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Abstract Chemical mass transfer was quantified in a
metacarbonate xenolith enclosed within the granodiorite of
the Quérigut massif (Pyrenees, France). Mass balance
calculations suggest a strong decrease of CaO, SrO and
CO, contents (up to —90%), correlated with a decrease of
modal calcite content as the contact is approached. Most
other chemical elements behave immobile during metas-
omatism. They are therefore passively enriched. Only a
small increase of SiO,, Al,O5 and Fe,O5 contents occurs in
the immediate vicinity of the contact. Hence, in this study,
skarn formation is characterized by the lack of large
chemical element influx from the granitoid protolith. A
large decrease of the initial carbonate volume (up to
—86%) resulted from a combination of decarbonation
reactions and loss of CaO and CO,. The resulting volume
change has potentially important consequences for the
interpretation of stable isotope profiles: the isotope alter-
ation could have occured over greater distances than those
observed today.
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Introduction

Skarn formation is due to metasomatism. This change in
the chemical rock composition is often linked to the
interaction with fluids. Numerous studies have dealt with
the role of chemically reactive fluid flow associated with
mineralogical, isotopic and others chemical changes (For-
ester and Taylor 1977; Taylor and O’Neil 1977; Nabelek
et al. 1984; Ferry 1991, 1994; Cartwright et al. 1997; Ferry
et al. 1998, 2002; Buick and Cartwright 2000; Cartwright
and Buick 2000; Cook and Bowman 2000; Buick and
Cartwright 2002). Processes of diffusion (e.g. Taylor and
O’Neil 1977; Nagy and Parmentier 1982; Cartwright and
Valley 1991) and advection (e.g. Rumble et al. 1982;
Dipple and Ferry 1992; Nabelek and Labotka 1993; Ferry
1994; Gerdes and Valley 1994; Cook et al. 1997; Roselle
et al. 1999; Ferry et al. 2002) have been invoked to explain
mass transfer in such environments. Mass transfer studies
have addressed skarn formation and related ore deposits
(Einaudi and Burt 1982; Harris and Einaudi 1982; Brown
and Essene 1985). Mass transfer from intrusive rocks into
metasedimentary rocks are generally called upon to explain
element changes during contact metamorphism (Ferry
1982; Brown and Essene 1985; van Marcke de Lummen
and Verkaeren 1986; Gieré 1990; Nabelek and Labotka
1993; Gerdes and Valley 1994; Buick and Cartwright 2002;
Abu El-Enen et al. 2004). However, the reverse process is
also conceivable: removal of elements from the metasedi-
mentary rocks, as proposed, for example, by Tracy et al.
(1983) and Ague (2003) during regional metamorphism.
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In this study, we focus on the understanding of chemical
mass transfer inside a metacarbonate xenolith. Mass—bal-
ance calculations indicate that element changes are due to
an element loss which results in a large volume loss. This
has implications for the interpretation of the isotope
alteration fronts.

Geological setting

The Quérigut granitoid massif is one of the late Hercynian
calc-alkaline granitoid complexes within the Axial Zone
(Barnolas and Chiron 1996; Debon et al. 1996; Guitard
et al. 1996) of the Eastern part of the French Pyrénées
(Fig. 1). It was dated at 307 & 2 Ma by Roberts et al.
(2000). This composite magmatic complex shows a con-
centric petrographic zonation. It is divided into four
igneous units (Leterrier 1972; Marre 1973; Roberts et al.
2000; Durand et al. 2006). It consists of (1) a central bio-
tite—muscovite-bearing monzogranite unit; (2) surrounded
by a biotite-bearing monzogranite unit; (3) a biotite—
hornblende-bearing granodiorite unit which is only present
in the southern margin of the Massif and (4) meter to
hectometre scale mafic and ultramafic lenses of gabbrodio-
rite, amphibolite and cortlandite occurring only in the two
outermost units. This magmatic complex intruded a
deformed Palaeozoic metasedimentary sequence consisting
of metapelites and metacarbonates (Leterrier 1972; Marre
1973; Aparicio 1975; Toulhoat 1982; Takeno 1994; Aubry
1999; Monnot 1999). Metapelites in contact with the
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Fig. 1 Simplified geological map of the Quérigut region in the
Eastern Pyrenees, France (after Durand et al. 2006). Metacarbonate
xenoliths (in grey) are localized in the South-Western part of the
Quérigut complex, inside the biotite-hornblende-bearing granodiorite
unit. The location of the profile is given by the black star. Locations
of samples used to define the carbonate protolith are given by grey
stars
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granitoids developed the low-pressure metamorphic
assemblage andalusite + K-feldspar. This was used to
constrain the PT conditions in the contact aureole at 500—
650°C and 0.2-0.27 GPa (Leterrier 1972; Takeno 1994;
Monnot 1999; Roberts et al. 2000). Paleozoic carbonates
occur either as host rocks or as decametre thick, up to
hundreds of meter long xenoliths. They are fully enclosed
within the intrusive magmatic rocks (Fig. 1). They are
aligned in the sub-vertical igneous, syn-magmatic defor-
mation (Marre 1973; Durand et al. 2006).

