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Abstract We explore the implications of Berezinskii–
Kosterlitz–Thouless (BKT) critical behavior and variable-
range hopping on the two-dimensional (2D) quantum super-
conductor–insulator (QSI) transition driven by tuning the
gate voltage. To illustrate the potential and the implica-
tions of this scenario we analyze sheet resistance data of
Parendo et al. taken on a gate voltage tuned ultrathin amor-
phous bismuth film. The finite size scaling analysis of the
BKT-transition uncovers a limiting length L preventing the
correlation length to diverge and to enter the critical regime
deeply. Nevertheless the attained BKT critical regime re-
veals consistency with two parameter quantum scaling and
an explicit quantum scaling function determined by the BKT
correlation length. The two parameter scaling yields for the
zero temperature critical exponents of the QSI-transition the
estimates zν � 3/2, z � 3 and ν � 1/2, revealing that hyper-
scaling is violated and in contrast to finite temperature disor-
der is relevant at zero temperature. Furthermore, zν � 3/2 is
also consistent with the two variable quantum scaling form
associated with a variable-range hopping controlled insulat-
ing ground state.
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1 Introduction

Continuous quantum-phase transitions (QPT) are transitions
at absolute zero in which the ground state of a system is
changed by varying a parameter of the Hamiltonian [1–3].
The transitions between superconducting and insulating be-
havior in two-dimensional systems tuned by disorder, film
thickness, magnetic field or with the electrostatic field effect
are believed to be such transitions [2, 4, 5].

Here we present a detailed analysis of the temperature
and gate voltage dependent sheet resistance data of Parendo
et al. [6, 7]. To explore in an ultrathin amorphous bismuth
film, the nature of the normal state to superconductor (NS)
phase transition line including its end point at zero tempera-
ture, as well as the normal state to insulator (NI) crossover.
At the common endpoint of the two lines the film is sup-
posed to undergo a quantum superconductor to insulator
(QSI) transition, separating the superconducting from the in-
sulating ground state.

Considering the NS—transition line we explore the
compatibility with gate voltage dependent Berezinskii–
Kosterlitz–Thouless (BKT) critical behavior [8, 9]. Our
analysis of the temperature dependence of the sheet re-
sistance at various fixed gate voltages uncovers a round-
ed BKT-transition. The rounding is fully consistent with a
standard finite-size effect whereupon the correlation length
is prevented to grow beyond a limiting length L. Poten-
tial candidates for the limiting length include the failure
in cooling [6, 7], limited homogeneity due to local strain
or a heat current. A nonzero heat current drives the system
away from equilibrium and creates a temperature gradient
which implies a space dependent temperature. Because the
correlation length does not exhibit the usual and relatively
slow algebraic divergence as Tc is approached, the BKT-
transition is particularly susceptible to such finite-size ef-
fects. On the other hand there is the Harris criterion [10, 11],
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stating that short-range correlated and uncorrelated disorder
is irrelevant at the unperturbed critical point, provided that
ν > 2/D, where D is the dimensionality of the system and
ν the critical exponent of the finite-temperature correlation
length. With D = 2 and ν = ∞, appropriate for the BKT-
transition [8, 9], this disorder should be irrelevant. In this
context it is important to recognize that the existence of the
BKT-transition (vortex–antivortex dissociation instability)
in 4He films is intimately connected with the fact that the
interaction energy between vortex pairs depends logarithmic
on the separation between them. As shown by Pearl [12] vor-
tex pairs in thin superconducting films (charged superfluid)
have a logarithmic interaction energy out to the characteris-
tic length λ2D = λ2/d , beyond which the interaction energy
falls off as 1/r . Here λ is the magnetic penetration depth
of the bulk. As λ2D increases the diamagnetism of the su-
perconductor becomes less important and the vortices in a
thin superconducting film become progressively like those
in 4He films [13]. According to this λ2D � min[W,L] is
required, where W and L denote the width and the length of
the perfect sample. Invoking the Nelson–Kosterlitz relation
[14] λ2D(Tc) = λ2(Tc)/d = Φ2

0/(32π2kBTc) it is readily
seen that for sufficiently low Tc’s and min[W,L] � 1 cm
this condition is well satisfied. As a result a rounded tran-
sition uncovers a limiting length which is shorter than that
resulting from the finite magnetic “screening length” λ2D .
Nevertheless, for sufficiently large L the critical regime
can be attained and a finite-size scaling analysis provides
good approximations for the limit of fundamental interest,
L → ∞ [15].

