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Abstract. We consider a simple-model population, whose individuals react with a certain delay to temporal
variations of their habitat. We investigate the impact of such a delayed-answer on the survival chances
of the population, both in a periodically changing environment, and in the case of an abrupt change of
it. It is found that for populations with low degree of mutation-induced variability, being “slow-reacting”
decreases the extinction risk due to environmental changes. On the contrary, for populations with high
mutation amplitude, the delayed reaction reduces the survival chances.

PACS. 87.23.Cc Population dynamics and ecological pattern formation – 87.18.Tt Noise in biological
systems – 87.10.Rt Monte Carlo simulations

1 Introduction

In the present-day context of global warming and habi-
tat destruction, there is an enhanced general interest
in the impact of environmental changes on biological
populations evolution. Despite this, little has been done
from a theoretical point of view, in the frame of evo-
lutionary dynamics modeling, towards a systematic ap-
proach of the role of various elements involved in these
complex circumstances on the population dynamics. In
a recent paper [1] we investigated systematically the
role of the selection pressure and mutation amplitude,
as well as the impact of the quality and quantity of
the habitat changes on the behavior of a single-species
population.

For simplicity and in order to extract the generic fea-
tures, we considered the case of a periodically chang-
ing environment, as in references [2–4]. The case of an
abrupt change in the environment was also addressed.
The mean-field level of description of the chosen model
allowed us to put the finger, for the first time, on the very
origin of the emerging complex behavior of this highly-
nonlinear system, that is the delicate interplay between the
different time-scale processes. The role of the amplitude
and period of the environmental changes on the critical
value of the selection pressure (corresponding to a phase-
transition “extinct-alive” of the population) was clarified.
However, the intrinsic stochasticity, the dynamically-built
correlations between the individuals, and the role of the
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mutation-induced variety in population’s evolution cannot
be appropriately accounted for at a mean-field level.

A more refined level of description, which is an indivi-
dual-based one, was therefore also considered. The main
conclusions were that the inherent fluctuations do not de-
stroy the phase transition “extinct-alive”, and the muta-
tion amplitude strongly influences the value of the critical
selection pressure, giving rise, in particular, to a diversity-
induced resonance phenomenon [5,6]. The phase diagram
in the plane of the selection and mutation parameters
was discussed as a function of the environmental variation
characteristics. In particular, an important aspect well-
known to experimental biologists, see e.g. [7], was emerg-
ing naturally, namely that a small amount of randomness,
due to mutations, is beneficial for population’s survival
in the changing environment, while a too large amount
definitely is detrimental to it. The differences between a
smooth variation of the environment and an abrupt, catas-
trophic change were also clarified, pointing to the benefi-
cial role of the mutation in ensuring species survival after
a catastrophe.

In this short paper we shall address another aspect
of this survival problem, namely the role of the delay in
the “reactions” of the individuals. The lagged response to
environmental changes is a phenomenon widespread in na-
ture [8–13]. However, an extensive theoretical analysis of
its impact on population dynamics is still lacking. The role
and effects of time-delay in biological systems has been ad-
dressed previously in the context of Lotka-Volterra type of
dynamics of interacting species [14], where the “delay” was
included at the level of the coupling between the species.
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Here we are considering a different problem, namely the
delayed-response of the individuals of a single-species pop-
ulation to a changing environment. Using a simple model,
we shall try to clarify the degree and limits of validity
of the commonly-spread belief that “a population of fast-
reacting individuals has better survival chances face to
changes in their environment”.

2 Model

We consider the same type of model as in reference [1],
namely a population of hermaphrodite individuals (i.e.,
which, although bisexual, need mating for reproduction),
living on a two-dimensional square lattice of size L × L.
We assume that the individuals cannot cross the borders
of the lattice. Moreover, the lattice has a finite carrying
capacity, which comes from the exclusion assumption that
there is at most one individual in each lattice node.

