vertex in E .

E constitutes the set of leaves of γ . Note that if |E | <

(|U |)!, then there is at least one process q ∈ U such
that for some {q1, q2, . . . , qs} ⊆ U − {q}, S̄ · (q1, λ) ·
(q2, λ) . . . (qs, λ) · (q, λ) is not a vertex of Υ P,l We call

such processes missing in the rake. Clearly, every missing
process is in faulty(F).

Intuitively, the rake handles the case when the decision
value is encoded in the responses returned by an object X
of type T : no process pi can decide in any execution exten-
ding S̄(I l) unless pi previously accessed X or heard from
another process that accessed X . Furthermore, we show in
this section that in case the rake is complete and U = Π

(all n +1 processes access X in S̄(I l)), there must be at least
one “confused” process pi that cannot distinguish two univa-
lent configurations of opposite valence. Since T is one-shot,
this confused process pi can only learn the decision value
from another process and thus pi cannot be the only correct
process.

Examples of decision gadgets are depicted in Fig. 2: (a)
a fork with e = (q, d) and e′ = (q, d ′), (b) a hook where
e = (q, x), e′ = (q ′, x ′), and q and q ′ do not access the same
object of type T in S̄(I l); (c) a rake with a participating set
U = {q1, q2} and a set of leaves E = {S̄ · (q1, λ) · (q2, λ), S̄ ·
(q2, λ) · (q1, λ)}, where q1 and q2 access the same object of
type T in S̄(I l).

Lemma 4 Let correct(F) ⊆ P ⊆ Π and l ∈ {1, 2 . . . , n}.
If the root of Υ P,l is bivalent, then Υ P,l contains a decision
gadget.

Proof Using arguments of Lemma 6.4.1 of [7], we can show
that there exist a bivalent vertex S∗ and a correct process p
such that:

(*) For all descendants S′ of S∗ (including S′ = S∗) and all
x ∈ RD ∪ {λ} such that S′ · (p, x) is a vertex of Υ P,l ,
S′ · (p, x) is univalent.

Moreover, one of the following conditions is satisfied:

(1) There are two steps e and e′ of p, such that S∗ · e and
S∗ · e′ are vertices of Υ P,l of opposite valence. That is,
a fork is identified and we have the lemma.

123

Failure detectors as type boosters 351

Fig. 3 Locating a rake in Υ P,l

(2) There is a step e of p and a step e′ of a process q such
that S∗ · e and S∗ · e′ · e are vertices of Υ P,l of opposite
valence.

Consider case (2). If p = q, then by condition (*), S∗ · e′
is a univalent vertex of Υ P,l , and a fork is identified.

Now assume that p �= q. If p and q do not access the
same object of type T in S∗(I l), we have a hook.

Thus, the only case left is when p and q access the same
object X of type T in S∗(I l). The hypothetical algorithm of
Fig. 3 locates a rake in Υ P,l .

We show first that the algorithm terminates. Indeed,
eventually either U = Π and there is trivially no (Π − U)-
schedules applicable to all S ∈ {S̄} ∪ E in Υ P,l , or the algo-
rithm terminates earlier in line 14.

Thus, we obtain a set U (|U | ≥ 2) and a vertex S̄ = S∗ ·S′′
such that p and q take no steps in S′′, S′′ applied to S∗(I l)

does not access X , and every q ′ ∈ U accesses X in S̄(I l).
Then:

(i) There do not exist a (Π − U)-solo schedule S′ and
a process q ′ ∈ Π − U , such that ∀S ∈ {S̄} ∪ E ,
S · S′ · (q ′, λ) is a vertex of Υ P,l and q ′ accesses X in
S · S′(I l).

(ii) If S ∈ E , then S is univalent.
Indeed, take any S ∈ E . By the algorithm in Fig. 3,
S = S∗ · S′ where every process in U takes exactly
one step in S′, and, Since p ∈ U , p takes exactly one
step in S′. by (*), S is univalent.

(iii) If |E | = (|U |)!, i.e., E includes all vertices S̄ ·
(q1, λ) ·(q2, λ) · · · (q|U |, λ) such that q1, q2, . . . , q|U |
is a permutation of processes in U , then there is at least
one 0-valent vertex and at least one 1-valent vertex
in E .

Indeed, assume that |E | = (|U |)!. By the algorithm,
S∗ ·S′′ ·e′ ·e, S∗ ·S′′ ·e ·e′, S∗ ·e′ ·e ·S′′ and S∗ ·e′ ·e ·S′′,
where e = (p, λ) and e′ = (q, λ), are vertices of
Υ P,l . Since S′′ applied to S∗(I l) does not access X ,
S∗·S′′·e′·e(I l) = S∗·e′·e·S′′(I l) and S∗·S′′·e·e′(I l) =
S∗ ·e ·e′ ·S′′(I l). But S∗ ·e ·e′ and S∗ ·e′ ·e are univalent
vertices of opposite valence. Thus, S∗ · S′′ · e · e′ and
S∗ · S′′ · e′ · e are also univalent vertices of opposite
valence. Since E includes at least one descendant of
S∗ ·S′′ ·e ·e′ and at least one descendant of S∗ ·S′′ ·e′ ·e,
there is at least one 0-valent vertex and at least one 1-
valent vertex in E .

