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Abstract Neurons generate spikes reliably with millisec-
ond precision if driven by a fluctuating current—is it then
possible to predict the spike timing knowing the input? We
determined parameters of an adapting threshold model using
data recorded in vitro from 24 layer 5 pyramidal neurons
from rat somatosensory cortex, stimulated intracellularly
by a fluctuating current simulating synaptic bombardment
in vivo. The model generates output spikes whenever the
membrane voltage (a filtered version of the input current)
reaches a dynamic threshold. We find that for input currents
with large fluctuation amplitude, up to 75% of the spike
times can be predicted with a precision of ± 2 ms. Some of
the intrinsic neuronal unreliability can be accounted for by a
noisy threshold mechanism. Our results suggest that, under
random current injection into the soma, (i) neuronal behav-
ior in the subthreshold regime can be well approximated by
a simple linear filter; and (ii) most of the nonlinearities are
captured by a simple threshold process.
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1. Introduction

Informally, neuroscientists often talk about neurons as units
that sum up the postsynaptic potentials caused by presy-
naptic spike arrival until a threshold of spike generation is
reached. This is also the level of description used in minimal
models such as the Integrate-and-Fire or Spike Response
Model (Lapicque, 1907; Hill, 1936; Stein, 1967; Gerstner
and Kistler, 2002). On the other hand, it is well known
that dendritic processes are highly non-linear (Stuart and
Sakmann, 1994; Helmchen et al., 1999; Larkum et al., 2001)
and that spike generation cannot be accounted for by a simple
voltage or current threshold (Koch et al., 1995; Fourcaud-
Trocmé et al., 2003).

While minimal models cannot describe neuronal activity
for all different types of artificial stimuli that can be applied in
elaborate experimental paradigms, a minimal model should
ideally be capable of predicting neuronal spiking under those
conditions that are potentially relevant for a neuron in vivo. A
typical cortical neuron receives input from thousand of other
cortical neurons (Braitenberg and Schütz, 1991) as well as
input from subcortical areas such as the thalamus. It is an
open issue, how much of this synaptic bombardment can be
thought of as random or as a potentially meaningful signal.
Rapidly varying visual inputs can fire motion-sensitive cor-
tical neurons with high temporal precision (Bair and Koch,
1996; Buracas et al., 1998) which suggests that neurons re-
ceive temporally precise stimulus-locked signals. In both
visual cortex (Borg-Graham et al., 1998) and auditory cortex
(Wehr and Zador, 2003) input signals comprise excitatory
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and inhibitory components. Despite the temporal precision
under appropriate stimulation conditions, neuronal responses
can be highly variable across trials, in particular in visual cor-
tex (Heggelund and Albus, 1978; Buracas et al., 1998), but
much less so in auditory cortex (De Weese and Zador, 2003)
or the retina (Berry et al., 1997). The major source of this
variability in spike count seems to be a partially correlated
background input from other parts of the cortical network
(Gawne and Richmond, 1993; Arieli et al., 1996; Bair et al.,
2001; Steriade et al., 2001; Destexhe et al., 2003; De Weese
and Zador, 2004). Correlations in the background input could
occur on a slow (Arieli et al., 1996; Steriade et al., 2001) or a
much faster time scale of only a few milliseconds (Bair et al.,
2001). One hypothetical interpretation of the irregular firing
of cortical neurons is that background activity of the corti-
cal network provides brief but strongly synchronized input
bursts at times that are not locked to any stimulus (Abeles,
1991; Stevens and Zador, 1998; Diesmann et al., 1999; De
Weese and Zador, 2004).

Since the statistics of the input a cortical neuron would
receive in vivo depends on the area of cortex and is only
partially known see, e.g., Borg-Graham et al., 1998; Steriade
et al., 2001; Wehr and Zador, 2003, we adopted a minimal
approach. Similar to previous work (Bryant and Segundo,
1976; Mainen and Sejnowski, 1995) we stimulated 24 neo-
cortical pyramidal neurons in vitro with a time-dependent
current while recording the neuronal membrane potential
under patch clamp (Rauch et al., 2003). The very same fluc-
tuating current that is used in the experiments is also applied
to the simple threshold model. This highly fluctuating input
current is supposed to model the total input a neuron would
receive, i.e., random as well as correlated spike arrival. Even
though it is generated by a random process, we do not think
of the input as “noise”, but rather as a rapidly fluctuating
temporal signal.

In contrast to more traditional methods of model evalua-
tion which mainly focus on mean firing rates and, potentially,
interspike interval distributions (Tuckwell, 1988; Bugmann
et al., 1997; Troyer and Miller, 1997; Rauch et al., 2003; La
Camera et al., 2004), we assess the quality of our threshold
model on a spike-by-spike basis. More precisely, we classify
an output of the model neuron as correct only if the action
potential of the model occurs within ± 2 ms of that of the
pyramidal cell. Surprisingly, we find that for input currents
with large fluctuation amplitude, up to 75% of the action po-
tentials in the pyramidal cell can be predicted by the simple
threshold model.

While we do not address questions of neuronal coding
per se (Abeles, 1991; Bialek et al., 1991; Theunissen and
Miller, 1995; Rieke et al., 1996) our approach, based on a
comparison of models with data at a millisecond resolution,
is inspired by experiments that have measured the temporal
precision of neuronal activity (Bair and Koch, 1996; Berry

et al., 1997; de Ruyter van Stevenick et al., 1997; Buracas
et al., 1998; Ikegaya et al., 2004; Johansson and Birznieks,
2004). In particular, for single neurons in vitro, it is well
known that the intrinsic reliability of neuronal spike timing
on a millisecond time scale is highest if the input current
has a large fluctuation amplitude, but much lower when the
input is constant or shows small fluctuations only (Mainen
and Sejnowski, 1995). We will show in this paper that a
completely analogous statement holds for the quality of our
simple threshold model: The capability of the model in pre-
dicting the exact timing of neuronal action potentials is good
for largely fluctuating currents, but drops for small fluctua-
tions of the input current.

In this paper, we apply a method of rapid parameter ex-
traction (Jolivet et al., 2004) in order to show that a simple
threshold model can explain up to 70% of the spike times of
a pyramidal neuron under random current injection.

The paper is organized as follows. We start with a sim-
ple version of our threshold model and asses its quality by
comparing the model output with that of the pyramidal cells
in terms of neuronal firing times and subthreshold voltage
traces. As we will see the model works best if an adaptation
mechanism that automatically adjusts the firing threshold is
included. Our basic threshold model is then extended. We
account for neuronal unreliability by a phenomenological
model of intrinsic noise sources. Details of the model and of
the numerical procedures can be found in the Materials &
methods section.

2. Materials and methods

2.1. Experimental preparation and recordings

Parasagittal slices of rat somatosensory cortex (300 µm
thick) were prepared from 15- to 40-day-old female and
male Wistar rats according to the institutional guidelines.
We recorded in current-clamp whole cell configuration from
the soma of layer 5 regular spiking pyramidal cells (Mc-
Cormick et al., 1985). 20 cells are part of the dataset pre-
sented by Rauch and colleagues (2003). We included 4 ad-
ditional cells recorded in the same setup where trial repeti-
tions of the input were performed (N = 24 cells in total). See
(Rauch et al., 2003) for further details about the recording
protocol and the setup.