As will be shown below, the finite-size scaling analysis
uncovers rounded NS-phase transitions along the line Tc(Vg),
ending and vanishing at the critical gate voltage Vgc where
the QSI transition occurs. The critical properties along this
line are fully consistent with BKT-behavior subjected to
a gate voltage dependent limiting length which decreases
substantially by approaching the QSI critical point at Vgc .
According to this and in agreement with previous stud-
ies [16, 17], electrostatic tuning does not change the car-
rier density only but the inhomogeneity landscape as well.
Furthermore it is shown that the BKT-behavior leads to an
explicit and extended expression of the standard quantum
scaling form of the sheet resistance [1–3]

R(T ,Vg)

Rc

= G±(y), y = c|Vg − Vgc|zν
T

. (1)

The subscripts ± denote the branch resulting from the NI-
crossover (+) and NS-transition (−), respectively c is a
non-universal coefficient of proportionality, the gate volt-
age Vg the tuning parameter with critical value Vgc. z is
the dynamic and ν the critical exponent of the zero tempera-
ture correlation length, ξ(T = 0,Vg) = ξ0(T = 0)|δ−δc|−ν .
G±(y) is a universal scaling function of its argument such

that G±(y = 0) = 1. The BKT-behavior yields with the vari-
ables R0−(Vg) and y the two parameter scaling form

R(T ,Vg)

R0±(Vg)
= G±(y). (2)

Noting that R0−(Vg) exhibits a substantial gate voltage de-
pendence the one parameter scaling form (1) applies asymp-
totically only (R0−(Vg) → Rc). As the film undergoes at
finite temperature a BKT-transition the scaling function
G−(y) exhibits at the universal value yc a finite tempera-
ture singularity. The leading behavior of the phase transition
line is then fixed by

Tc(Vg) = c

yc

|Vg − Vgc|zν . (3)

Contrariwise the BKT expression for the sheet resistance
yields the explicit scaling function

G−(y) = exp
(−b̃R

(
T/Tc(Vg) − 1

)−1/2)
, (4)

which applies for any T ≥ Tc . b̃R is a non-universal di-
mensionless constant. In this context it is essential to notice
that the universal critical behavior is entirely classical for
Tc > 0 [18], including the characteristic form of the BKT
correlation length which determines G−(y). Quantum fluc-
tuations enter via renormalization of R0−(Vg), the constraint
R0−(Vg) → R0−(Vgc) = Rc and Tc(Vg). In contrast to the
standard scaling form (1) it applies for any T ≥ Tc(Vg)

down to the critical endpoint of the BKT-line where Eq. (3)
holds because T/Tc approaches T/Tc = yc/y. Using the fi-
nite size corrected estimates for R0−(Vg) and the BKT-line
Tc(Vg) we observe in an intermediate range of the scaling
variable T/Tc(Vg) a satisfactory collapse of the sheet re-
sistance data onto the BKT scaling function (4). The lower
bound of this range stems from temperatures considerably
above Tc where BKT fluctuations no longer dominate and
the upper bound is traced back to a finite size effect pre-
venting the correlation length to grow beyond a limiting
length L(Vg). Taking the substantial gate voltage depen-
dence of R0− into account we observe close to the QSI-
transition consistency with Tc(Vg) ∝ |Vg − Vgc|zν (Eq. (3))
for zν � 3/2 and the corresponding expression for the BKT-
scaling function

G−(y) = exp
(−b̃R(yc/y − 1)1/2). (5)

The estimate zν � 3/2 coincides with the value obtained
from the analysis of the sheet resistance data of gate volt-
age tuned epitaxial films of La2−xSrxCuO4 that are one unit
cell thick [17, 19].