The dynamics of the population takes place at discrete
time-steps and is the result of: natural selection (inter-
action with the environment), individual motion, mating
and reproduction, as described below.
A. Natural selection. Individual trait, time-dependent opti-
mum, fitness, delayed-response, selection pressure, extinc-
tion probability
Each individual i is characterized by its trait or pheno-
type, which for simplicity is represented here through a
real number zi ∈ [0,1]. The trait is fixed once and for all
at the birth of the individual.

The population lives in an environment whose influ-
ence on the individuals is encoded in the value of the
so-called optimum, ϕ ∈ [0, 1], which we suppose to be
homogeneous in space, but periodically variable in time
ϕ = ϕ(t). Moreover, we consider here the simplest possi-
bility,

ϕ(t) = 0.5 + A sin
(

2π
t − tinit

T0

)
Θ(t − tinit) . (1)

Here A denotes the amplitude of the environmental oscil-
lation, with 0 < A � 0.5, T0 is its period, and tinit is the
moment of onset of the optimum perturbation; Θ is the
Heaviside step-function.

The case of an abrupt change in the environment, for
which the optimum jumps at t = tinit from ϕ = 0.5 to
ϕ = 0.5 + A was also considered.

An individual i “reacts” with a certain specific delay
τi to the changes in the environment. This means that its
instantaneous fitness (or “adequacy to the environment”,
see below) at time t is determined by the value of the
optimum at a previous time (t − τi),

fi(t) = 1 − |zi − ϕ(t − τi)| . (2)

The fitness determines the instantaneous individual ex-
tinction probability per time step pi(t), according to the
following expression:

pi(t) = 1 − exp
[
− S

fi(t)

]
, (3)

where S is a parameter which models the selection pres-
sure of the environment and constitutes a main control
parameter of the system. During its life-time, an indi-
vidual oscillates cyclically from being perfectly-adapted,
when zi = ϕ(t− τi), i.e., from a minimum possible extinc-
tion rate pi(t) = exp(−S), to a worse adaptation, which
corresponds to zi �= ϕ(t−τi) and to a larger instantaneous
extinction probability, and finally to a total lack of adap-
tation, when pi(t) = 1. The pool of adapted individuals
changes thus at each time step.

The choice (3) we made of the extinction probability
and the implicit definition of the selection pressure param-
eter S are frequently encountered in the biological liter-
ature, see e.g. [15]. Other choices and thus other ways of
measuring the “selection pressure” are of course possible.
However, most of them can be mapped one onto the other
and/or account for equivalent qualitative aspects of the in-
teraction between the individuals and their environment.

The individual delayed-response time τi is fixed once
and for all at one individual’s birth. We consider here a
simple case when the τi’s are random variables drawn from
an uniform distribution within an interval [0, Td]. The up-
per limit of this interval Td represents another control pa-
rameter of the model. It is obvious that for a periodic
variation of the environment only the values Td < 2T0 are
relevant.

Note also that an equal delay-time for all individuals
amounts simply to a change in the time-origin. As such,
a mean-field level description of the population dynamics
(which is already known as inappropriate for describing
mutation, see [1]) will not be able to account for the effects
of the individual delay-times on the global evolution of the
population. We shall therefore focus exclusively on the
individual-based numerical simulations.
B. Individual motion
An individual can move to its surroundings, and the sim-
plest possibility that we shall adopt hereafter is a random-
walk. Namely, in one time step the individual jumps on
the lattice, from its initial location to a randomly chosen
nearest-neighbor one (i.e., a site within the von Neumann
neighborhood of the initial node), provided that the cho-
sen site is empty, and that it lies within the boundaries
of the system. If none of the four first-neighbor nodes is
empty, then the individual cannot move, and thus cannot
mate (see below).
C. Mating and reproduction. Heredity and mutation
Suppose an individual i reaches a destination node. If
there are other individuals (“neighbors”) in the nearest-
neighborhood of this destination site, then the individual
“i” chooses at random one of these neighbors, call it “j”,
for mating. The pair of individuals i and j may then give
birth to as many offsprings as there are empty nodes in
their surrounding joint nearest neighborhoods. Therefore,
all the empty nodes closely surrounding the two parents
will be filled with offsprings. The maximum number of off-
springs of one pair is thus equal to six (corresponding to a
completely empty nearest neighborhood of the parents).