Mineralogical evolution in metacarbonate xenoliths

Metacarbonates were sampled along two profiles at Laur-
enti, named J and 7y. The profiles were horizontally
collected, perpendicular to the intrusive contacts (Fig. 2).
Both profiles are located in the same xenolith. Profile § was
collected towards the main diorite contact, whereas profile
y is adjacent to a metre-thick granitic dyke which cross-
cuts the metacarbonates. Both profiles share the same
starting samples M40 and M41 (black circles, Fig. 2).
Plutonic rocks were also sampled to constrain fluid circu-
lations during the contact metamorphic event using O and
C stable isotopes (Durand et al. 2006).

Details on the mineralogical evolution in metacarbonate
profiles are given in Durand et al. (2006). Salient features
of the mineralogical evolution, from the core of the
xenolith to the exoskarn, are summarized below. Samples
from the xenolith core are essentially calcitic rich marbles
with modal amounts of calcite greater than 90%. They
contain minor amounts of metamorphic minerals (amphi-
bole, anorthite, K-feldspar, biotite, quartz). The
metacarbonates are only thermally affected by the intrusion
and chemically represent the initial protolith. At about
100 cm dramatically. These decreases coincide with the
appearance of clinopyroxene, followed by garnet, wollas-
tonite, and clinozoisite to form a thin, massive exoskarn
zone (some millimetres to centimetres). The presence of
wollastonite in the exoskarn implies a H,O-rich fluid or
very high temperatures (Spear 1995).

Analytic procedure

Bulk rock analyses were obtained by XRF with a Philips
PW2400 XRF spectrometer at the University of Lausanne,
Switzerland. Total iron is given as Fe,O3. The CO, content
of the samples was measured by coulometry on a JUWE
Coulomat 702 (University of Lausanne, Switzerland).
Reference material Merck 2060 (suprapur CaCOj) yielded
a CO, value of 44.8 + 1.0% (n = 20), close to the theo-
retical value of CO, in pure CaCO5; of 43.97%. Water
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Fig. 2 Schematic cross-section

of the studied metacarbonate SE NW

xenolith. Tt is enclosed in a Skarn GRANITE DYKE Altered marble

granodioritic intrusion and +

crosscut by a metre-scale dyke Marble T+ g e

of granite. The sample locations D / Ttk

for profiles y (squares) and & /i 2),GRANODIORITE

(stars) are given. Open symbols METACARBONATE ik /) ‘ l + L

are used for the igneous rock XENOLITH o METACARBONATE /T

samples, filled symbols are used il 3 / XENOLITH / \ + k2

for the carbonate .samples. Note H Profile y war) om /il Ar Y “+

that an asymmetric skarn Profile 5 i bl * o @

develop. Endoskarns are larger || Frotlie o Mas:Me) — ixxk /4 Mm37 M41l— M40 M39-\;" M38 T

than exoskarns Septum core (m40+M41) @ _r ¥ / /:"‘I"I + 5

. . I‘ ‘I . I . Jl |Fl_._| I‘ ‘I I : ‘I T I I ¥ I I U T I I I I I U o I Ll Ll

-10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18

porosity measurements were performed at the University of
Franche-Comté, France, to quantify the total porosity (¢,)
and the density of the samples. These measurements were
performed on small rock samples which we subsequently
used for the thin section preparation. The samples were
dried at 60°C, degassed during 24 h in an airtight enclosure
and imbibed by degassed distilled water, under a dynamic
vacuum. The total porosity, expressed in percentage, is
given by:

fo= i

=—— x 100
W, — W

(1)
where W, is the hydrostatic weight of the sample, W, the
weight of the sample totally imbibed by water and Wj is the
dry weight of the sample.

Chemical mass transfers

Bulk rock chemistry, calcite abundance and density are
listed in Table 1. Figure 3 presents the evolution of SiO,
and CO, contents versus CaO contents for both profiles.
Also given are samples from other metacarbonate xenoliths
in the Quérigut massif. The content of CaO and CO,
steadily decreases towards the contact with the intrusive
rock, while the SiO, content increases. This implies
selective chemical mass transfer during contact
metamorphism.