To estimate the exponents z and ν we note that according
to the finite temperature dynamic scaling theory R0−(Vg) is
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proportional to ξ−2
0 (Vg) where ξ0(Vg) is the amplitude of

the BKT correlation length

ξ(T ,Vg) = ξ0(Vg) exp
(−(̃bR/2)

(
T/Tc(Vg) − 1

)−1/2)
. (6)

Neglecting the quantum constraint of a finite critical sheet
resistance Rc the amplitude R0−(Vg) ∝ ξ−2

0 (Vg) should
match the gate voltage dependence of the zero tempera-
ture counterpart ξ−2(T = 0,Vg) which tends to zero at
the critical gate voltage because ξ(T = 0,Vg) diverges as
ξ(T = 0,Vg) = ξ0(T = 0)(Vg − Vgc)

−ν . The quantum con-
straint is then accounted for in terms of [16, 17]

R0−(Vg) − Rc ∝ ξ−2
0 (Vg) ∝ ξ−2(T = 0,Vg)

∝ (Vg − Vgc)
−2ν ∝ T

2/z
c . (7)

Using the estimates for R0−(Vg), Rc and Tc(Vg) resulting
from the finite size scaling analysis of the temperature de-
pendence of the sheet resistance at fixed gate voltages this
relationship provides a direct way to measure the critical ex-
ponents z and ν, and allows for a check on the value of zν.
We obtain z � 3 and ν � 1/2. Noting that D +z = 2+z � 5
exceeds the upper critical dimension Du = 4 the critical ex-
ponent of the zero temperature correlation length should in-
deed adopt its mean-field value ν = 1/2. However the fate of
this clean QSI critical point under the influence of disorder
is controlled by the Harris criterion [10, 11]. If the inequality
ν ≥ 2/D is fulfilled, the disorder does not affect the critical
behavior. If the Harris criterion is violated (ν < 2/D), the
generic result is a new critical point with conventional power
law scaling but new exponents which fulfill ν < 2/D and
ν 	= 1/2. Because disorder is relevant it drives the system
from the mean-field to another critical point with different
critical exponents and with that to ν 	= 1/2. Unfortunately
the available data are too sparse to derive a more precise es-
timate of ν. Otherwise it is clear that D + z = 2 + z � 5 ex-
ceeds the upper critical dimension Du = 4 so that the equiv-
alence between quantum phase transitions in systems with
D spatial dimensions and the ones of classical phase transi-
tions in (D + z) dimensions does not apply.

Concerning the NI-crossover it is known that in Bi-films
spin-orbit coupling is important because its strength strongly
depends on the atomic number Z and bismuth is the heaviest
group-V semimetal [20]. In the presence of strong spin-orbit
coupling, the spins rotate in the opposite direction and the
interference is destructive, which leads a reduction of weak
localization, known as weak anti-localization [21]. Given
the previous evidence for this behavior in Bi-films [20] one
might expect that weak anti-localization controls the NI-
crossover. Otherwise it is also expected that in disordered
films variable-range hopping controls the insulating phase
in terms of σ(T ,Vg) = σh(Vg) exp(−(T0(Vg)/T )1/3) [22],
transforming to the scaling function

G+(y) � exp
(
fy1/3), (8)

with the crossover temperature T0(Vg) ∝ f 3|Vg −Vgc|zν . In
this context it should be kept in mind that the irrelevance of
disorder at the BKT-transition does not exclude its relevance
at zero temperature. Indeed our estimate ν � 1/2 violates
the Harris criterion [10, 11] and with that is the film consid-
ered here at T = 0 sensitive to disorder. For this reason we
assume that the insulating ground state is controlled by vari-
able range hopping. We observe that the associated quantum
scaling function (Eq. (8)), combined with a strongly gate
voltage dependent σh(Vg) = 1/R0+(Vg) mimics the sheet
resistance data remarkably well, suggesting that the insu-
lating phase of the Bi film considered here is controlled by
variable-range hopping.