The trait of a progeny k coming from parents i and j
is determined by the parents’ traits (heredity), but it can
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also present some “variations” due to different random
factors, such as recombination, mutations, etc. We shall
assume that

zk =
1
2
(zi + zj) + mk , (4)

where mk represents these variations. It brings diversifi-
cation into the phenotypic pool of the population and we
call it conventionally mutation. For simplicity, we shall ad-
mit that mk is a random number, uniformly distributed in
the interval [−M, M], where 0 < M < 1 is called here-
after the mutation amplitude and is a control parameter
of the system1. Moreover, if equation (4) leads to zk > 1
or zk < 0, then one “renormalizes” it by resetting zk to
1, respectively 0, which means simply that the trait of
the individuals cannot overcome some fixed limits. This
choice (4) for the trait of an offspring is often made in the
biological literature [15].

The population dynamics is thus driven by two main
“forces” that are acting, to some extent, in opposite direc-
tions: selection and mutation, characterized, respectively,
through the values of the control parameters S and M.
Selection, combined with heredity, tries to bring the aver-
age trait close to the optimum, while mutation introduces
diversity in the individual traits, and thus is broadening
the distribution of the population’s traits.

The Monte-Carlo simulation algorithm considers the
individuals distributed on the lattice nodes, the initial con-
dition being represented by their positions, the prescribed
values of the individual traits and delay-times. The initial
N(0) individuals are randomly-distributed with a mean
concentration c(0) = N(0)/L2, and their individual traits
are randomly assigned from an uniform distribution be-
tween 0 and 1.

The individuals are evolving, at discrete Monte-Carlo
time steps (MCS, defined hereafter), according to the
stages A–C of the dynamics as described above, namely:

A. At a given time t an individual i is picked at random,
and its extinction probability pi(t), corresponding to
one MCS, is determined according to equations (2, 3).
Then a random number r is extracted from an uniform
distribution in the range [0, 1]; if r < pi, the individual
dies, otherwise it survives.

B. If it survives, the individual i jumps at random to one
of the empty nearest-neighbor nodes on the lattice.

C. Then it possibly mates and produces offsprings.

If at the time t there are N(t) individuals in the sys-
tem, then the above steps A–C are repeated N(t) times;
this constitutes one MCS, the unit-time of the simulations.
Afterwards, the time is advanced by one step, t → t + 1,
and the above algorithm is repeated.

As a last remark on the model, it is known on general
backgrounds [16] that the system size is playing a certain
role on the location of the phase transition point, as well
as on its “sharpness”. We used for all our Monte Carlo

1 In the biological literature parameters analogous to M are
often referred to as mutation rate. However, because of the
physical aspect M designates, the term mutation amplitude
looks more appropriate to us.

simulations a system of 100 × 100 lattice sites, for which
we had shown previously, see reference [1], that the qual-
itative features of the phase diagram are practically not
affected by finite-size effects.

3 Results

For a periodic oscillation of the optimum we investigate
the temporal evolution of a population starting from a
given initial concentration c(0). Depending on the char-
acteristic parameters, the population can evolve, on the
average, either to an “alive phase”, for which its concentra-
tion is actually oscillating periodically, with period T0/2,
around a nonzero mean value, or can get extinct after a
transient period of time. In our previous paper [1] we in-
vestigated in detail the phase diagram “extinct–alive” of
the population in the plane of the control parameters S
and M, for different values of the characteristics A and T0

of the optimum oscillation. The same type of phase dia-
gram was also constructed for the case of an abrupt jump
of the the optimum.

Our principal concern in this paper is to determine
how the delay in the individual response to the changing
environment – i.e., the value of the control parameter Td –
affects the phase diagram extinct-alive of the system. We
performed extensive simulations for various range of pa-
rameters and the main results are illustrated in Figure 1.