For the stimulation, we assume that a large number of
excitatory and inhibitory presynaptic neurons emit spikes at
random times. On the postsynaptic side this heavy barrage
is modeled as a total synaptic current I that fluctuates
randomly around some mean value µI . If the contribution
of each synaptic input is small, the input can be described
as an Ornstein-Uhlenbeck process (Tuckwell, 1988). For
reasons of mathematical simplicity, we assume that the
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time courses of AMPA and GABAA receptors are the
same (τampa = τgaba = τI ) with a zero rise time to the peak
current which represents a coarse description of biological
reality (Häusser and Roth, 1997). The advantage of this
simplification is that the total synaptic current I (t) can be
generated with a single equation

I (t + dt) = I (t) − I (t)

τI
dt + m I dt + sI ξ (t)

√
dt (1)

where mI and sI are parameters and ξ (t) is a unitary
Gauss distributed random variable, updated at every time
step. The process was generated and injected at a rate
of 5 kHz (dt = 0.2 ms) and the correlation length τI was
1 ms. The resulting current I(t) has a stationary Gaussian
distribution with mean µI = m I τI and variance σ 2

I = s2
I τI/2

(Cox and Miller, 1965).
The parameters µI and σI were systematically varied as

follows: the total range 0 < µI < 900 pA and 0 < σI < 700
pA was discretized and then explored in random order to
prevent correlations over time. The duration of the stim-
ulation was between 10–30 s long for a given couple of
parameters µI , σI . The first transient part of the neuronal
response (1 s) was discarded for the analysis presented in the
Results section. The intervals between successive stimula-
tions were 50–60 s long. Particular care was taken to ensure
that the response of the cell was consistent throughout the
whole recording session. Usually the cells showed a transient
phase at the beginning, followed by a long time interval (10–
90 min) during which the response was consistent (when the
same current was injected, the average spike frequency did
not change significantly), and by a final unstable phase. Cells
with a stable period shorter than 40 min were not included
in the analysis (see Rauch et al. (2003) for further details).

2.2. Model of neuronal activity

The Spike Response Model (Kistler et al., 1997; Gerstner
and Kistler, 2002) is a generalization of the classic Integrate-
and-Fire model. In this framework, the state of a neuron
is described by a single equation for the membrane voltage
plus a threshold condition for spike emission. The membrane
potential u of the cell at time t is given by

u(t) = η(t − t̂) +
∫ +∞

0
κ∞(s)I ext(t − s) ds (2)

for t > t̂ where t̂ denotes the timing of the last spike emit-
ted by the model neuron. The last term in Eq. (2) accounts
for the external driving current I ext(t). The input integration
process is characterized by the function κ∞. The function η

includes the form of the spike itself as well as a depolariz-
ing or hyperpolarizing afterpotential. An absolute refractory

period γref = 2 ms is used in simulations to avoid spiking
immediately after a first spike has been triggered. A spike is
elicited if the following threshold condition is satisfied

if u(t) ≥ ϑ(t) and
du

dt
(t) ≥ dϑ

dt
(t) then, t̂ = t (3)

Note that spiking occurs only if the membrane voltage
crosses the threshold ϑ from below. The firing time t̂
plays the role of a reset variable. This is different from the
Integrate-and-Fire model where the voltage is reset after a
spike. The threshold itself can be taken either as a constant,
as time-dependent or as adapting. In this paper, we use an
adapting threshold. Each time that a spike is emitted by
the model, the threshold ϑ is increased by a given amount
ϑ → ϑ + Aϑ . Between spikes, ϑ decays back to a resting
value ϑ A

0 with time constant τ A
ϑ

dϑ

dt
= −ϑ − ϑ A

0

τ A
ϑ

+ Aϑ

∑
k

δ (t − tk) (4)

where tk is the timing of outgoing spikes. It follows from
Eq. (4) that, if the frequency is much larger than 1/τ A

ϑ ,
the average threshold ϑ̄ depends linearly on the output
frequency f

ϑ̄ ≈ ϑ A
0 + α f (5)

with α = Aϑτ A
ϑ . This type of adaptation mechanism has been

shown to constitute a universal model for spike-frequency
adaptation (Benda and Herz, 2003) and has already been
applied in a similar context (La Camera et al., 2004). During
the model estimation, we use as a first step a traditional con-
stant threshold denoted by ϑ(t) = ϑcst which is then trans-
formed in the adaptive threshold of Eq. (4) by a procedure
to be detailed below.

The specific version of the Spike Response Model that
we use in this paper, defined by Eqs. (2) and (3), has been
termed SRM0 (Gerstner and Kistler, 2002) but for the sake
of simplicity, we will simply use Spike Response Model (or
SRM) to refer to it. In the full version of the Spike Re-
sponse Model, the function κ is made time-dependent, i.e. it
also depends on t − t̂ . This dependence accounts for the fact
that the response of a neuron, and more specifically the ef-
fective membrane time-constant, is usually reduced shortly
after an emitted spike (Fuortes and Mantegazzini, 1962;
Powers and Binder, 1996; Stevens and Zador, 1998). This
dependence is of importance to account for spike-to-spike
interactions (Arcas and Fairhall, 2003). The mapping pro-
cedure that we discuss in the following allows, in principle,
to compute κ(t − t̂ ; s) for any t − t̂ (see Jolivet et al.,2004).
However, it requires longer recordings than the ones provided
by typical experiments. The critical factors are the number of
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spikes and the average time interval between two consecutive
spikes. The mapping procedure needs ideally both as many
spikes as possible and long intervals. We therefore decided
to restrict ourselves to the simple version of the Spike Re-
sponse Model defined by Eqs. (2) and (3). Finally, note that
this model is closely related to the models proposed by Keat
and colleagues (2001) and Paninski and colleagues (2005).

2.3. Evaluation of performances

The coincidence factor 
 between two spike trains (Kistler
et al., 1997) is defined by


 = Ncoinc − 〈Ncoinc〉
1
2 (Ndata + NSRM)

1

N
(6)

where Ndata is the number of spikes in the reference spike
train Sdata, NSRM is the number of spikes in the predicted
spike train SSRM that is compared with the reference spike
train, Ncoinc is the number of coincidences with precision �

between the two spike trains, and 〈Ncoinc〉 = 2ν�Ndata is the
expected number of coincidences generated by a homoge-
neous Poisson process with the same rate ν as the spike train
SSRM. In this paper, the reference spike train Sdata consists
of the recordings of pyramidal cells in vitro while SSRM is
the spike train generated by the SRM with the same driving
current. The factor N = 1 − 2ν� normalizes 
 to a maxi-
mum value of 1 which is reached if and only if the spike train
of the SRM reproduces exactly that of the cell. A homoge-
neous Poisson process with the same number of spikes as
the SRM would yield 
 = 0. We compute the coincidence
factor 
 by comparing the two complete spike trains, i.e.,
the recorded spike train Sdata and the trainSSRM predicted by
the SRM as in Jolivet et al. (2004). Therefore, in this paper,

 provides a measure of the ability of the minimal model to
predict the full spike train of a cortical neuron. Throughout
the paper, we use � = 2 ms. Results do depend on � but
the exact value of � is not critical as long as it is chosen
in a reasonable range 1 ≤ � ≤ 4 ms (Jolivet, 2005). Note
that the coincidence factor 
 is similar to the “reliability” as
defined in Mainen and Sejnowski (1995). All measures of 


reported in this paper are given for new stimuli, independent
of those used for parameter optimization during the mapping
procedure.