Essential conclusions of our analysis include: As
R0−(Vg) = R0(Vg) and R0+(Vg) exhibit a strong gate volt-
age dependence is two parameter scaling with the variables
R0±(Vg) and y = c|Vg − Vgc|zν/T unavoidable to attain
the QSI-transition. The piecewise data collapse onto the re-
spective scaling function G±(y) extends over two decades
of the scaling variable. The BKT-line leads to an explicit
expression of the scaling function G−(y) and the evidence
for a variable-range hopping controlled insulating phase de-
termines G+(y). For large values of the scaling argument
the deviations from these scaling functions are traced back
to a finite size effect with a limiting length which increases
with reduced gate voltage. In the lower branch G−(y) de-
viations occur for small arguments as well because BKT
fluctuations no longer dominate. The scaling function of the
upper and lower branch are very different but both exhibit
at the QSI-transition an essential singularity. Our estimates
for the critical exponents at the QSI critical point are consis-
tent with the following properties: zν � 3/2 emerging from
the BKT-line yields to a satisfactory data collapse onto both
branches of the quantum scaling function G±(y). The esti-
mates z � 3 and ν � 1/2 emerge from the gate voltage de-
pendence of R0−(Vg)−Rc. The Harris criterion [10, 11] im-
plies, however, that ν = 1/2 is excluded, disorder is relevant
at zero temperature but irrelevant at finite temperature. Fur-
thermore it is shown that the application of one parameter
scaling form (1) leads to rather a different zν value because
the regime where R0−(Vg) � Rc applies is not attained,
because R0−(Vg) is a non-universal function entering the
BKT-scaling form of the sheet resistance. Nevertheless its
value at the QSI- transition, R0−(Vgc) = Rc is expected
to be universal and given Rc = cRh/4e2 � cR · 6.45 k	

[23–25]. cR is a dimensionless constant. Provided that hy-
perscaling applies it depends only on the universality class
of the QSI transition [24]. In the present case does hyper-
scaling not apply, because D + z = 2 + z � 5 exceeds the
upper critical dimension Du = 4. In any case our estimate
Rc � 19.35 k	 is of order h/e2 � 25.8 k	.

The nature of the two-dimensional QSI-transition has
been intensely debated [4, 5, 24]. The scenarios can be
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grouped into two classes, fermionic and bosonic. In the
fermionic case the reduction of Tc and the magnitude of the
order parameter is attributed to a combination of reduced
density of states, enhanced Coulomb interaction and de-
pairing due to an increase of the inelastic electron-electron
scattering rate [26, 27]. The bosonic approach assumes that
the fermionic degrees of freedom can be integrated out, the
mean square of the order parameter does not vanish at Tc ,
phase fluctuations dominate and the reduction of Tc is at-
tributable to quantum fluctuations and in disordered systems
to randomness in addition [24, 25, 28]. In the Bi-film con-
sidered here the consistency with finite size limited BKT be-
havior uncovers clearly the bosonic scenario: The BKT-line
separates the phases of uncondensed and condensed Cooper
pairs, while at zero temperature the QSI critical point sep-
arates the phase of condensed and uncondensed insulating
Cooper pairs.

In Sect. 2 we sketch the theoretical background and
present the detailed analysis of the resistivity data of
Parendo et al. [6, 7]. We close with a brief summary and
some discussion.

2 Theoretical Background and Data Analysis

2.1 BKT Transition

To explore the compatibility with BKT critical behavior we
invoke the characteristic temperature dependence of the cor-
relation length above Tc [8, 9],

ξ(T ,Vg) = ξ0(Vg) exp

(
bR(Vg)

2(T − Tc(Vg))1/2

)
. (9)

Notice that for any Tc > 0 the universal critical behavior
is entirely classical [18], including the characteristic form
of the BKT correlation length. Contrariwise ξ0(δ), bR(δ)

and Tc(δ) are subjected to quantum fluctuation renormal-
ization and depend on the tuning parameter δ. bR is related
to the vortex core energy and ξ0 to the vortex core radius
[16, 29–31]. Invoking dynamic scaling the sheet resistance
R scales in D = 2 as [2]