One notices several interesting features exhibited by
these figures:

(a) Consider first the “intermediate” values of T0

for which, as described in reference [1] for the no-delay
case, one encounters the diversity-induced resonance phe-
nomenon, i.e., the “peak” in the phase-diagram illustrated
in the upper and middle panels of Figure 1. Then:

(i) For small values of the mutation amplitude M, the
existence of a delay in the response of the individuals
to environmental changes (i.e., Td �= 0) is increasing
the survival chances of the population. The diversity
related to the randomness in the response of the in-
dividuals can contribute to the appearance of a larger
pool of well-adapted individuals and is thus formally
equivalent to an increase in the “effective” mutation
amplitude, which is beneficial for the survival [1].

(ii) For large values of M, however, adding the random-
ness of the delayed-response to the mutation-related
one is leading to an even higher “effective” mutation
amplitude. As such, the extinction risk of the pop-
ulation is increased: as seen in the plots, the phase
diagram for the populations with delayed-response
(Td �= 0) lies always below the one of the instanta-
neously-reacting population (Td = 0).

(iii) Finally, the peak related to the mutation-induced di-
versity is generally still present for the systems with
time delay. However, in this case the randomness in
the delayed-response can turn a part of the pool of
well-adapted individuals into less-adapted ones, and
thus the height of the peak is reduced as compared
to the case of an instantaneously-adapting population.
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Fig. 1. Phase diagram extinct (above the curve) – alive (below
the curve) in the plane of the selection pressure S and mutation
amplitude M, for different values of the delay time Td and
of the optimum oscillation period T0. From the upper to the
lower panel, T0 = 5000, 1000, and 50, respectively; the values
of the other parameters are L = 100, c(0) = 0.7, A = 0.3, and
tinit = 1000. The average was taken over 10 realizations of the
stochastic dynamics and the estimated errors in the value of
the critical selection pressure are less than ±0.002.
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Fig. 2. Time evolution of the number n(f = 1) of the fittest
individuals of a population for different values of the delay
time Td. Upper panel: M = 0.025 (small mutation amplitude),
lower panel: M = 0.1 (intermediate mutation amplitude). The
legend in the upper panel also applies to the lower panel. The
values of the other parameters are L = 100, c(0) = 0.7, A =
0.3, T0 = 1000, and tinit = 1000, corresponding to the middle
panel of Figure 1.

For large delays (like Td = 0.75 T0 in the figures) this
peak can be even suppressed.

(b) One concludes therefore that the role of the delay-
induced diversity is an increase in the “effective” mutation
amplitude. As such, it can be easily predicted that for
small values of T0 (rapid oscillations of the environment)
the dynamics of the system will be only slightly affected
by the delay, since it is already only slightly sensitive to
changes in M. This is illustrated in the lower panel of
Figure 1. No diversity-induced peak, i.e., no optimal “ef-
fective” mutation amplitude is encountered in these cases,
any mutation and any delay in response being harmful for
the survival of the population.

A way to get a better insight into the reasons for this
behavior is the monitoring of the temporal evolution of
the pool of fittest individuals (i.e., the individuals with
fi(t) = 1). Figure 2 illustrates this point, for a fixed value
of T0 and three values of Td �= 0, corresponding to the
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Fig. 3. The phase diagram extinct (above the curve) – alive
(below the curve) in the plane of the selection pressure S and
mutation amplitude M, for an abrupt jump in the value of
the optimum, from ϕ = 0.5 to ϕ = 0.8, for different values
of the delay time Td. The values of the other parameters are
L = 100, c(0) = 0.7, tinit = 1000. The average was taken over
10 realizations, and the estimated errors in the value of the
critical selection pressure are less than ±0.002.

middle panel of Figure 1. The upper panel of Figure 2
pertains to the region of small mutation amplitudes in the
phase diagram, for which a delayed-response enhances the
survival chances. The lower panel refers to the region of
the peak in the phase diagram, for which delay increases
the extinction risk.