2.4. Mapping procedure

The technique used in this paper for extracting model pa-
rameters has been discussed in detail elsewhere (Jolivet and
Gerstner, 2004; Jolivet et al., 2004; Jolivet, 2005) and we re-
fer interested readers to these references. Here, we describe
the essentials of the technique without going into details.

In short, we use a systematic step-by-step evaluation and
optimization procedure based on intracellular recordings. It
consists in sequentially evaluating the kernels [η and κ∞; Eq.
(2)] and parameters [Aϑ ,ϑ A

0 and τ A
ϑ ; Eq. (4)] that characterize

a specific instance of the model. The consecutive steps of the
procedure are as follows:

1. Extract the kernel η from a sample voltage recording by
spike triggered averaging. We use a recording with a mean
drive µI = 0 and keep the resulting η fixed throughout the
rest of the analysis.

2. Subtract η from the voltage recording to isolate the sub-
threshold fluctuations.

3. Extract the kernel κ∞ by the Wiener-Hopf optimal fil-
tering technique (Wiener, 1958; Lee and Schetzen, 1965;
Jolivet et al., 2004). This step involves a comparison be-
tween the subthreshold fluctuations and the corresponding
input current.

4. Find the optimal constant threshold ϑcst. The optimal
value of ϑcst is the one that maximizes the coefficient

. The parameter ϑcst depends on the specific set of in-
put parameters (mean µI and variance σ 2

I ) used during
stimulation.

5. Plot the threshold ϑcst as a function of the firing frequency f
of the neuron and run a linear regression. ϑ A

0 is identified
with the value of the fit at f = 0 and α with the slope
Eq. (5).

6. Optimize Aϑ for the best performances (again measured
with 
),τ A

ϑ is defined as α/Aϑ .

Each cell of the experimental dataset is characterized by
it’s own set of parameters η, κ∞,ϑ A

0 , Aϑ and τ A
ϑ .

In the final part of the paper, the deterministic thresh-
old model is transformed into a stochastic model by turning
the strict threshold condition into a stochastic firing crite-
rion. In other words, the strict condition for spike emission
is replaced by a voltage-dependent instantaneous probabil-
ity of firing f (u − ϑ) or stochastic intensity. A reasonable
choice is

f (u − ϑ) = 1

τs
exp[(u − ϑ)/δu] (7)

with ϑ the threshold, δu the width of the spike emission
zone and τs the mean time to spike emission at threshold.
To maintain a direct relation with the deterministic model, ϑ
is simply identified with the adapting threshold introduced
in Eq. (4). To evaluate the two other parameters τs and δu,
we estimate from the histogram of (u − ϑ) the joint den-
sity p(u − ϑ, spike) at the real neuron’s firing times as well
as the marginal distribution p(u − ϑ) where (u − ϑ) is cal-
culated from our minimal model. By comparing these two
histograms, i.e. by taking for each voltage difference the ratio
of the number of instances with action potential triggered to
the total number of instances with that voltage, it is possible
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to estimate the probability of firing in a time bin dt given
the voltage to threshold (u − ϑ) (Arcas et al., 2003). It can
be shown that, due to time discretization, this probability is
connected to f (u − ϑ) by Gerstner and Kistler (2002).

Prob{spike in[t, t + dt]} = 1 − exp(−dt f (u − ϑ)) (8)

For numerical evaluation, we only consider data where
dt f (u) ≤ 0.3 and use the Taylor approximation 1 −
exp(−dt f (u − ϑ)) ≈ dt f (u − ϑ) − dt2

2 f (u − ϑ)2. From
this, we can extract numerical values for δu and τs by a sim-
ple fitting procedure. Finally, the probability of the stochastic
model to fire in coincidence with the real neuron, i.e. during
an interval t̂ − �, t̂ + � around the neuron’s firing time t̂ , is
given by

Prob{spike in[t̂ − �, t̂ + �]}

= 1 − exp


−dt

t̂+�∑
i=t̂−�

f (ui − ϑi )


 (9)

which is used for the histogram of Fig. 6. See legend and
corresponding text for further details.

2.5. Numerics and statistics

Ordinary differential equations were simulated with the for-
ward Euler method with a time step dt = 0.2 ms. Since this
time step is much shorter than all other time constants of the
minimal model, such a simple first-order method is sufficient.

Detection of spikes in experimental recordings was re-
alized using a standard (Azouz and Gray, 2000) threshold
condition on the first derivative of the membrane voltage
(crossing from below). The exact value of this threshold is
arbitrarily chosen but we ensure that it is as low as possible
with zero false positives on a sample spike train of 30 s in
order to be as close as possible to the spike initiation point.
The voltage at the initiation point of a spike is defined as the
effective threshold of this spike and is used in Fig. 5A.

Cross-correlation coefficients were measured in the sub-
threshold regime after removal of 4 ms during spikes. Cross-
correlation coefficients between PSTHs (Fig. 7) were mea-
sured on complete sequences.

For the Z-test in Fig. 3A, we used the following approach.
All distributions in Fig. 3A were constructed using the same
proportion of points in highly reliable (50%) and interme-
diate regimes (50%) as defined in the Results section. We
assume that the distribution for cells without repetitions ap-
proximates the marginal distribution since it is constructed
from many individual samples (N = 186 samples) while
the distribution for cells with repetitions is constructed from
a smaller ensemble (N = 24 samples). Given these pre-

liminaries, it can be shown that the small sample, i.e. the
distribution of 
m→n for cells with repetitions, originates
from the marginal distribution with high probability (Z-test
with 0.01 significance level).

3. Results

The results are organized as follows. In the following sub-
section (Deterministic model of neuronal activity), we map
a simple deterministic threshold model to in vitro record-
ings of cortical neurons and explore the performance of that
model in terms of spike timing prediction. The performance
of the model is compared to the intrinsic reliability of corti-
cal neurons. In the second subsection (Spike train variability
and stochastic model of neuronal activity), we study the vari-
ability of spike trains. To account for this variability, we turn
our deterministic model into a stochastic one by replacing
the strict threshold by a firing probability and, again, com-
pare the spike trains predicted by such a model to those of
real neurons.

3.1. Deterministic model of neuronal activity

We recorded the activity of regularly spiking pyramidal cells
in response to noisy current injection with stationary statis-
tics. These cells constitute our set of so-called target neurons
(N = 24). We then built for each recorded cell an effective
minimal model that is able to yield quantitative predictions
about the spike train of the cell.