Hence, a rake with pivot S̄ and participating set U is located.
��

3.5 Complete decision gadgets

If a decision gadget γ has no missing processes, we say that
γ is complete. If γ (a hook or a rake) has a non-empty set of
missing processes, we say that γ is incomplete.

Lemma 5 Let W be the set of missing processes of an incom-
plete decision gadget γ . Then W ⊆ faulty(F).

Proof Let γ be an incomplete decision gadget of Υ P,l and q
be a missing process of γ . By definition, q ∈ P and there is
a vertex S of Υ P,l such that for any x ∈ RD ∪ {λ}, S · (q, x)

is not a vertex of Υ P,l . Thus, q is faulty in F . ��
Lemmas 4 and 5 imply the following:

Corollary 6 Let C = correct(F). Every decision gadget of
Υ C,l is complete, and if the root of Υ C,l is bivalent, then
Υ C,l contains at least one decision gadget.

3.6 Confused processes

Lemma 7 Let γ be a complete hook in Υ P,l defined by a
pivot S̄, a step e of q, and a step e′ of q ′ (q �= q ′). There
exists a process p ∈ {q, q ′} and two vertices S0 and S1 in
{S̄ · e, S̄ · e′ · e, S̄ · e · e′} such that:

(a) S0 and S1 are univalent vertices of Υ P,l of opposite
valence, and

(b) S0(I l) and S1(I l) differ only in the state of p.

Proof By the definition of γ , S̄ · e and S̄ · e′ · e are univalent
vertices of Υ P,l of opposite valence, q and q ′ do not access
the same object of type T , and there is a vertex S̄ · e · (q ′, x)

in Υ P,l for some x ∈ RD ∪ {λ}.
Assume that q and q ′ access different objects in S̄(I l), or

q ′ is not a query step in S̄(I l). Thus, e′ = (q ′, λ), and S̄ ·e ·e′
is a vertex of Υ P,l such that S̄ · e · e′(I l) = S̄ · e′ · e(I l). But
S̄ · e and S̄ · e′ · e have opposite valences—a contradiction.

123

352 R. Guerraoui, P. Kouznetsov

Thus either (1) e′ is a query step in S̄(I l), or (2) q and q ′
access the same register in S̄(I l).

(1) If e′ is a query step in S̄(I l), then S0 = S̄ · e and S1 =
S̄ ·e′ ·e are univalent vertices of Υ P,l of opposite valence
such that S0(I l) and S1(I l) differ only in the state of q ′.

(2) Assume now that e and e′ access the same register r in
S̄(I l). Thus, e = (q, λ), e′ = (q ′, λ), and S̄ · e · e′ is a
univalent vertex of Υ P,l .

– If q writes in r in S̄(I l), then S0 = S̄ · e and S1 =
S̄ · e′ · e are univalent vertices of Υ P,l of opposite
valence such that S0(I l) and S1(I l) differ only in
the state of q ′.

– If q reads r in S̄(I l), then S0 = S̄ · e · e′ and S1 =
S̄ · e′ · e are univalent vertices of Υ P,l of opposite
valence such that S0(I l) and S1(I l) differ only in
the state of q.

In each case, we obtain a process p ∈ {q, q ′} and two
vertices S0 and S1 in {S̄ · e, S̄ · e′ · e, S̄ · e · e′} such that (a)
S0 and S1 are univalent vertices of Υ P,l of opposite valence,
and (b) S0(I l) and S1(I l) differ only in the state of p. ��
The following lemma uses the assumption that type T is
deterministic.

Lemma 8 Let correct(F) ⊆ P ⊆ Π and γ be a complete
rake in Υ P,l with a pivot S̄ and a participating set U such
that |U | = n + 1. Let E be the set of leaves of γ . There exist
a process p ∈ U and two univalent vertices S̄ · S0 and S̄ · S1

in E such that

(a) val(S̄ · S0) �= val(S̄ · S1), and
(b) p has the same state in S̄ · S0(I l) and S̄ · S1(I l).

Proof Assume that there are two vertices S̄ · S and S̄ · S′ in
E , such that S and S′ begin with a step of the same process
p, and val(S̄ · S) �= val(S̄ · S′). Since p takes exactly one
step in both S and S′, and this step of p is the first step in
both S and S′, the states of p in S̄ · S(I l) and S̄ · S′(I l) are
identical, and we have the lemma.

Assume now that the valence of every vertex S̄ · S in E
is defined by the id of a process that takes the first step in S.
Construct a graph K as follows. The set of vertices of K is
E . Two vertices S̄ · S and S̄ · S′ of K are connected with an
edge if at least one process p has the same state in S̄ · S(I l)

and S̄ · S′(I l). Now we color each vertex S̄ · S of K with
val(S̄ · S). Since every vertex of E is univalent, the vertices
of K have are colored 0 or 1.