Mass balance calculation

Numerous mass balance approaches have been developed
during the last decades to estimate chemical mass transfers
and volume changes (Gresens 1967; Grant 1986; Brimhall
and Dietrich 1987; Potdevin and Marquer 1987; Ague
1994; Baumgartner and Olsen 1995). Chemical mass
transfers are basically quantified by comparing chemical
composition of an unaltered rock (protolith) with altered

Distance (m)

rocks. It is important to accurately define the protolith
composition. In this study, the carbonate protolith com-
position was calculated by averaging nine unaffected
carbonate rocks from xenoliths and host rocks from the
northern and south-western parts of the Quérigut massif.
They consist of calcitic marbles with calcite contents above
90%, close to the chemical composition of the studied
xenolith core. They were sampled far from contact zones
with intrusive rocks (from two metres to hundreds of
metre) and are apparently unaffected by metasomatism.

Immobile chemical elements or volume changes need to
be identified in order to establish the effective mass balance
(Fig. 4). For example, for the same initial rock composition
(25% by volume of element x and 75% by volume of
element y), Fig. 4 shows that it is possible to obtain the
same final rock composition by two opposite mass transfer
scenarios. In the first case, x is mobile and y immobile. An
input of 200% additional x results in the desired rock
composition, producing a volume increase of 50%. In the
second case, x is immobile and y is mobile. A leaching of
66% of the available y produces a volume decrease of 50%.
Again, the same composition is obtained. This illustrates
how important it is for mass balance calculations to (1)
well define the nature of immobile elements or (2) take into
account volume changes.

In this study, mass balances were calculated using the
Isocon approach (Grant 1986) using the least-squares
method assuming a Gaussian or log—normal concentration
distribution (Baumgartner and Olsen 1995). This statistic
treatment takes into account the standard deviation (SD)
for each element of each studied rock population. It allows
the selection of immobile chemical elements by identifying
the maximum number of chemical elements that are, within
their uncertainties, compatible with the same Isocon.
Results obtained are shown in log-log concentration dia-
grams where chemical element concentrations for the
unaltered rock (protolith) are plotted on the x-axis and
those for the altered rock are plotted on the y-axis (Figs. 4,

@ Springer
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Table 1 Major and trace elements whole rock analyses of metacarbonate rocks from the Quérigut complex

Sample Carbonate protolith C;, Septum core Laurenti y Laurenti 0
M40 M4l M37i M37h M37a M37b M37c M39%9¢ M39d M39¢ M39b M39a
Type n=9 lo Marble Marble Marble Marble Marble Marble Skarn Marble Marble Marble Skarn Skarn
Distance (cm) 180 65 47 18 2 200 150 100 15 5
Cal (Wt %) 94 4 96 91 91 97 47 53 51 81 89 83 29 10
Density 2.70 0.10 2.74 2.73 2.80 2.85 299 277 2.75 2.79 3.04 330
Wt % n=9 1lo Mol %
Si0, 3.18 1.70 2.72 2.46 5.46 2.82 5.44 27.4 23.09 23.89 8.71 4.52 8.45 34.03 46.23
TiO, 0.07 0.04 0.04 0.05 0.08 0.08 0.12 0.47 0.40 035 0.18 0.08 0.17 034 0.28
AlLO; 1.04 0.52 053 0.92 1.48 1.16 1.91 9.26 8.08 7.17  3.79 1.57 3.60 7.31 14.20
Fe,O 0.47 025 0.15 0.31 0.73 0.32 0.84 3.22 3.82 313 3.14 0.70 2.75 5.01 430
MnO 0.05 0.03 0.03 0.03 0.02 0.04 0.15 0.10 0.11 0.13 0.16 0.05 0.17 026 0.21
MgO 0.64 0.19 0.82 0.55 0.72 0.45 0.62 1.90 1.74 1.62  0.88 0.71 0.70 0.80 0.66
CaO 52.08 123 47.69 5278 50.48 52.02 49.74 3323 3649 39.11 46.03 51.18 46.55 3873 27.85
Na,O 0.00 0.00 0.00 0.00 0.00 0.01 0.06 0.16 0.13 0.00 0.08 0.00 0.08 0.00 0.24
K,0 0.16 0.15 0.09 0.16 0.45 0.23 0.32 2.54 1.64 091 0.63 0.24 0.59 0.00 0.18
P,0s5 0.05 0.02 0.02 0.03 0.04 0.02 0.04 0.09 0.09 0.10  0.05 0.06 0.04 0.15 0.13
LOI 41.59  1.30 41.88 3993 4192 39.63 20.82 2346 2286 3575 40.09 3597 13.14 5.14
CO, 41.07 1.16 4792 42.11 3993 3987 4249 20.89 2332 2248 3565 39.04 36.67 12.77 4.58
Total 99.33  0.14 100.00 99.18 9938 99.06 98.86 99.20 99.04 99.28 99.39 99.21 99.09 99.75 99.42
ppm n=9 lo
Nb 2.0 1.2 1.2 2.1 2.0 34 114 10.2 9.7 4.8 2.8 52 9.6 13.9
Zr 29 14 18 23 23 35 108 90 82 44 26 45 88 133
Y 8.9 43 4.1 4.8 4.8 10.5 19.3 21.7 212 130 11.3 133 253 265
Sr 230 40 201 236 182 252 330 299 307 220 271 231 166 233
U <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 24 19
Rb 7.1 43 6.4 13.6 8.8 9.4 88.6 59.6 312 222 8.8 30.5 <1 5.5
Th 3 1 4 2 8 8 9 4 4 3 9 17
Pb 2 4 <2 9 6 4 13 20 14 4 5
Ga 1 5 5 14 13 12 8 6 7 13 18
Zn 17 11 12 15 10 25 40 41 49 30 37 33 55 45
Ni 2 3 <2 <2 <2 12 16 14 11 9 9 7 141 84
Cr 8 3 7 48 40 38 17 10 17 41 29
\Y% 4 6 56 47 40 30 14 26 287 181
Ce 4 <3 <3 <3 <3 35 32 30 7 <3 16 24 38
Ba 36 23 41 59 38 93 271 207 192 88 64 133 19 98
La 7 5 <4 2 12 19 25 24 23 9 4 10 30 40