The minimal model considered in this paper is the Spike
Response Model (Kistler et al., 1997; Gerstner and Kistler,
2002). Just as in Integrate-and-Fire models (Stein, 1967),
a spike is emitted only if the membrane voltage crosses
a predetermined threshold. Threshold crossing defines the
firing time t̂ . The basic assumption of the model is that
the subthreshold dynamics during random current injection
can be approximated by some linear filter κ∞. The non-
linearity of spike generation is reduced to a threshold pro-
cess. The form of an action potential is given by the spike
shape η. The membrane voltage after a spike triggered at
time t̂ is

u(t) = η(t − t̂) +
∫ +∞

0
κ∞(s)I ext(t − s)ds (10)

where u(t) is the membrane voltage at time t > t̂ . The inte-
gral with the filter κ∞ accounts for the membrane polariza-
tion generated by the external driving current I ext(t). Note
that t̂ always denotes the last firing time.

In order to map the model to in vitro recordings, we first
need to find an expression for the functions η and κ∞. The
function η is extracted from the data by smoothing the aver-
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 BFig. 1 Functions η (A) and κ∞
(B) as extracted by the method
exposed in this paper. Raw data
(symbols) and fit by double
exponential functions (solid
line). C. The optimal constant
threshold θ cst is plotted versus
the output frequency f
(symbols). It is very neatly fitted
by a linear function (line)

age shape of spikes when the mean drive is null and κ∞ is the
best linear filter to account for the subthreshold variations of
the membrane potential (Wiener, 1958; Lee and Schetzen,
1965; Jolivet and Gerstner, 2004; Jolivet et al., 2004). It is
important to note that both η and κ∞ are directly extracted
from sample recordings, no approximation techniques are
used beyond simple smoothing. Figure 1 shows functions η

and κ∞ for a given cell. In this specific case, the cell does
not display afterhyperpolarization after emission of a spike
and the voltage returns to the resting potential from above
(Fig. 1A). The maximum of the action potential occurs about
0.5 ms after action potential onset. For t > 1 ms data points
have been fitted by a double exponential. The spike after-
potential of the specific cell shown in Fig. 1A was fitted by
time constants τ AP

fast = 0.14 ms and τ AP
slow = 3.38 ms. Over

the ensemble of all 24 cells τ AP
fast was in the range [0.01; 0.7]

ms (τ AP
fast = 0.1 ms on average) and τ AP

slow was in the range
[0.4; 33.4] ms (τ AP

slow = 4.8 ms on average). The exact val-
ues are not critical since several combinations of τ AP

fast and
τ AP

slow can give similar action potential shapes at the reso-
lution of 0.2 ms per time step. The filter κ∞ (Fig. 1B) is
approximated by a sum of two exponential functions. The
filter of the specific cell shown in Fig. 1B is fitted by time
constants τ κ

fast = 0.3 ms and τ κ
slow = 7.8 ms. Across cells, the

time constants τ κ
fast and τ κ

slow were in the range [0.01; 0.5] ms
(τ κ

fast = 0.2 ms on average) and [1.7; 7.8] ms (τ κ
slow = 5 ms

on average). The amplitude of κ∞ was in the range [0.001;
0.026] G�s−1 (0.0059 G�s−1 on average). To avoid numer-
ical problems, κ∞ was time-shifted so that the peak value is
at time t = 0. The relatively small value of τ κ

slow indicates that
the latter time constant cannot be directly identified with the
passive membrane time constant at rest. Due to activation
of additional conductances during stimulation, notably con-
ductances responsible for spike-frequency adaptation and
voltage rectification, the effective time constant during stim-
ulation with a random current is shorter than the expected
time constant at resting potential. It is therefore more like a
“working” membrane time-constant (Koch et al., 1996 ) or
“effective” membrane time constant (Gerstner et al., 1996).
With an Integrate-and-Fire model in mind, we would ex-
pect κ∞ to be best fitted by a single exponential function
whereas we find here a double exponential. This double ex-

ponential shape can be explained by the coupling between
soma and dendrites (Roth and Häusser, 2001). In general,
we found that κ∞ does not depend on input characteris-
tics in a statistically significant manner over the regime of
input parameters considered (F-test with 0.05 significance
level).

To finish the mapping of the minimal model to the target
neuron, we need to define a suitable threshold. For this kind
of model, the classic approach would be to select a con-
stant or a dynamic threshold (i.e. time-dependent threshold)
plus an absolute refractory period to avoid continuous firing.
A dynamic threshold has been previously reported to yield
a better performance across different stimulation regimes
(Jolivet et al., 2004). However, cortical neurons exhibit a
rich repertoire of ion channels. As a consequence, pyramidal
neurons often display spike-frequency adaptation at different
time scales (McCormick et al., 1985; Schwindt et al., 1997).
It seems natural therefore to include some kind of adaptation
in our modeling framework. Following the model recently
proposed by La Camera and colleagues (2004), we use an
adapting threshold (see Materials and methods). Each time
that a spike is emitted by the minimal model, the threshold is
increased by a given amount Aϑ (Schwindt and Crill, 1982;
Powers et al., 1999). It then exponentially decays back to
a resting value ϑ A

0 with a time constant τ A
ϑ (see Eq. (4)).

This formulation can be seen as a standard model of spike-
frequency adaptation (Benda and Herz, 2003). Its advantage
is that the average threshold depends linearly on the output
frequency f. Parameters of the model can therefore be ob-
tained by plotting the optimal threshold value ϑcst (obtained
under assumption of a constant threshold) as a function of f
and fitting by a linear function (see Materials and methods
for further details). Figure 1C shows the frequency depen-
dence of ϑcst for a typical cell. We found that a linear fit
provides an excellent approximation of the frequency de-
pendence of the threshold. The range of parameters over
all cells is [−62; −38] mV for ϑ A

0 (ϑ A
0 = −50 mV on av-

erage), [2; 12] mV for Aϑ (Aϑ = 7 mV on average) and
[15; 71] ms for τ A

ϑ (τ A
ϑ = 34 ms on average). To summarize,

for each of the 24 cells, we have determined the spike shape
η and the linear subthreshold filter κ∞ as well as parameters
of the threshold mechanism ϑ A

0 , Aϑ and τ A
ϑ .
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Fig. 2 The predictions of the Spike Response Model (SRM) are com-
pared to electrophysiological measurements. (A). The predicted voltage
trace of the SRM (green trace) is compared to the spike train recorded
in the target neuron (black trace) when both are driven with the same
strongly fluctuating current (highly reliable regime, see text). In the
subthreshold regime, predicted membrane voltage and target mem-
brane voltage differ by a few mV only (inset; vertical bar: 10 mV;
horizontal bar: 10 ms). (B). Same as in A but when the neuron is in the
intermediate regime. (C). Same as in A but when the neuron is in the
poorly reliable regime (vertical bar: 5 mV). The inset is not strictly sub-
threshold regime for clarity reasons. (D). Experimental voltage traces
during four repetitions of the same driving current in the highly reliable
regime. Inset shows the subthreshold regime (see legend of panel A).
The four voltage traces are nearly indistinguishable. (E). Same as in D
but in the intermediate regime. Compare also with the results in panel