Claim 9 K has at least one vertex of color 0 and at least one
vertex of color 1.

Proof of Claim 9 Immediate from the definition of K. ��

Fig. 4 A team consensus algorithm using S̄(I l) and ConsD

Claim 10 K is connected.

Proof of Claim 10 We assume the opposite, and we show
that type T then solves consensus among n + 1 processes.

Indeed, assume that K is not connected, i.e., K consists of
two or more connected components. Clearly, any two vertices
S̄ · S and S̄ · S′ of K, such that S and S′ begin with a step of
the same process, belong to the same connected component
of K.

Let K1 be one of the connected components of K. We
partition the system into two teams Π1 and Π2. Team Π1

consists of all processes p, such that all S̄ · S where S begins
with a step of p are in K1. Team Π2 consists of all other
processes. Since K consists of at least two components, Π1

and Π2 are non-empty.
The algorithm in Fig. 4 solves team consensus among

n + 1 processes for teams Π1 and Π2, using one object X
of type T and two registers. Let X be initialized to its state
in S̄(I l). Every process p ∈ U writes its input value into its
team’s register and then executes one step of ConsD accor-
ding to p’s state in S̄(I l) (by the definition of γ , in this step, p
accesses X). The resulting state of p corresponds to a vertex
of exactly one component of K. If the state of p corresponds
to a vertex in K1, then p outputs the value of Π1’s register,
otherwise, p outputs the value of Π2’s register.

That is, the processes agree on the component to which
the resulting state of the system belongs. If the resulting state
belongs to K1, then a process in Π1 was the first to access
X in the corresponding execution (team Π1 is the winner).
Otherwise, if the resulting state does not belong to K1, then
a process in Π2 was the first to access X (team Π2 is the
winner).

Consider any execution of the algorithm. Clearly, every
correct process decides. The first step accessing X in the
execution is of a process q in the winner team. By the algo-
rithm, q has previously written its proposal value in its team’s
register. Since every process first accesses X and then decides

123

Failure detectors as type boosters 353

a value in the winner team’s register, any decided value is
necessarily a proposed value of some process.

Now assume that all processes on a team (Π1 or Π2)
propose the same value. Since the processes return values
previously written in the winner team’s register, and, by the
assumption, no two different values can be written in a team’s
register, no two processes decide differently.

Thus, T solves team consensus among n + 1 processes
when object X is initialized to its state in S̄(I l). By Lemma 1,
T solves consensus among n +1 processes—a contradiction
with the assumption that cons(T) ≤ n.

Thus, K is connected. ��

By Claims 9 and 10, there are at least two vertices S̄ · S
and S̄ · S′ in E of different colors, connected with an edge.
Thus, there is a process p that has the same state in S̄ · S(I l)

and S̄ · S′(I l), and we have the lemma. ��

3.7 Critical index

We say that index l ∈ {1, 2, . . . , n + 1} is critical in P if
either Υ P,l contains a decision gadget or the root of Υ P,l−1

is 0-valent, and the root of Υ P,l is 1-valent. In the first case,
we say that l is bivalent critical. In the second case, we say
that l is univalent critical.

Lemma 11 Let correct(F) ⊆ P ⊆ Π . There exists a critical
index in P.

Proof By validity of consensus, Υ P,0 is 0-valent and Υ P,n+1

is 1-valent. Hence, there exists l ∈ {1, . . . , n + 1} such that
the root of Υ P,l−1 is 0-valent and the root of Υ P,l is either 1-
valent or bivalent. If the root of Υ P,l is 1-valent, l is univalent
critical. If the root of Υ P,l is bivalent, by Lemma 4, Υ P,l

contains a decision gadget. Thus l is critical. ��

3.8 Deciding sets

Instead of the notion of a deciding process used in [7], we
introduce the notion of a deciding set V ⊂ Π . The deciding
set V of a complete decision gadget γ is computed as follows:

(1) Let γ be a fork defined by pivot S̄ and steps e and e′ of
the same process q, such that S̄ ·e and S̄ ·e′ are univalent
vertices of Υ P,l of opposite valence.
Then V = {q}.

(2) Let γ be a complete hook defined by a pivot S̄, a step e
of q, and a step e′ of q ′ (q �= q ′).
By Lemma 7, there exists a process p ∈ {q, q ′} and two
vertices S0 and S1 in {S̄ · e, S̄ · e′ · e, S̄ · e · e′} such that
(a) S0 and S1 are univalent vertices of opposite valence,
and (b) S0(I l) and S1(I l) differ only in the state of p.
Then we define the deciding set of γ as V = {p}.

(3) Let γ be a complete rake defined by a pivot S̄, a parti-
cipating set U , and a set of leaves E .
– If |U | ≤ n, then we define the deciding set of γ as

V = U .
– If |U | = n + 1, then by Lemma 8 there is a “confu-

sed” process p ∈ U such that, for some S̄ · S and
S̄ · S′ in E , p has the same state in S̄ · S(I l) and
S̄ · S′(I l), and val(S̄ · S) �= val(S̄ · S′). Then we
define the deciding set of γ as V = U − {p} where
p is the smallest confused process.