Data for the two profiles were sampled in a single metacarbonate xenolith. Samples M40 and M41 were used for mass balance calculations for
both profiles since they are in the middle of the xenolith. Distances are reported with reference to the granitoid—carbonate contact. M40 is located
at 550 cm from the contact of the granodiorite and M41 is located at 600 cm from the contact of the granite. The average of nine unaffected
carbonate samples, used as the protolith composition, is reported with their SD (1o). Also reported are weight percent total carbonate data and

density data

5). Major and trace element concentrations are expressed in
/100 g and 107° /100 g, respectively. In such diagrams,
the Isocon is defined by:

MO
log C* = log <W) +log CY (2)
where C? and C are the concentrations of an element i in
the protolith (0) and in the altered sample (A), respectively.

@ Springer

M° and M* are the total masses of the protolith and the
altered sample, for the reference system. Note that the
straight line always has a slope of one in this diagram.
Chemical elements below the Isocon left the system
whereas chemical elements above the Isocon were intro-
duced into the system. If the intercept is negative, a mass
increase occurred during alteration (MA > MO). If it is
positive, a mass decrease occurred (MA < MO). Note that
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Fig. 3 Diagrams of SiO, and 50
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Fig. 4 a Two alternative mass
transfer scenarios can produce
the same final rock composition,
starting with the same initial
composition. This illustrates the
importance to (1) accurately
define the protolith composition,
and (2) to account correctly for
the volume changes during mass
transfer, by identifying for
example immobile elements.

b Resulting log—log Isocon
diagrams calculated for the
above two mass transfer
scenarios. Both could
potentially explain the
geochemical data observed in
the metacarbonate septa. Model
1: addition of 30 mol of SiO,
and 15 mol of MgO resulting in
a slight volume gain (+12%).
Model 2: a loss of 80 mol of
CaO and COj; from the
metacarbonate protolith. This
model produces a large volume
loss (—85%)
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concentration changes can occur due to (1) density and/or
volume changes resulting from the formation of a new
mineral assemblage and/or (2) the flux of chemical ele-
ments between the system and its surroundings.

Mass balance modelling

Inspection of the analysis (Table 1) reveals that the
metasomatism is characterized by a decrease in CaO and
CO, contents correlated with an increase in elements
contained in calc-silicate minerals (e.g. SiO,, Al,O3, FeO,