B. (F). Same as in D but in the poorly reliable regime. Compare also
with the results in panel C (scale bars: 20 ms and 50 mV; vertical bar:
5 mV). In panels A–F, action potentials are clipped at + 20 mV except
in insets C and F where they are clipped at − 40 mV. (G). The inter-trial
reliability of a typical target neuron in terms of the coincidence factor

n→n plotted in color code as a function of the mean drive µI and the
standard deviation of the current σI (symbols). The surface is interpo-
lated with cubic splines. (H). The quality of predictions of the SRM
(
m→n) is plotted versus the inter-trial reliability of the target neuron
for each data set (
n→n). The diagonal line constitutes the upper limit
of predictions (see text). In each case, the mean (symbols) is plotted
with one standard deviation (error bars). On average, the ratio between

m→n and 
n→n is 0.65 (dashed line). The values for one given cell are
plotted in red for illustrative purpose

To assess the quality of the minimal model, we compare
spike trains of the model neuron with the activity of the target
neuron. To do this, we use a second set of spike trains that
have been set apart and were never touched during model
optimization. Both the target neuron and the minimal model
are driven with the same realization of a noisy current and
corresponding output spike trains are compared on a spike-
by-spike basis. We find that the SRM yields a prediction of
spike firing times with up to 75% of spike timing correct
(within ± 2 ms) when the standard deviation of the driving
current σI is large (σI ≥ 300 pA), reasonable predictions in
an intermediate region (σI ≈ 150 pA) and poor predictions
when σI is small (σI ≤ 100 pA). We call these three regimes

highly reliable, intermediate and poorly reliable. Figure 2A–
C show the predictions of the SRM compared to the spike
train produced by the target neuron for a typical cell in all
three regimes. We note that, in both highly reliable and inter-
mediate regimes, spike trains are very similar. Most spikes
are predicted with the correct timing although some spikes
may be missed or added due to the strict threshold condi-
tion for spike emission in the minimal model. Furthermore,
the insets show that, in the subthreshold regime, the SRM
performs quite well in predicting the membrane voltage. The
two traces are almost indistinguishable in the inset of panel A
(reliable regime) while one can already see some differences
in the inset of panel B (intermediate regime).
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In order to get a quantitative measure of the quality of
predictions of the subthreshold voltage, we measured the co-
efficient of correlation c between the predicted subthreshold
voltage and the target subthreshold voltage. The coefficient
of correlation c is measured independently for each set of
input parameters (i.e. for each couple µI , σI ) but including
all repetitions for this specific set. We found no statistically
significant differences between the different recorded cells
(one-way ANOVA and Levene’s test for equal variance with
0.05 significance level) while we found significant differ-
ences between regimes. The average coefficient of correla-
tion is c = 0.85 ± 0.08 (mean ± s.d.) in the highly reliable
regime and c = 0.75 ± 0.09 in the intermediate regime. Pre-
dictions in the poorly reliable regime are significantly worse.
Notably, although the predicted spike train resembles the tar-
get spike train (panel C), the subthreshold voltage is poorly
predicted and c = 0.2 ± 0.2.

In order to develop a quantitative reference of the quality
of the predictions of firing times, we consider the intrinsic
reliability of the target neuron itself. Obviously, if a neu-
ron responded perfectly reliably over several repetitions of
the same time-dependent input, it would generate spikes al-
ways at the same firing times. A model should then be able
to reproduce the same firing times. If, however, a neuron
reproduces in the second trial only 50% of its spike with
the same timing (at resolution ± 2 ms), we cannot expect a
model neuron to reproduce more than 50% of the neuronal
spike times. Hence, the intrinsic reliability of a real neu-
ron provides an upper bound for the predictability of spike
trains. Several experimenters have studied neuronal relia-
bility (Bryant and Segundo, 1976; Shadlen and Newsome,
1988; Mainen and Sejnowski, 1995; Reich et al., 1997; Kara
et al., 2000; Reinagel and Reid, 2002). In particular, Mainen
and Sejnowski (1995) have reported that the reliability of
cortical neurons can crucially depend on the input scenario.
In order to evaluate the intrinsic reliability of the neurons,
we repeated in four neurons injection of the same noisy cur-
rent and recorded the output spike train (N = 4 repetitions).
Figure 2D–F shows the response of a typical neuron to four
repetitions of the same input. Note that the segments in pan-
els D–F correspond to the segments plotted in panels A–C.
In both highly reliable and intermediate regimes (D and E),
spike trains are very similar. Insets show a zoom on the
subthreshold regime. Interestingly, we remark that the four
traces fall on top of each other in insets of panels D and
E where our model yields the best predictions of the sub-
threshold voltage (compare with insets of panels A and B).
The coefficient of correlation c of the subthreshold voltage
between repetitions is c = 0.97 ± 0.05 (mean ± s.d.) in both
the highly reliable and the intermediate regime. These two
regimes are not statistically different (one-way ANOVA and
Levene’s test for equal variance with 0.05 significance level).
In the poorly reliable regime, although repetitions look sim-

ilar, precise timing of spikes is not conserved (panel F). The
subthreshold voltage is less reliably reproduced across rep-
etitions (inset; c = 0.90 ± 0.08). Again, we did not find sta-
tistically significant differences between the different cells.

We now move to a quantitative estimate of the intrinsic
reliability of the target neuron. To do so, we use the coinci-
dence factor 
 (Kistler et al., 1997). This quantity gives an
estimate of the similarity of two spike trains in terms of the
spike timing with some precision ± �. In short, a maximal
value of 1 is reached if and only if the two spike trains con-
tain the same number of spikes and with the same timing
( ± �). A value of 0 is reached if the similarity between the
spike trains is not better than that between two random spike
trains generated by homogeneous Poisson processes at the
same rates. 
 can be lower than 0 if the two spike trains show
anticorrelations (see Eq. (6) for a definition of 
).

Figure 2G shows the coincidence factor 
n→n (n → n
is short for neuron compared to itself) computed between
responses to repetitions of the same noisy current for a
sample neuron. It is plotted versus the mean drive µI and
the current’s standard deviation σI . � is set to 2 ms. We
find that the mean drive µI has almost no impact on 
n→n

(measured cross-correlation coefficient c = 0.04; p = 0.81).
On the other hand, σI has a strong impact on the reliabil-
ity of the neuron (c = 0.93; p < 0.0001). When σI is large
(σI ≥ 300 pA),
n→n reaches a plateau at about 0.84 ± 0.05
(mean ± s.d.). When σI decreases to 100 ≤ σI ≤ 300 pA,

n→n quickly drops to an intermediate value of 0.65 ± 0.1
and finally drops down to 0.09 ± 0.05 for σI ≤ 100 pA.
These findings are stable across the different neurons that we
recorded and repeat the findings of Mainen and Sejnowski
(1995). In the following, we abandon the data of the poorly
reliable regime since exact spike timing is not controlled
by the stimulus at all (i.e. 
n→n ≈ 0). More specifically, we
abandon all the data where σI ≤ 150 pA that correspond to

n→n in the range [0; 0.3]. These data with small input vari-
ance (σI ≤ 150 pA) are also of less importance with respect
to in vivo conditions.