By the construction, in each case, V is a set of at most n
processes. The following lemma uses the assumption that
type T is one-shot.

Lemma 12 The deciding set of a complete decision gadget
contains at least one correct process.

Proof There are two cases to consider:

(1) Let γ be a fork with leaves S0 and S1 and a deciding set
{p}. The difference between S0(I l) and S1(I l) consists
only in the state of p. By Lemma 3, V = {p} includes
exactly one correct process.

(2) Let γ be a hook with a deciding set V = {p}. By
Lemma 3, p is correct.

(3) Let γ be a complete rake defined by a pivot S̄, a partici-
pating set U , and a set of leaves E . Let X be the object
of type T accessed by steps of processes in U in S̄(I l).
The following cases are possible:

(3a) |U | ≤ n.
Assume, by contradiction, that all processes in deci-
ding set V = U are faulty.
There exist two vertices S̄ · S0 and S̄ · S1 in E such
that val(S̄ · S0) = 0 and val(S̄ · S1) = 1. Since only
processes in U take steps in S0 and S1 and each step
p ∈ U in S̄(I l) accesses X , the difference between
S̄(I l), S̄ · S0(I l) and S̄ · S1(I l) consists only in the
states of processes in U and object X .
By Lemma 2, there is a schedule S containing only
steps of correct processes (and thus no steps of pro-
cesses in U), such that all correct processes have
decided in S̄ · S(I l) and for any S′ ∈ E , if S is
applicable to S′(I l), then S′ · S is a vertex of Υ P,l .
By the definition of a rake, S applied to S̄(I l) does
not access X , S is also applicable to S̄ · S0(I l) and
S̄ · S1(I l). Thus, S̄ · S0 · S and S̄ · S1 · S are vertices
of Υ P,l .
But no process in Π−V can distinguish S̄ ·S(I l), S̄ ·
S0 ·S(I l) and S̄ ·S1 ·S(I l), the correct processes have
decided the same values in these configurations—a
contradiction.

(3b) |U | = n + 1, i.e., U = Π . Let V = U − {p} be the
deciding set of γ , i.e., for some S̄ · S0 and S̄ · S1,

123

354 R. Guerraoui, P. Kouznetsov

the vertices of Υ P,l of opposite valence, S̄ · S0(I l)

and S̄ · S1(I l) differ only in the states of processes
in V and object X . Assume, by contradiction, that
all processes in V are faulty (i.e., since k = n + 1,
the only correct process is p).
By Lemma 2, there is a schedule S containing only
steps of correct processes (i.e., only steps of p) such
that all correct processes have decided in S̄ · S0 ·
S(I l), and if S is applicable to S̄·S1(I l), then S̄·S1 ·S
is a vertex of Υ P,l .
Note that, since X is an object of a one-shot type, and
p has already accessed X at least once in S̄ · S0(I l),
every subsequent operation of p on object X returns
⊥. Since the states of p and all objects except of X
are the same in S̄ · S0(I l) and S̄ · S1(I l), and p has
already accessed X at least once in S̄ · S1(I l), S is
also applicable to S̄ ·S1(I l) and p cannot distinguish
S̄ · S0 · S(I l) and S̄ · S1 · S(I l). Thus, S̄ · S1 · S is
a vertex of Υ P,l , and p has decided the same value
in S̄ · S0 · S(I l) and S̄ · S1 · S(I l)—a contradiction.

In each case, the deciding set V contains at least one cor-
rect process. ��

3.9 The reduction algorithm

Theorem 13 Let T be any one-shot deterministic type, such
that cons(T) ≤ n. If a failure detector D solves consensus in
a system of n + 1 processes using only registers and objects
of type T , then Ωn � D.

Proof The communication task presented in Fig. 1 and the
computation task presented in Fig. 5 constitute the reduction
algorithm TD→Ωn . The current estimate of Ωn at process p
is stored in a variable Ωn-outputp.

In the communication task (Fig. 1), every process p main-
tains an ever-growing DAG G p. In the computation task
(Fig. 5), for each P ⊆ Π and each l ∈ {0, . . . , n + 1},
process p constructs a finite simulation tree Υ

P,l
p induced by

P , I l and G p and tags each vertex S of Υ
P,l
p according to

the decision taken in the descendants of S (if any).
Recall that finite simulation trees Υ

P,l
p at all correct

processes p tend to the same infinite simulation tree Υ P,l .
Let F be the current failure pattern.

First we observe that the “repeat-until” cycle in lines 6–20
is non-blocking. Indeed, each process p eventually sets V to
a non-empty value or reaches P = ∅. In both cases, p exits
the “repeat-until” cycle.

Claim 14 There exist P∗ ⊆ Π , correct(F) ⊆ P∗, such
that there is a time after which every correct process p has
P = P∗ in line 21.