One can see that for the surviving populations the
number n(f = 1) of the instantaneously fittest individ-
uals is oscillating periodically in time (but never reaching
zero), while it decays (with oscillations) to zero for the
populations that will get extinct. The pool of the fittest
individuals is enhanced by the delay-induced diversity in
systems with small mutation amplitude (upper panel of
Fig. 2) and, on the contrary, it is depleted by the delayed-
response in populations with intermediate and large mu-
tation amplitude (lower panel of Fig. 2).

Finally, we addressed also the effects of a delayed an-
swer in the case of a catastrophic, abrupt change in the
environment. As illustrated in Figure 3, one encounters
the same type of phenomena as in the case of a smooth
variation of the optimum, namely the fact that for small
mutation rate the largest the delay parameter Td, the big-
ger the survival chances of the population.

In order to understand the mechanism underlying this
behavior of the populations with small mutation ampli-
tude M, it is useful to follow the temporal evolution of
the fitness histogram “number of individuals n(f) versus
fitness f”. This is done in Figure 4 for two populations
that differ only through the value of the delay parameter
Td, such that one of them gets extinct, while the other one
survives after the catastrophe. Before the catastrophe, the
histogram had an important peak at f = 1, and a tail (due
to mutations) at low-fitness values. After the catastrophe,
a new peak of low-fitted individuals appears, such that
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Fig. 4. Fitness histograms: number of individuals n(f) ver-
sus fitness f for two populations with low mutation amplitude
M = 0.05 and different delay-response parameters Td = 1000
(continuous line) and Td = 50 (dotted line) in case of a
catastrophic event. The optimum jumps at tinit = 1000, from
ϕ = 0.5 to ϕ = 0.8. The upper panel corresponds to time
t = 1000, just before the optimum jump. The middle panel
corresponds to t = 1100, and the lower panel to t = 2100
(when only the population with Td = 1000 survived). The
other parameters are L = 100 and c(0) = 0.7. Single runs
were considered.
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the histogram becomes bimodal. One notices that the ex-
istence of a larger delay time ensures the persistence of
a sufficiently large pool of high-fitted individuals even af-
ter the catastrophe, and this pool will ensure the survival
of the species till the new-born individuals get adapted
slowly, through small mutations, to the new environment.
For a surviving population the histogram becomes peaked
again, in the long run, around f = 1. A shorter delay time
Td, however, cannot ensure this persistence of the high-
fitted individuals pool for a long enough time, and the
population dies, since the adaptation through mutations
is not rapid enough.

As seen in Figure 3, on the contrary, for large mutation
amplitudes the larger the delay Td, the higher the extinc-
tion risk, since, as in the case of a periodically-varying
environment, in this case the delay-induced stochasticity
adds up to the mutation, leading to an even higher effec-
tive mutation amplitude, which is harmful for the system.

4 Conclusions

We considered a simple model of single-species population
dynamics in a changing environment and we investigated
the role of a delayed answer of the individuals to these
habitat changes. In the case of a smooth variation of the
environment, it was found that, in general, for populations
with small mutation amplitudes it is more beneficial, in
terms of the survival chance, to be slow-reacting than to
answer instantaneously to the variations of the environ-
ment. However, for intermediate and large mutation am-
plitudes, faster reactions are preferable to slower ones. In
case of a very-rapidly oscillating environment, the rapid-
ity of reaction influences only slightly the survival chances.
The same type of statements holds true for the case of a
catastrophic, abrupt jump in the optimum.

As such, one has to be rather cautious with “common-
sense” statements of the kind “a population of fast-
reacting individuals has better survival chances face to

changes in their environment”. Of course, more complex
and realistic models than the one we presented here are
needed in order to make more detailed quantitative state-
ments and reliable predictions for real biological systems,
and to investigate further aspects of the intricate problem
of a population evolving in a changing environment.
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