We use the intrinsic reliability 
n→n as a reference in order
to evaluate the quality of our model. Our minimal model is
stimulated with the same noisy current as the one used to
stimulate the target neuron. We compare the output spike
train of the model with all available responses (repetitions)
of the target neuron for the same set of µI and σI and compute
the coincidence factor 
m→n (m → n is short for model
compared to neuron). 
m→n is plotted versus 
n→n in Fig.
2H for highly reliable and intermediate regimes for the four
cells where trial repetitions of the input were performed.
Since the intrinsic reliability of a given cell is lower in the
intermediate regime than in the highly reliable regime, the
same cell appears with several values of 
n→n in the graph.
We find that the predictions of our minimal model are close to
the natural upper bound set by the intrinsic reliability of the
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neuron. On average, the minimal model achieves a quality

m→n which is 65% ( ± 3% s.e.m.) of the upper bound,
i.e. 
m→n = 0.65 · 
n→n (panel H). It reaches a maximal
value of about 75%. Furthermore, let us recall that due to
the definition of the coincidence factor 
, the threshold for
statistical significance here is 
m→n = 0. All the points are
well above this value, hence highly significant.

These results extend to the cells where no trial repetitions
of the input were available (N = 20). Although it is not pos-
sible to directly compare the coincidence factor 
m→n to the
intrinsic reliability 
n→n of the real neuron, Fig. 3A shows
that 
m→n for these cells is in the same range as the one ob-
served for the cells where trial repetitions of the input were
performed (Z-test with 0.01 significance level, see Materials
and methods). This is true except for 1 cell (out of 20) where
our approach failed and 
 was always smaller than 0.25. This
cell was discarded for the rest of our analysis. Finally, we
compare the predictions of our minimal model to the target
neuron in terms of two other indicators. The first one is the
Cv of the interspike interval distribution and the second one
is the mean output rate. As predicted spike trains are very
similar to target spike trains, we expect Cv and mean rate
of the model spike trains to be similar to those of the target
spike trains. Figure 3B shows that this is indeed the case. The
Cv of the model spike trains roughly corresponds to that of
the target trains. Moreover, the mean output rate is very well
predicted except in some occasional cases at high frequen-
cies (Fig. 3C). Note that Rauch and colleagues (2003) have
reported that an almost perfect prediction of the mean out-
put rate is possible with a very similar approach. However,
their model was tuned to predict the mean output rate and
not the timing of spikes. Previous model studies had shown
that a model with a threshold simpler than the one used here
is able to reliably predict the spike train of more detailed
neuron models (Jolivet and Gerstner, 2004; Jolivet et al.,
2004). Here, we used a threshold including an adaptation
mechanism. Without adaptation, i.e. when the sum over all
preceding spikes in Eq. (4) is replaced by the contribution of
the last emitted spike only, it is still possible to reach the same
quality of predictions for each driving regime under the con-
dition that the three threshold parameters (Aϑ , ϑ A

0 and τ A
ϑ )

are chosen differently for each set of input parameters µI and
σI . In contrast to this, the model with adaptation presented
here achieves the same level of predictive quality with one
single set of threshold parameters. This illustrates the impor-
tance of adaptation in Integrate-and-Fire-type models. The
adaptation mechanism adds features well beyond a simpler
non-adapting model and greatly improves its generalization
capacity.

Finally, the question arises whether our minimal model
preferentially predicts intrinsically reliable spikes or not. In
order to elucidate this issue, we define a reliability measure
for spikes produced by the real neuron. In short, an intrinsic

Fig. 3 (A). Comparison of coincidence factor 
. The distribution of

m→n for the neurons without repetitions (black) is compared to the
distribution of coincidence factor 
m→n for the neurons with repetitions
(shaded gray) and to the distribution of 
n→n for the neurons with rep-
etitions (white). The distribution of 
m→n for neurons with repetitions
is not significantly different from the distribution of 
m→n for neurons
without repetitions (Z-test with 0.01 significance level). (B). The Cv of
the interspike interval distribution predicted by the model is compared
to the real neuron. Each point represents one comparison for a given
realization of input current. (C). Same as in B but for the mean firing rate

reliability coefficient is defined for each spike by the fraction
of trial repetitions where it appears with the same timing in
the data ( ± 2 ms). It returns a maximal value of 1 only if
the spike appears reliably in all repetitions. For example,
suppose we observe spikes in trials 1 to 4 at times t = 10 ms
(trial 1), t = 10 ms (trial 2), t = 8.5 ms (trial 3) and t = 11.5 ms
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Fig. 4 (A). Repartition of correctly predicted spikes as a function of
their intrinsic reliability over 4 repetitions. An intrinsic reliability of 3/4
implies that in 3 out of 4 trials, the cortical neuron generated an action
potential at time t ± � with � = 2 ms. Data are collected for all available
recordings of a given cell in intermediate and highly reliable regimes
(mean ± s.e.m.). (B). Percentage of correctly predicted spikes in each
category of intrinsic reliability (mean ± s.e.m.). Same dataset as in (A)

(trial 4). In this case, we would give spikes in trials 1 and
2 a reliability coefficient of 4/4 but spikes in trials 3 and
4 would receive a reliability coefficient of 3/4 since they
are distant from each other by more than 2 ms. Figure 4A
shows that 72% of the spikes were reproduced in all four
repetitions, 13% in three repetitions, 9% in two repetitions
and 6% occurred in only one trial. In Fig. 4B, we measure
the percentage of correctly predicted spikes in each of the
four categories that are present in panel A. We do not find
significant differences between categories (t-test with 0.05
significance level). The model correctly predicts 0.63 ± 0.03
(mean ± s.e.m.) of spikes in each category. We will come
back to this issue later in this paper. We found no indications
that the intrinsic reliability of a spike or the ability of our
model to predict a spike is dependent on the length of the
precedent interspike interval.

So far, we have proposed a method that allows building a
minimal deterministic model for cortical neurons given intra-
cellular recordings. We have found that this model, although

very simple, is able to quantitatively predict with the correct
timing ( ± � = 2 ms) about 65% of the spikes that could be
predicted considering the limited neuronal reliability. Not
only the spikes but also the subthreshold membrane volt-
age and the output firing rate are most of the time predicted
correctly. Finally, the predicted Cv of the interspike interval
distribution is usually in the correct range as well. However,
our model is still deterministic. A stochastic model would be
better suited to account for the natural variability of neurons
(Stein, 1967; Tuckwell, 1988; Schneidman et al., 1998; Keat
et al., 2001; Arcas et al., 2003). In the next subsection, we go
further into the study of the variability of neuronal response
and turn our deterministic model into a stochastic one by
replacing the strict threshold by a firing probability.