R ∝ ξ−zcl , (10)

where zcl is the dynamic critical exponent of the classical
dynamics. zcl is not questioned to be anything but the value
that describes simple diffusion: zcl = 2 [32, 33]. Combining
these scaling forms we obtain

R(T , δ)

R0−(δ)
=

(
ξ0(Vg)

ξ(T ,Vg)

)2

= exp

(
− bR(Vg)

(T − Tc(Vg))1/2

)
. (11)

The compatibility of sheet resistance data with the charac-
teristic BKT behavior can be explored in terms of

(
d ln(R(T ,Vg))

dT

)−2/3

=
(

2

bR(Vg)

)2/3(
T − Tc(Vg)

)
.

(12)

However, supposing that there is a limiting length L pre-
venting the growth of the correlation length the transition
temperature Tc cannot be approached and with that the at-
tainable critical regime is reduced. The extent of the attained
BKT-regime can be extracted from a finite size scaling anal-
ysis. It implies that the measured R(T ,L) scales as [15]

R(T ,L)

R(T ,L = ∞)
=

(
ξ(T ,L = ∞)

ξ(T ,L)

)2

= f (x), (13)

where

x = g(L)

R(T ,L = ∞)
∝ g(L)ξ2(T ,L = ∞). (14)

R(T ,L = ∞) and ξ(T ,L = ∞) denote the respective be-
havior of the infinite and homogeneous system given by
Eqs. (9) and (11), respectively. f (x) is the finite size scaling
function adopting the limiting behavior:

f (x) =
{

1: x → 0 and ξ(T ,L = ∞) < L,

x: x → ∞ and ξ(T ,L = ∞) > L.
(15)

Accordingly, BKT-behavior, R(T ,L) = R(T ,L = ∞) can
be observed as long as ξ(T ,∞) < L, while for
ξ(T ,∞) > L the scaling function approaches the finite size
dominated regime where

R(T ,L) ∝ g(L) ∝ L−2. (16)

Note that g(L) fixes the width of the intermediate regime
where BKT-behavior is observable. It shrinks with increas-
ing g(L), i.e. with decreasing limiting length L. This power
law neglects the possible occurrence of multiplicative loga-
rithmic correction i.e. R(L) ∝ g(L) ∝ L−2/ ln(L/b0) [34].
Noting that the finite size scaling plot yields g(L), this cor-
rection leads to a saturation of the sheet resistance at low
temperatures as well and that the data considered here is too
sparse to uncover it, we neglect this correction. The occur-
rence of BKT-behavior also requires that Tc is sufficiently
below the mean-field transition temperature Tc0. It can be
estimated with the aid of the Aslamosov–Larkin (AL) ex-
pression for the conductance [35]

σ = σn + σ0/ ln(T /Tc0), (17)

with

σ0 = πe2

8h
� 0.0152 k	−1, (18)
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Fig. 1 R vs. T for various gate voltages Vg for the 10.22 Å film taken
from Parendo et al. [6, 7] for various gate voltages Vg

where Gaussian fluctuations are taken into account.
We are now prepared to explore the occurrence of BKT-

behavior emerging from the sheet resistance data of Parendo
et al. [6, 7] depicted in Fig. 1 for an amorphous 10.22 Å
thick Bi film taken at various gate voltages. It is appar-
ent that most sheet resistance curves exhibit a rounded nor-
mal state to superconductor transition. Nevertheless a reduc-
tion of the smeared transition temperature with decreasing
gate voltage can be anticipated. Accordingly BKT-behavior
is expected in an intermediate temperature regime above
Tc only. and with that . To uncover this regime we pro-
ceed as follows: Invoking Eq. (12) consistency with BKT-
behavior is established in terms of an intermediate tem-
perature regime revealing a linear temperature dependence
for the adjusted parameters (2/bR(Vg))

2/3 and Tc(Vg). The
amplitude R0(Vg) is then estimated by adjusting Eq. (11)
in the intermediate temperature regime to the measured
temperature dependence of the sheet resistance with given
(2/bR(Vg))

2/3 and Tc(Vg). The quality of the resulting es-
timates for (2/bR(Vg))