Fig. 5 Extracting Ωn : process p

Proof of Claim 14 By Lemma 11, every P such that
correct(F) ⊆ P has a critical index. Thus, there is a time
after which the correct processes compute the same critical
index l in every such P , and if l is bivalent, then the correct
processes locate the same smallest (complete or incomplete)
decision gadget in Υ P,l .

By Lemma 5, there is a time after which whenever a correct
process p reaches line 19, W ⊆ faulty(F). Thus, there is a
time after which either

(a) p always exits the “repeat-until” cycle in line 12 after
locating a univalent critical index in some P such that
correct(F) ⊆ P , or

(b) p always reaches line 14 with P = correct(F).

In case (b), by Corollary 6, there is a time after which the
smallest decision gadget in Υ P,l is complete and p exits the
“repeat-until” cycle in line 16. In both cases, there exists P∗
such that correct(F) ⊆ P and there is a time after which
every correct process has P = P∗ in line 21. ��

123

Failure detectors as type boosters 355

Thus, there exist P ⊆ Π and V ∗ �= ∅, such that every correct
process eventually reach line 21 with P = P∗ and V = V ∗.
Let l be the smallest critical index in P∗. According to the
algorithm, the following cases are possible:

(1) l is univalent critical. That is, the root of Υ P∗,l−1 is
0-valent and the root of Υ P∗,l is 1-valent. In this case,
eventually, every correct process p permanently outputs
V ∗ = {pl}. I l−1 and I l differ only in the state of process
pl . By Lemma 2, pl is correct.

(2) l is bivalent critical. Moreover, the smallest decision
gadget in Υ P∗,l is complete. In this case, eventually,
every correct process p permanently outputs the deci-
ding set V ∗ (of size at most n) of the complete decision
gadget. By Lemma 12, the deciding set of γ includes at
least one correct process.

In both cases, eventually, the correct processes agree on a
set of at most n processes that includes at least one correct
process, i.e., the output of Ωn is emulated. ��
Theorem 13 and the algorithm of [23] imply the following
result:

Theorem 15 Let T be any one-shot deterministic type such
that cons(T) = n. Then Ωn is the weakest failure detector to
solve consensus in a system of n+1 processes using registers
and objects of type T .

4 Boosting types to any level

Consider now a set Π of k processes (k > n) that com-
municate through registers and objects of an m-ported one-
shot deterministic type T such that cons(T) ≤ n and m ≤
n + 1.

Theorem 16 Let T be any m-ported one-shot deterministic
type, such that cons(T) ≤ n and m ≤ n+1. If a failure detec-
tor D solves consensus in a system of k (k > n) processes
using only registers and objects of type T , then Ωn � D.

Proof Let F be any failure pattern and ConsD be any algo-
rithm that solves consensus using D. The reduction algo-
rithm TD→Ωn is exactly the same as the algorithm described
in Fig. 5, except that now we have k ≥ n + 1 processes, and
variable l thus takes values in {0, 1, . . . , k}. The decision
gadget and deciding sets are defined in the same way as in
Sect. 3. The deciding sets of forks and hooks do not depend
on the system size. Consider a rake γ with a participating set
U . Since the objects of type T are at most (n + 1)-ported,
and processes in U access the same object of type T , U can
include at most n+1 processes. If |U | ≤ n, then the deciding
set of γ is U . If |U | = n + 1, then, by Lemma 8, there is

at least one “confused” process p, and the deciding set V is
defined as U − {p}. In both cases, V is of size at most n. By
Lemma 12, V includes at least one correct process. ��
Theorem 16 and the algorithm of [23] imply the following
result:

Theorem 17 Let T be any (n +1)-ported one-shot determi-
nistic type such that cons(T) = n. Then Ωn is the weakest
failure detector to solve consensus in a system of k (k ≥ n+1)
processes using registers and objects of type T .

As a corollary of Theorem 17, assuming that only registers
are available, we obtain the following result, outlined in [19].

Corollary 18 Ω is the weakest failure detector to solve
consensus using only registers.

Also, given that n-process consensus is a one-shot deter-
ministic n-ported type of consensus power n [18], we imme-
diately obtain:

Corollary 19 Ωn is the weakest failure detector to solve
consensus among k > n processes using registers and n-
process consensus objects.

5 Boosting resilience

So far we considered systems in which processes communi-
cate through wait-free linearizable implementations of deter-
ministic one-shot object types. Every operation invoked by
a correct process on a wait-free object returns, regardless of
the behavior of other processes.

In contrast, in this section we assume that processes com-
municate through wait-free registers and t-resilient imple-
mentations of object types (not necessarily one-shot and
deterministic), where 0 ≤ t < n. We will simply call these
t-resilient objects. Informally, a t-resilient object guarantees
that a correct process completes its operation on the object,
as long as no more than t processes crash. If more than t pro-
cesses crash, no operation on a t-resilient object is obliged
to return. This corresponds to the weakly t-resilient imple-
mentations of [6]. We refer to [3] for a formal definition of
t-resilient objects based on I/O automata [22, Chap. 8].