100 1000 0.01 0.1 1 10 100
Protolith

1000

MgO, etc.). Such a mineralogical and geochemical evo-
lution is typical for the formation of skarns. It is
commonly interpreted as the result of extensive addition
of elements from the intrusion (Einaudi and Burt 1982;
Brown and Essene 1985; Nabelek and Labotka 1993;
Gerdes and Valley 1994; Buick and Cartwright 2002;
Ferry et al. 2002), typically due to the infiltration of
aqueous fluids of magmatic origin which carry with them
abundant silicate, aluminium and bivalent cations (Nab-
elek and Labotka 1993; Gerdes and Valley 1994; Buick
and Cartwright 2002; Abu El-Enen et al. 2004). An
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Fig. 5 Log-log diagrams for 1000
the profile § showing the
chemical evolution of
metacarbonates towards the
igneous contact. A large loss of
CaO, Sr, MgO and CO, in the
marble and exoskarns is
partially compensated by a
slight increase in SiO,, Al,O3
and Fe,O; in the exoskarns
immediately adjacent to the
igneous contact. Chemical
compositions used for mass—
balance calculations are given in
Table 2. Error bars are 1o SD,
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alternative process consists in removing chemical ele-
ments initially present in carbonate rocks, like CaO and
CO,, thereby passively increasing the amounts of the
other chemical elements. These two processes involving
are evaluated here.

The mass transfer was coeval with decarbonation reac-
tions leading to the formation of calc-silicate minerals
(Durand et al. 2006). The most common metamorphic
mineral observed in metacarbonate profiles is clinopyro-
xene. For simplicity, we will assume that diopside is the
only metamorphic mineral formed during contact meta-
morphism by a decarbonation reaction:

CaCO; + 28i0, + MgO — CaMgSi,05 + CO, (3)

An average representative protolith contains 92.5 mol of
CaCO3; + 5 mol of SiO, + 2.5 mol of MgO + 1 mol of
diverse immobile elements (Table 1). Immobile chemical
elements are used as the reference frame to understand the
behaviour of the mobile elements. Below we present two
models which yield approximately the same both
compositions for the altered rock. Starting protolith
composition, resulting chemical compositions and log—
log diagrams for both models are presented in Tables 1, 2
and Fig. 4b.

@ Springer

Model 1: mass gain

In this model, an input of SiO, and MgO is imposed from
an external reservoir. This implies a relative decrease in
concentration for immobile elements like, for example,
Ca0. 30 mol of SiO, and 15 mol of MgO are added to the
metacarbonate protolith (Table 2). This element input is
coeval with the formation of diopside and the release of
CO, by the decarbonation reaction (3). This results in a
composition close to that of the studied samples in the
vicinity of the contact. This process can be written as:

[92.5 mol (CaO + CO,) + 5 mol SiO; + 2.5 mol MgO
+ 1 mol immobile] ;) +[30 mol SiO,
+ 15 mol MgO]( — 17.5 mol CaMgSi,Ogformed)

input)

+ 75 mol CaCO3esiquary + 1 mol immobile esidua)
(4)

The resulting logarithmic Isocon diagram is presented in
Fig. 4b. The main features deduced from the diagram are
that (1) CaO and other immobile elements have the same
behaviour and (2) the significant mass input of SiO, and
MgO induces only a slight mass gain (14.2 £ 3.0%), due
to the release of CO, by the decarbonation reaction (3).

+ 17.5 mol COZ(nutput by decarbonation reaction)
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Table 2 The two different scenarios of mass transfer illustrated in Fig. 4 result in about the same whole rock compositions
SiO, MgO CaO CO, Immobile Total
Initial model composition Mol 5.00 2.50 92.50 92.50 1.00 193.50
Mol % 2.59 1.29 47.80 47.80 0.52 100.00
Model 1 (open system) input of +30 mol SiO, + 15 mol MgO Mol 35.00 17.50 92.50 75.00 1.00 221.00
Mol % 15.84 7.92 41.86 33.94 0.45 100.00
Model 2 (closed system) output of —80 mol (CaO + CO,) Mol 5.00 2.50 12.50 10.00 1.00 31.00
Mol % 16.13 8.06 40.32 32.26 3.23 100.00

The addition of SiO, and MgO (Model 1) or the loss of CaO and CO, (Model 2) can potentially account for the observed rock compositions. Note
that the initial and final compositions used in the model are close to the chemical compositions of the carbonate protolith and an altered sample,

respectively

Model 2: mass loss

This model involves loss of stoichiometric “calcite”, hence
CO, and CaO are removed from the system. This process
produces a passive concentration increase of all immobile
elements. A total of 80 mol of calcite (CaO and CO,) are
lost from the metacarbonate protolith (Table 2). The calcite
breakdown is associated with formation of diopside and
release of CO, during decarbonation reactions. This pro-
cess can be summarized by the following reaction:

[92.5 mol(CaO + CO») + 5 mol SiO, + 2.5 mol MgO

+ 1 mol immobile]( y— 2.5 mol CaMgSi, O formed)

initial
+ 10 mol CaCOj3residualy + 1 mol immobile regiduar)

+ 2.5 mol Coz(omput by decarbonation reaction)
+ 80 mol(CaO + CO2) ypur) (5)

The Isocon is defined by the immobile elements including
Si0, and MgO (Fig. 4b). Both CaO and CO, plot below the
Isocon because they were lost from the system. It is
noteworthy that CaO plots slightly above CO, because
additional CO,, produced by the decarbonation reaction (3),
escapes the system (Fig. 4b). In this model the estimated
volume loss is about 85% (assuming a constant density).