3.2. Spike train variability and stochastic model
of neuronal activity

In the previous subsection, we have shown that a simple
deterministic model has significant predictive power for the
spike train of cortical cells. However, the reliability of the
response of cortical neurons is limited and spikes are some-
times emitted because of intrinsic noise sources. Therefore,
it has been argued that the response of neurons is best de-
scribed by stochastic models (Stein, 1967; Tuckwell, 1988;
Arcas et al., 2003). For evaluation of our stochastic model,
we use the subset of N = 4 neurons where every realization
of a stimulus with given mean µI and standard deviation σI

was repeated four times.
In order to gain insight into the mechanisms of spike time

unreliability, we first performed spike triggered averaging
(STA) and separated spikes on the basis of their reliability.
In short, the intrinsic reliability coefficient for each spike is
defined as the fraction of trial repetitions where it appears
with the same timing ( ± 2 ms). Since the experimental data
contains four trial repetitions, the coefficient can take val-
ues 1/4, 2/4, 3/4 and 4/4. Figure 5A shows the first moment
of STAs for voltage (top) and driving current (middle) in
a sample spike train for the least (appear in only one trial)
and most reliable spikes (appear in all trials). We observe
no significant differences between STAs in the range -10 to
0 ms before the spike. Since there are no differences between
STAs for driving current, we cannot expect the deterministic
model to show any differences in STA for predicted voltage.
Furthermore, we did not find significant differences between
the second moments of the STAs before the spike (data not
shown). Finally, Fig. 5A (bottom) shows that there are no sig-
nificant differences between the distributions of the effective
spike initiation threshold of least and most reliable spikes.
These considerations explain the results of the deterministic
model in Fig. 4. Our minimal model only receives the driving
current as input and produces spikes on the basis of a strict
threshold crossing criterion. As no differences are found in
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Fig. 5 (A). Spike triggered averaging of the voltage (top) and driving
current (middle) calculated separately for the least and most reliable
spikes. The distribution of the effective spike threshold as defined by
experimental spike detection procedure (see Materials and methods) is
compared for the less and most reliable spikes (bottom). (B). Histogram
of (u − ϑ) at real neuron’s firing times (black) and the histogram of

(u − ϑ) at non-firing times (gray) using the predictions of our minimal
model. By comparing these two histograms, i.e. by taking the ratio of
the two histograms (see text for further details), gives an estimate of the
firing probability in a time bin dt in function of the voltage (circles). It
is fitted by the theoretical firing probability given in Eq. (10) in order
to extract the parameters of the stochastic model τs and δu (solid line)

STAs for voltage and current between least and most reli-
able spikes, our minimal model cannot distinguish between
them. Therefore, it slightly overestimates the occurrence of
unreliable spikes and underestimates that of reliable spikes
as shown in Fig. 4B.

We now transform our deterministic model into a stochas-
tic one. There are various ways to introduce noise in a sin-
gle neuron model (see Gerstner and Kistler (2002) for a
review). In the case of our deterministic minimal model,
we found that the subthreshold membrane voltage is often
well predicted (at least in the highly reliable and interme-
diate regimes) while it is sometimes difficult to predict the
spikes at a correct timing because of the strict threshold
condition for spike emission. It seems natural then, to turn
the strict threshold condition into a stochastic firing crite-
rion while keeping the rest of the model unchanged. More
precisely, the strict condition for spike emission is replaced
by a voltage-dependent instantaneous probability of firing
f (u − ϑ). We choose f (u − ϑ) = exp[(u − ϑ)/δu]/τs with
ϑ the threshold, δu the width of the spike trigger zone and
τs the mean time to spike emission at threshold. To main-
tain the features of the model of the previous subsection, ϑ

is identified with the adapting threshold introduced above.
To evaluate the two other parameters τs and δu, we com-
pute the histogram of (u − ϑ) at real neuron’s firing times
and the histogram of (u − ϑ) at non-firing times using the
predictions of our minimal model. By comparing these two
histograms, i.e. by taking for each voltage-difference the ra-
tio of the number of instances with action potential triggered
to the total number of instances with that voltage, it is possi-
ble to estimate the probability of firing in a time bin dt given
the voltage u and from this, δu and τs . Fig. 5B shows the two
histograms for a sample spike train and the resulting firing

probability. Across all cells, we found τs = 19 ± 13 ms and
δu = 4 ± 1 mV (mean ± s.d.). This finishes the construc-
tion of our stochastic adapting minimal model of neuronal
activity.

The first important finding is that the stochastic model
improves the performances in the sense that the probability
of producing a spike is lowered when the spike is unreliable in
the real spike train. Figure 6 shows that the firing probability
is significantly lowered for all categories of unreliable spikes
while it stays at about the same level for reliable spikes
(compare with Fig. 4B). This is likely to be due to the fact
that unreliable spikes are elicited by a shorter depolarizing
excursion compared to reliable spikes (see Fig. 5A, middle
panel, time >0). This implies that, in case of unreliable
spikes, the voltage is only for a short period close to the
threshold. Hence, the probability of firing a spike at the same
time as the pyramidal cell ± �= 2 ms is lower for unreliable
spikes than for reliable ones. Finally, Fig. 6 also shows that
the probability of firing a spike in an isolated time bin where
no spike is present in the real spike train is close to zero.

In order to evaluate whether the stochastic adapting min-
imal model generates spike trains with the same statistics
as the real neuron, we compare the peristimulus time his-
tograms (PSTHs). The PSTH is constructed by counting the
number of spikes appearing in each time bin across all rep-
etitions. The resulting vector is then divided by the number
of repetitions and by the time step (0.2 ms here). The raw
PSTH is smoothed by filtering with a normalized Gaussian
window with width 2 ms (Fig. 7A). The stochastic adapting
minimal model is then simulated several times (N = 1000
repetitions) to accumulate data. A PSTH is constructed for
the minimal model in the same way as for the real neuron.
PSTHs are then compared to each other and we measure
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Fig. 6 Firing probability of the minimal model computed at the cell’s
firing time [ ± �= 2 ms, see Materials and methods Eq. (8) for further
details] plotted versus the intrinsic reliability measured in real spike
trains (black). Results of Fig. 3B are repeated in the back for comparison
(grey). Firing probability is significantly lower for intrinsic reliability
≤ 3/4 than that for 4/4 (paired t-test, ∗p = 0.001)

their similarity by computing the cross-correlation between
the two sequences. Figure 7B shows the predictions of the
stochastic minimal model. The correlation between the two
smoothed histograms (c = 0.83) is highly significant. Across
all cells, we found that c = 0.74 ± 0.09 (mean ± s.d.).

In summary, we found that our stochastic adapting thresh-
old model accounts for much of the variability of real neu-
rons. PSTHs predicted by the adapting stochastic thresh-
old model are strongly correlated with those of real neu-
rons. In particular, spikes that occur with low reliability
(1/4) in the experiments with real neurons are predicted
with lower probability by the model than the highly re-
liable ones. Nevertheless, predictions and PSTHs are not
perfect since the probability of highly reliable spikes is
systematically underestimated and that of unreliable ones
overestimated.