It is shown in [3] that no composition of t-resilient objects
can be used to solve consensus among n > t − 1 processes.
In this section we show that Ωt+1 captures the exact amount
of information about failures sufficient to circumvent this
impossibility. But first we recall a few earlier results that are
instrumental for our proof.

The following two lemmas are restatements in our termi-
nology of the “necessity” part and the “sufficiency” part of
Theorem 6.1 in [6], respectively.

123

356 R. Guerraoui, P. Kouznetsov

Lemma 1 Let t and n be integers, 0 ≤ t , 1 ≤ n. Then there
exists an t-resilient n-process implementation of consensus
from wait-free (t + 1)-process consensus objects and wait-
free registers.2

Lemma 2 Let f and n be integers, 2 ≤ t < n. Then there
exists a wait-free (f +1)-process implementation of consen-
sus from t-resilient n-process consensus objects and wait-free
registers.

The following result follows easily from Herlihy’s universal
construction [14]:

Lemma 3 Let t and n be integers, 0 ≤ t , 1 ≤ n. Let T
be an object type. Then there exists an t-resilient n-process
implementation of T from t-resilient n-process consensus
objects and wait-free registers.

Finally, we are ready to demonstrate how our result on boos-
ting the power of deterministic one-shot deterministic types
can be used to derive the following:

Theorem 20 Let t be any integer, 2 ≤ t < n − 1. Let T be
any type (not necessarily one-shot deterministic), such that
registers and t-resilient objects of type T solve t-resilient
consensus. Ωt+1 is then the weakest failure detector to solve
consensus using wait-free registers and t-resilient objects of
type T .

Proof By Lemma 2, t-resilient objects of type T imple-
ment wait-free (t + 1)-process consensus. The algorithm
of [23] implements wait-free consensus using registers, (t +
1)-process consensus objects and Ωt+1. This gives the suffi-
cient part of the theorem.

Assume now that a failure detector D solves consensus
using registers and t-resilient objects of type T . By
Lemmas 1, 2 and 3 any t-resilient object can be implemen-
ted from wait-free registers and (t + 1)-process consensus
objects.

Thus, D solves consensus using registers and objects of
(t + 1)-process consensus objects. By Corollary 19, Ωt+1 �
D. This gives the necessary part of the theorem. ��

6 Concluding remarks

The conjecture that Ωn is the weakest failure detector to boost
the power of T to the level n + 1 of the consensus hierar-
chy was given in [23]. As pointed out in [23], the proof of
this conjecture appeared to be challenging and was indeed
left open. However, Neiger also gave in [23] an outline of
some preliminary elements that could be used to construct

2 Theorem 6.1 in [6] assumes 2 ≤ t . However, the necessity part of the
theorem holds for 0 ≤ t .

the proof. In this section, we give an overview of major fea-
tures that distinguish our proof from the outline sketched by
Neiger [23, Sect. 5]. We also point out some potential pro-
blems that arise in Neiger’s outline an the specific assump-
tions made in that outline. Since the outline is given in a quite
informal manner, we would like to emphasize that the dis-
cussion below is subject to our interpretation of the missing
details.

6.1 Restrictions on failure detectors

Neiger’s outline [23] is constructed as follows. Consider any
algorithm that solves n + 1 consensus using some failure
detector D, read-write registers, and objects of determinis-
tic (but necessarily one-shot) type T . The aim is to use the
algorithm for extracting the output of Ωn .

Following the arguments of [7], we can identify a decision
gadget of the hook type. Recall that a hook has a bivalent pivot
S̄ such that for some processes p and q, such that S̄ extended
with a step of p results in a 0-valent vertex, S̄ extended with
a step of q followed by a step p results in a 1-valent vertex,
and any vertex S̄ · S where S includes a step of p is univalent.
Then it is argued that for each process r , (1) there exists a
bound br on the number of steps of r such that whenever r
takes br steps the system ends up in a univalent configuration,
or (2) r is not the only correct process. Indeed, suppose that
r is the only correct process. Since all other processes take
only a bounded number of steps in extensions of S̄ in Υ I ,
there is a bound br on the number r needs to take to decide,
and thus bring the system to a univalent state.

Suppose property (1) above holds for every process r , and
consider all possible schedules S in which every process r
takes up to br steps extending S̄. If one of the schedules
does not belong to Υ I , then we can identify a faulty process
q (whose step is missing), and thus conclude that Π − {q}
contains at least one correct process. Now assume that all
these schedules are in Υ I .

At this point, the Neiger’s outline [23] seems to require that
for every process p, the sequences of failure detector values
seen by p in each of this schedules are identical, i.e., the fai-
lure detector output does not depend on the order in which
processes query their failure detector modules. To make this
argument work we need to impose certain restrictions on the
class of failure detectors we consider. For instance, we can
suppose that for every failure detector history there is a time
after which some infinite sequences of failure detector values
seen by the processes do not depend on the interleaving of
their steps. This can be obtained, e.g., if the domain of the fai-
lure detector is finite [23], or if in every run, the output of the
failure detector eventually stabilizes at every correct process.
For simplicity, assume the latter and consider the simulated
executions in which every process always sees exactly one
“stable” failure detector value.