Mass balance results

Here, mass balance results obtained from profiles ¢ and y
are presented (Table 3). These results will be compared to
both previous models to identify the mass transfer process
in the metacarbonate xenolith. Three logarithmic Isocon
diagrams for profile ¢ are presented in Fig. 5. They illus-
trate the mass transfer as the contact is approached. The
shown uncertainty corresponds to the protolith SD (1o)
which is considered to represent the uncertainties of ana-
lysis and the heterogeneity of the protolith.

M40 was sampled at 550 cm from the contact. All ele-
ments plot on the same straight line. Hence, all elements
are considered as immobile which suggest no chemical
mass transfer. The mass change ratio, of 1.0116 £ 0.0224,

implies no mass change (no density and volume change).
Hence, sample M40 has not been affected by the grano-
diorite emplacement. This also shows that the nine samples
used to calculate the protolith are indeed similar to the
xenolith carbonates.

The diagrams calculated for the two others samples
(M39c and M39a) sampled at 100 and 5 cm from the con-
tact, respectively, show a significant and increasing change
in composition. CaO, CO,, Sr and MgO are identified as
mobile. They further decrease towards the contact while
most other chemical elements (like SiO,, TiO,, Al,Os,
MnO, Zr, Nb) plot on the straight line, and are hence inter-
preted to be immobile. Note that in the sample closest to the
contact (M39a), an addition of SiO,, Al,O; and Fe,Os5,
probably from the intrusive rock, is suggested, along with a
large loss of CaO, CO,, Sr and MgO (Fig. 6; Table 3).
Figure 6 illustrates well the significant loss in CaO and CO,
contents toward the contact zone. M°/M* ratios evolve from
1.0116 +£ 0.0224 (sample M40) toward a maximum value of
44732 £ 0.4525 at the contact (sample M39a). The
observed evolution implies a large mass decrease of up to
—78 £ 2% (sample M39a) and hence also a large volume
decrease (up to —81 & 7%). Note that a density increase
appears toward the contact (up to 17 £ 3% in sample M39a;
Table 3) due to mineral assemblage changes. This accen-
tuates the volume loss. Similar results are obtained for
profile y. A large loss of CaO, Sr and CO,, without any
addition of SiO,, Al,O5; and Fe,Oj3 in the vicinity of the
contact, explains the data completely. Mass shows again a
significant decrease (—85 £ 2%), accompanied by a vol-
ume decrease (—86 £ 6%). Density again increases
(11 £ 3%) toward the contact (sample M37c; Table 3).

Discussion

Mass transfer in metacarbonates: decarbonation
and calcite loss processes

The mineralogical and geochemical evolution in the
metacarbonate xenolith documents mass transfer during
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Fig. 6 Mass balance results for Si02 TiO2 AlO3 FexO3 MnO MgO CaO KxO P20s CO»
profile 6. Mass transports for O O O @O @D @ @ = = -
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the breakdown of calcite, (2) a loss of Ca and volatiles.
Locally, an addition of Al, Si and often Fe partially com-
pensates for this loss. Tracy et al. (1983) also suggest a
strong volume loss in impure marble adjacent to a quartz
vein-filled fracture (>50% of the initial rock volume)
during regional metamorphism.

Effects of volume loss on stable isotope profiles

Volume changes which occur in metacarbonate xenoliths
during contact metamorphism can influence the shape of
stable isotope profiles (Fig. 10). Tracy et al. (1983) have
already discussed the effects of volume loss on Rayleigh
fractionation and box-model calculations.

To illustrate the effect of volume change on O stable
isotope profiles, the initial position of each studied samples
is recalculated by integrating volume losses along each
profile, using an increment of 10 cm (based on linearly
interpolating between samples). Recalculated initial posi-
tions of studied samples are given in Table 4. The actual

Distance (cm)

lengths of profiles y and § are 800 and 850 cm, respec-
tively. After corrections for volume loss, these two profiles
have lengths of around 1,100 £ 200 and 1,300 &+ 380 cm,
respectively. Hence, each profile was significantly longer
before the metasomatic volume loss, by about 300 and
450 cm, respectively.