4. Discussion

Mapping real neurons to simplified neuronal models has ben-
efited from many developments in recent years (Brillinger,
1988; Kistler et al., 1997; Keat et al., 2001; Arcas et al.,
2003; Izhikevich, 2003; Rauch et al., 2003; Jolivet et al.,
2004; Paninski et al., 2005) and was applied to both
in vitro and in vivo recordings (Brillinger and Segundo,
1979; Stevens and Zador, 1998; Keat et al., 2001; Rauch
et al., 2003). The model used in the present paper is
identical to the model of Keat et al. (2001), except that
noise sources, experimental protocol and fitting proce-
dures are different. Our model is also closely linked to
the one of Stevens and Zador (1998) (see Section 4.2.2 of

Gerstner and Kistler 2002) for a discussion). While the model
of Brillinger (1988) can also be mapped to our model, his
identification technique is optimized to extracellular record-
ings.

In this paper, we applied our technique of step-by-step
parameter estimation of our model neuron to patch-clamp
recordings of layer 5 pyramidal neurons of the rat somatosen-
sory cortex recorded in vitro. In the first part of this paper,
we find that, even though very simple, our deterministic
minimal model yields very good performances in quantita-
tively predicting neuronal spike trains. Most of the time, the
predicted subthreshold membrane voltage differs from the
recorded one by a few millivolts only. The mean firing rate
of the minimal model corresponds to that of the real neuron.
The statistical structure of the spike train is approximately
conserved since we observe that the coefficient of variation
(Cv) of the interspike interval distribution is predicted in the
correct range by our minimal model. But most important,
our minimal model has the ability to predict spikes with the
correct timing ( ± 2 ms) and the level of prediction that is
reached is close to the intrinsic reliability of the real neuron
in terms of spike timing (Mainen and Sejnowski, 1995). This
model has two limitations. First, it overestimates slightly the
firing probability of unreliable spikes whereas it underesti-
mates the firing probability of highly reliable spikes. This
is partly due to the strict deterministic firing criterion. Fi-
nally, instead of using a deterministic threshold model, we
also considered a noisy threshold model. The noisy threshold
model can account for some of the intrinsic unreliability of
a neuron. Furthermore, it brings improvements in terms of
making a distinction between reliable and unreliable spikes.
More precisely, with the stochastic threshold model, we find
that the firing probability is lower in cases where spike firing
of the cortical neuron was unreliable than at times where the
cortical neuron responded reliably.

Several caveats should be kept in mind for an interpreta-
tion of our results. First, in our stimulation protocol, we used
random current injection rather than a more realistic random
conductance protocol (Robinson and Kawai, 1993; Destexhe
et al., 2003). In a previous report (Jolivet and Gerstner, 2004),
we had checked the consequences of random conductance
injection in a Hodgkin-Huxley-type neuron model of an in-
terneuron (Erisir et al., 1999). We found that random conduc-
tance injection mainly changes the effective membrane time
constant of the neuron and can be accounted for by making
the time course of the optimal linear filter (κ∞ here) depend
on the mean input to the neuron. With simulated data, the
minimal model reached the same quality level of predictions
when driven by random conductance injection (Jolivet and
Gerstner, 2004) as the level it reaches when driven by ran-
dom current injection (Jolivet et al., 2004). Application of
our methodology to dynamic-clamp recordings is the next
natural step to take and is in progress.
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Fig. 7 Comparison between the PSTH of the minimal model and
PSTH of the real neuron.(A).From top to bottom:driving current (top;
scale bar 2 nA) and one randomly chosen response of the real neuron
(second line; scale bar 50 mV). Raster plot of all repetitions for the
real neuron and bin count (number of spikes per time bin summed
across all repetitions). Estimated PSTH for the real neurom (bottom).

The Gaussian window used to filter the raw PSTH can be seen where
a single isolated spike was triggered (arrow).(B). Same as in A but for
the minimal stochastic model. The coefficient of correlation measured
between the PSTH of the model (thick line) and that of the neuron (thin
line, same data as in A) is c = 0.83

Second, a largely fluctuating current generated by a ran-
dom process can only be seen as a poor approximation to the
input a neuron would receive in vivo. Our input has station-
ary statistics with a spectrum that is close to white (cut-off at
1 kHz). Thus, it does not include temporal correlations that
might occur in the range of 10–100 ms (Bair et al., 2001) or
longer (Arieli et al., 1996). Moreover, non-stationary effects
caused by external stimulation or short collective bursts of
the network activity are not taken into account.

Third, all transient effects have been excluded since neu-
ronal data is analyzed in the adapted state. In particular, a
random current injection paradigm is not suitable to probe
effects of inhibitory rebound (that would be seen after release
of a sustained hyperpolarizing signal) or subthreshold adap-
tation. In fact, the simple threshold model used in this paper
would not be capable to describe these effects, in contrast to
other effective models with two variables (Izhikevich, 2004;
Brette and Gerstner, 2005).

Finally, our experimental paradigm used somatic current
injection. Thus, all dendritic non-linearities, including back-
propagating action potentials and dendritic spikes (Stuart and
Sakmann, 1994; Helmchen et al., 1999; Larkum et al., 2001;
Stuart and Häusser, 2001) are excluded. Understanding the
functional role of dendritic nonlinearities firing is an intense
field of research (Cash and Yuste, 1988; Polsky et al., 2004).

In summary, simple threshold models will never be able
to account for all the variety of neuronal responses that can
be probed in an artificial laboratory setting. For example, ef-
fects of delayed spike initiation due to a pulse that is just su-
perthreshold cannot be reproduced by simple threshold mod-
els that combine linear subthreshold behavior with a strict
threshold criterion—but could be reproduced by quadratic or
exponential integrate-and-fire models (Latham et al., 2000;
Fourcaud-Trocmé et al., 2003). However, for random current
injection that mimics synaptic bombardment, the picture of
a neuron that combines linear summation with a threshold
criterion is not too wrong. Moreover, in contrast to more
complicated neuron models, the simple threshold model al-
lows rapid parameter extraction from experimental traces;
efficient numerical simulation; and rigorous mathematical
analysis.
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Roth A, Häusser M (2001) Compartmental models of rat cerebellar
Purkinje cells based on simultaneous somatic and dendritic patch-
clamp recordings. J. Physiol. 535: 445–472.

Schneidman E, Freedman B, Segev I (1998) Ion channel stochasticity
may be critical in determining the reliability and precision of spike
timing. Neural Comp. 10: 1679–1703.

Schwindt P, Crill W (1982) Factors influencing motoneuron rhythmic
firing: results from a voltage-clamp study. J. Neurophysiol. 48:
875–890.

Schwindt P, O’Brien J, Crill W (1997) Quantitative analysis of firing
properties of pyramidal neurons from layer 5 of rat sensorimotor
cortex. J. Neurophysiol. 77: 2484–2498.

Shadlen M, Newsome W (1988) The variable discharge of cortical neu-
rons: implications for connectivity, computation, and information
coding. J. Neurosci. 18: 3870–3896.

Stein R (1967) Some models of neuronal variability. Biophys. J. 7:
37–68.

Steriade M, Timoveev I, Grenier F (2001) Natural waking and sleep
states: a view from inside neocortical neurons. J. Neurophysiol.
85: 1969–1985.

Stevens C, Zador A (1998) Novel integrate-and-fire like model of repet-
itive firing in cortical neurons. 5th Joint Symposium on Neural
Computation, UCSD, La Jolla, CA, Institute for Neural Compu-
tation.
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