123

Failure detectors as type boosters 357

6.2 Atomically readable objects

Now the outline claims that there must exist two univalent
descendants of S̄, S0 and S1, and a process q such that the
state of q and the states of all shared objects are identical in
S0(I) and S1(I). Thus, q cannot be the only correct process:
q is not able to decide in any solo extension of S0 or S1. The
claim is proved by contradiction, presenting an algorithm that
solves n+1 consensus using objects of type T and read-write
registers.

The contradiction is established on the assumption that
type T is readable—every object of type T exports a read
operation that returns the current state of the object. If the
claim does not hold, then n + 1 processes can solve team
consensus as follows: each process r runs br steps, reads
the states of all shared objects, and decide on the valence of
any compatible configuration. The conclusion is that, since
process r took br steps, the system reached a univalent confi-
gurations and all univalent configuration that are compatible
with the object states and the state of r are of the same valence.

This conclusion seems to depend on the assumption that
all objects can be read atomically. Otherwise, the states of
objects might not correspond to any state reachable by exten-
sions of S̄ (e.g., r reads object A, then q modifies A, then q
modifies object B, and then r reads B). It may even happen
that the system state, as observed by r , is compatible with a
state of arbitrary valence, causing the processes to disagree.
Even though atomic accesses can be emulated in the read-
write shared memory model [1], it is difficult to say whether
this emulation can be generalized to larger classes of object
types. Besides, just assuming readable types considerably
simplifies reasoning about the power of types [24].

6.3 Reduction algorithm

Now assume that an atomic read is available and, thus, the
algorithm above establishes that there is a “confused” process
that can never decide in a solo run. In this case, a reduction
algorithm is suggested that, starting from a hook in a simu-
lation tree, makes sure that all correct processes eventually
agree on the same process that is not the only correct process
in the system. In the reduction algorithm, every process p
periodically looks at its finite simulation tree Υ I

p and com-
putes br for each process r such that condition (1) above is
satisfied, or, if there is a process r for which no such br exists,
outputs Π − {r}.

In the first case, we use the reasoning above to identify a
faulty or “confused” process q, and output Π − {q}. If the
situation stabilizes, i.e., the valences of the selected set of
extensions of the pivot of the hook do not change, all correct
processes output set Π −{q} that obviously contains at least
one correct process.

Unfortunately, as Neiger observes [23], it can happen that
in a given finite tree Υ I

p , first, some process r does not satisfy
(1) (e.g., because some steps of r are still missing), in which
case the algorithm outputs Π −{r}, and then, in the next ite-
ration of the reduction algorithm, r satisfies (1) (e.g., because
more steps of r came out), in which case the algorithm out-
puts Π − {q} where q �= r , and so on, i.e., the output of
the algorithm never stabilizes. There does not seem to be an
obvious way to handle this “stabilization” issue.3

6.4 One-shot types

To conclude, we give an intuition of how our assumption
of objects of type T being one-shot makes life easier. As we
have shown in Sect. 3.4, each bivalent infinite simulation tree
Υ I either contains a fork, or a hook that allows us to factor
out a single correct process using a simple case analysis,
or an incomplete rake which allows us to identify a set of
processes that does not include all correct processes, or a
complete rake.

The latter is of particular interest for us, because, when
the participating set of the complete rake is Π , it is a special
case of the extended hook of the Neiger’s outline discussed
above. Indeed, then the rake has a pivot S̄ such that every
process is about to access the same object X of type T in
S̄(I). Moreover, Υ I contains all vertices of the form S̄ · S
where S is a schedule in which every process takes exactly
one step (S̄ · S is called a leave of the rake). Further, all the
rake’s leaves are univalent, and there are leaves of opposite
valence. Note that since every process is poised on accessing
object X in S̄(I), no such S contains a query step. Thus, we
do not have to restrict the properties of the failure detector at
this point—simply because the decision values do not depend
on the failure detector output.

Using the fact that cons(T) ≤ n, we conclude that at least
one process r cannot distinguish two leaves of the rake of
the opposite valence, S0 and S1. Thus, in any solo extension
of S0 or S1, r can never decide. This is because r can get a
non-⊥ response from object X at most once (type T is one-
shot) and all other objects have the same state in S0(I) and
S1(I). Thus, we do not have to rely upon the objects being
atomically readable or simply readable.

We suspect that relaxing the one-shot requirement will not
be straightforward and we leave it for future research. Getting
rid of the assumption that objects of type T are (n+1)-ported
when boosting their power to levels higher than n+1 (Sect. 4)
is another direction for future work.

3 Interestingly, however, a similar approach can be used for extracting a
failure detector that is strictly weaker than Ωn but still provides enough
information to circumvent some asynchronous impossibility—to solve
n-set agreement [12].