Oxygen and carbon stable isotope profiles measured
across the metacarbonate—intrusive rock contacts have
already been described in details in Durand et al. (2006). In
order to compare isotopic values of granodioritic and
metecarbonate rocks, the oxygen isotope composition of
calcite in equilibrium with quartz was calculated (at 500°C)
where no carbonate is present. The “ISOfit” program
(personal communication Baumgartner, unpublished) was
used to fit isotope profiles with a 1D transport equation. It
fits analytic solution of the advection—diffusion equation
(Baumgartner and Rumble III 1988) to measured data
using a least-square fitting procedure (Marquardt 1963).
Local equilibrium (Thompson 1959) between carbonate
and fluids is assumed. Output of the model is, among other

@ Springer
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Fig. 8 Geochemical modelling of the evolution of major and trace
element contents using a calcite loss model. The starting composition
used in this model is the carbonate protolith (Table 2). The tick marks
along the lines refer to the amount of pure calcium carbonate lost. The
measured data is plotted for both profiles, using TiO, as the inert
component. Excellent R? were obtained which indicates that TiO,,
Al,O; and Nb evolve in the same proportion and, hence, are
immobile. Excellent agreement between modelled and observed
values exists. This indicates that the increase in TiO,, Al,O; and Nb
contents can be explained by a loss of calcite. Only sample M39a
sampled at 5 cm from the granodiorite intrusion does not fully fit.
Note that the three chosen immobile elements (TiO,, Al,O3 and Nb)
are not present in the same mineral phase. Their chemical evolution
does hence not depend on the modal abundance of a single mineral.
Al,O3 and Nb are plotted with black and open symbols, respectively

values, the Peclet number, calculated for each profile. The
Peclet number, a dimensionless transport variable, allows
estimating the ratio of infiltration to diffusion during
metasomatism (Bear 1988; Bowman and Willett 1991;
Baumgartner and Valley 2001).

Four different O stable isotope profiles, labelled from 1
to 4, are presented in Fig. 10. Curve 1 represents the actual
state and reports 6'%0 as a function of the measured dis-
tances (Fig. 10a). 6'80 values decrease toward the contact
from the sedimentary values of 24%o which is preserved in
the xenolith core (M40 and M41), towards 14.8%o near the
contact. 5'®0 values of calcite in equilibrium with grano-
diorite increase from magmatic values of 11-12.5%o, for
samples located far from the contact, to higher values for
altered samples located near the carbonate contact
(6'%0 = 14.5-15.2%0). The observed 5'%0 evolution is
consistent with dominantly diffusive isotopic exchanges
between two contrasting rocks (Taylor and O’Neil 1977;

Valley 1986; Cartwright and Valley 1991; Nabelek 1991;
Turner and Bowman 1993; Cartwright et al. 1997; Buick
and Cartwright 2000; Baumgartner and Valley 2001; Buick
and Cartwright 2002). Least square fit to the data reveal
some infiltration. Small Peclet numbers (5.8 &+ 1.5 and
7.6 £ 1.7) result from fits to the y and ¢ profiles, as
expected. This suggests that the profile were mainly con-
trolled by diffusion across the contact, with only limited
fluid flow perpendicular to the granitic rock contact.

The initial 6'%0 composition, before contact metamor-
phism, is given by curve 3 (Fig. 10b). This initial state is
characterized by sedimentary values in metacarbonate
rocks (around 24%o) and igneous values in intrusive rocks
(between 12 and 13.5%o).

During contact metamorphism, two different processes
affect the initial profile: O alterations by diffusion/advec-
tion in granitic and metacarbonate rocks and volume losses
associated with chemical mass transfers in metacarbonates.
The relative chronology between O alteration and meta-
somatism is unknown, but three different cases can be
invoked: (1) the O isotope alteration is posterior to the
volume loss process, (2) the O isotope alteration is prior to
the volume loss process and (3) the O isotope alteration and
the volume loss processes are contemporaneous. Note that
the alteration profiles in cases (2) and (3) will be strongly
influenced by the volume change.

Here, we present the first two end-member cases
(Fig. 10). If O alteration is posterior to volume loss (1), the
isotope composition does not change during volume loss
and the profile evolves from the curve 3 to the curve 2.
Isotope alteration occurs afterwards. The isotope profile
evolves from the curve 2 to the curve 1. If isotope alter-
ation is prior to volume loss (2), the initial isotope profile
length was greater than the measured length, after volume
loss. In this case, the O alteration evolves from the curve 3,
representing the initial state, to the curve 4. This is fol-
lowing by volume loss during metasomatism and the
alteration profile evolves from curve 4 to the today mea-
sured profile (curve 1). Initial O alteration distances (L)
were about 250 and 1,500 cm, respectively. These have to
been compared with today’s values of 100 and 600 cm for
profiles y and 9, respectively. Thus, if isotope alteration is
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rocks, for profiles y and J. The 240 I 1 1.0
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Fig. 10 Some possible effects of volume loss on the interpretation of
stable isotopic profiles. a Oxygen stable isotope profiles are plotted
using actually measured distances for samples. Curve 1 gives the
measured values after the O alteration and the volume loss. Curve 2
illustrates the initial conditions if volume loss occurred prior to the
isotope alteration. b Oxygen stable isotope composition profiles are
plotted against distance taking into account the volume loss that

Table 4 Integrated profile length, taking into account volume
changes

Sample Actual distance Initial distance
Value Value lo

Laurenti vy 800 1,100 200
M40 800 1,100 200
M41 550 850 200
M37-i 180 480 195
M37-h 65 370 190
M37-a 47 330 160
M37-b 18 120 55
M37-c 2 55 25
Laurenti 0 850 1,300 380
M41 850 1,300 380
M40 600 1,045 380
M39 e 200 655 370
M39d 150 585 355
M39 ¢ 100 500 300
M39 b 15 110 60
M39 a 5 70 25

Distances are given in centimetre. Actually measured distances are
smaller than the initial lengths due to the large loss of CaO and CO,
which is responsible for the volume loss

occurred during skarn formation. Curve 3 represents the initial
conditions. Curve 4 gives the case where the isotope alteration is prior
to the volume loss. The curves are the resulting fit to each case, using
program ISOFIT (personal communication Baumgartner, unpub-
lished). The peclet number Np,, does not change significantly, though
infiltration and diffusion distances do. See text for further discussion

prior to volume loss, O alteration occurred over a greater
distance than observed today. Nevertheless, Peclet numbers
only show a slight increase when volume loss is accounted
for: in y, the Peclet number is about 9.1 £ 2.0 and, in J, it
varies between 7.3 & 2.2 and 8.1 &£ 1.8. These results
show, surprisingly, that the ratio of infiltration to diffusion
is not strongly influenced by these calculations.

The most likely scenario is that stable isotope exchange
and calcite loss were probably contemporaneous. This
implies that the effective evolution will have been in
between the two scenarios. Hence, distances of O altera-
tions evolved during contact metamorphism and it is likely
that O alterations could have occurred over greater dis-
tances than those observed today due to volume loss. If the
O isotope alteration occurred prior to the volume loss (case
ii and curve 4 in Fig. 10), this distance would have been
about 2-3 times larger. This observation implies that fluid
flows could be several times greater if volume losses are
taking into account. Given that the Peclet number stayed
roughly constant, this would also imply that diffusion was
2-3 times more important.

Conclusions
Chemical mass transfer during contact metamorphism has

been quantified for a metacarbonate xenolith in the Quérigut
massif (Pyrenees, France). Metacarbonates show a
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significant loss of modal calcite followed by the develop-
ment of a thin exoskarn zone composed of diopside, garnet,
wollastonite and clinozoisite close to the contact. Mass
balance calculations show a large loss of the CaO (up to —
90 £ 3%), Sr (up to —85 + 18%) and CO, (up to
—97 &£ 3%). The others elements, like SiO,, Al,O3, initially
present in the limestone behave nearly immobile and are
therefore passively concentrated. A small increase of SiO»,,
Al,O5 and Fe,O; contents occurs in one of the profiles in the
immediate vicinity of the contact. Thus, in this study, the
skarn formation is characterized by the lack of large chem-
ical element influx from the granitic protolith. This
geochemical evolution is due to two different processes: (1)
decarbonation reactions leading to calc-silicate minerals and
release of CO, and (2) stoichiometric “calcite” loss, with
concurrent CaO and CO, loss. A large volume decrease
results from these processes: up to 86 & 6% of the initial
volume is lost at the contact with the granitoid intrusions.
This can strongly affect the interpretation of stable isotope
profiles: isotope alteration distances could evolve during
contact metamorphism and the isotope alteration could have
occurred over a greater distance than those observed today.
This study demonstrates that volume variations must be
taken into account in mass transfer studies in contact aure-
oles where carbonates are involved. Furthermore, CO,
release is of importance for the mass budget of CO,. If these
large amounts of CO, are not trapped in the upper levels of
the continental crust during their ascent, they also could lead
to increase in atmospheric CO, concentration depending on
the volume amount of metacarbonates involved during the
skarn formation processes, as proposed by Kerrick and
Caldeira (1993) and Roselle and Baumgartner (1997).
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