123

358 R. Guerraoui, P. Kouznetsov

References

1. Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merrit, M., Shavit,
N.: Atomic snapshots of shared memory. J. ACM 40(4), 873–
890 (1993)

2. Attie, P., Lynch, N.A., Rajsbaum, S.: Boosting fault-tolerance in
asynchronous message passing systems is impossible. Technical
report. MIT Laboratory for Computer Science, MIT-LCS-TR-877,
(2002)

3. Attie, P.C., Guerraoui, R., Kouznetsov, P., Lynch, N.A., Rajsbaum,
S.: The impossibility of boosting distributed service resilience. In:
Proceedings of the 25th IEEE International Conference on Distri-
buted Computing Systems (ICDCS’05), June (2005)

4. Attiya, H., Welch, J.L.: Distributed Computing: Fundamen-
tals, Simulations and Advanced Topics, 2nd edn. Wiley, New
York (2004)

5. Borowsky, E., Gafni, E., Afek, Y.: Consensus power makes (some)
sense! In: Proceedings of the 13th Annual ACM Symposium
on Principles of Distributed Computing (PODC), pp. 363–372,
August (1994)

6. Chandra, T.D., Hadzilacos, V., Jayanti, P., Toueg, S.: Generali-
zed irreducibility of consensus and the equivalence of t-resilient
and wait-free implementations of consensus. SIAM J. Com-
put. 34(2), 333–357 (2004)

7. Chandra, T.D., Hadzilacos, V., Toueg, S.: The weakest failure
detector for solving consensus. J. ACM 43(4), 685–722 (1996)

8. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable
distributed systems. J. ACM 43(2), 225–267 (1996)

9. Dolev, D., Dwork, C., Stockmeyer, L.J.: On the minimal synchro-
nism needed for distributed consensus. J. ACM 34(1), 77–97 (1987)

10. Dwork, C., Lynch, N.A., Stockmeyer, L.J.: Consensus in the pre-
sence of partial synchrony. J. ACM 35(2), 288–323 (1988)

11. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of dis-
tributed consensus with one faulty process. J. ACM 32(3), 374–
382 (1985)

12. Guerraoui, R., Herlihy, M., Kouznetsov, P., Lynch, N., Newport,
C.: On the weakest failure detector ever. Technical report, Max
Planck Institute for Software Systems

13. Guerraoui, R., Kouznetsov, P.: On failure detectors and type boos-
ters. In: Proceedings of the 17th International Symposium on Dis-
tributed Computing (DISC’03), October (2003)

14. Herlihy, M.: Wait-free synchronization. ACM Trans. Program.
Lang. Syst. 13(1), 124–149 (1991)

15. Herlihy, M., Ruppert, E.: On the existence of booster types. In: Pro-
ceedings of the 41st IEEE Symposium on Foundations of Computer
Science (FOCS), pp 653–663 (2000)

16. Herlihy, M., Wing, J.M.: Linearizability: a correctness condi-
tion for concurrent objects. ACM Trans. Program. Lang.
Syst. 12(3), 463–492 (1990)

17. Jayanti, P.: Robust wait-free hierarchies. J. ACM 44(4), 592–
614 (1997)

18. Jayanti, P., Toueg, S.: Some results on the impossibility, univer-
sality and decidability of consensus. In: Proceedings of the 6th
International Workshop on Distributed Algorithms (WDAG’92).
LNCS, vol 647. Springer, Heidelberg (1992)

19. Lo, W.-K., Hadzilacos, V.: Using failure detectors to solve consen-
sus in asynchronous shared-memory systems. In: Proceedings
of the 8th International Workshop on Distributed Algorithms
(WDAG’94). LNCS, vol. 857, pp. 280–295. Springer, Heidelberg
(1994)

20. Lo, W.-K., Hadzilacos, V.: All of us are smarter than any of us: Non-
deterministic wait-free hierarchies are not robust. SIAM J. Com-
put. 30(3), 689–728 (2000)

21. Loui, M.C., Abu-Amara, H.H.: Memory requirements for agree-
ment among unreliable asynchronous processes. Adv. Comput.
Res., pp. 163–183 (1987)

22. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann Publi-
shers,San Francisco (1996)

23. Neiger, G.: Failure detectors and the wait-free hierarchy. In: Pro-
ceedings of the 14th Annual ACM Symposium on Principles of
Distributed Computing (PODC), pp. 100–109, August (1995)

24. Ruppert, E.: Determining consensus numbers. SIAM J. Com-
put. 30(4), 1156–1168 (2000)

123

	Failure detectors as type boosters
	Abstract
	Introduction
	Model
	Objects and types
	Failures and failure patterns
	Failure detectors
	Algorithms
	Configurations, schedules and runs
	Problems and solvability
	A weakest failure detector
	Consensus
	Hierarchy of failure detectors n
	Boosting types to level n+1
	An overview of the reduction algorithm
	The communication task and DAGs
	Simulation trees
	Decision gadgets
	Complete decision gadgets
	Confused processes
	Critical index
	Deciding sets
	The reduction algorithm
	Boosting types to any level
	Boosting resilience
	Concluding remarks
	Restrictions on failure detectors
	Atomically readable objects
	Reduction algorithm
	One-shot types

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