2/3, Tc(Vg) and R0(Vg) as well as
the evidence for finite size limited BKT behavior is finally
clarified in terms of the finite size scaling relation (13). Re-
sults of this analysis are shown in Fig. 2a uncovers consis-
tency with BKT-behavior (12), i.e. for Vg = 19.5 V with
(2/bR)2/3 � 5.3 K−1/3 and Tc � 0.027 K in the interme-
diate regime extending from T � 0.055 K to T = 0.08 K.
Above this regime BKT-fluctuations no longer dominate,
while below its lower bound a pronounced finite size effect
occurs. These features are well confirmed in Fig. 2b show-
ing R vs. T . Indeed, the curves corresponding to Eq. (11)
fit the data in the intermediate temperature regime with the
adjusted R0 = 33.5 k	, (2/bR)2/3 � 5.3 K−1/3 and Tc �
0.027 K rather well. Furthermore the BKT-transition tem-
perature is considerably below the mean-field counterpart as
illustrated for Vg = 19.5 V where Tc � 0.027 K compared
to Tc0 � 0.04 K. Considering the finite size scaling plot in
Fig. 2c it becomes clear that the rounding of the transition is

Fig. 2 (a) (d ln(R)/dT )−2/3 vs. T derived from the data of Parendo
et al. [6, 7]. The lines are fits to Eq. (12) yielding estimates for Tc and
(2/bR)2/3. (Tc = 0.027 K and (2/bR)2/3 = 5.3 K−1/3.) (b) R vs. T

for the same gate voltages. The lines are Eq. (9) with Tc , bR derived
from Fig. 2a and adjusted R0 to match the respective sheet resistance
data above Tc . The solid line is a fit to the Aslamosov–Larkin expres-
sion (17) yielding σn = 0.044 k	−1 and Tc0 = 0.04 K compared to
the corresponding BKT transition temperature Tc = 0.027 K. (c) Fi-
nite size scaling plot R(T ,L)/R(T ,L = ∞) vs. 1/R(T ,L = ∞). The
solid line marks the occurrence of BKT-behavior and the dash-dot line
the finite size dominated regime where R(T ,L) ∝ g(L) ∝ L−2
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fully consistent with a standard finite size effect, preventing
the correlation length to grow beyond a limiting length L.
Noting that the intermediate regime where BKT-behavior is
observable shrinks with increasing g, the rather large value
g = 9 k	 at Vg = 19.5 V is consistent with the severely
rounded transition. Nevertheless, in agreement with Figs. 2a
and 2b there is a window left where BKT-behavior occurs.

The estimates for the BKT parameters and their gate volt-
age dependence are shown in Fig. 3. Figure 3a uncovers a
BKT-transition line Tc(Vg) with a quantum critical endpoint
around Vgc = 10.5 V. Though these transition temperatures
are not attained, the gate voltage dependent limiting lengths
turned out to be sufficiently large to estimate them and the
other parameters of interest from the intermediate tempera-
ture regime where consistency with BKT-behavior was es-
tablished and confirmed in terms of a finite scaling analysis.
The gate voltage dependence of g(L) reveals that electro-
static tuning does not change the carrier density only but the
inhomogeneity landscape as well. Indeed g(L) ∝ L−2 in-
creases from Vg = 33 V to Vg = 12.5 V by almost an order
of magnitude. Note that g(L) fixes the width of the interme-
diate regime which shrinks with increasing g(L), i.e. with
decreasing limiting length L.

The solid and dashed lines in Fig. 3a are

Tc(Vg) = 0.0011 KV−3/2(Vg − Vgc)
3/2, (19)

and

Tc(Vg) = 0.0065 KV−2/3(Vg − Vgc)
2/3, (20)

with Vgc = 10.5 V. They indicate limiting and effective
power law behavior of the BKT phase transition line near
its quantum critical endpoint where Tc vanishes. In Fig. 3b
we show the estimates for the Tc dependence of R0− and bR .
R0− is the amplitude of the BKT expression for the sheet re-
sistance (Eq. (11)) and bR is related to the vortex core energy
and should scale as [16, 29, 30]

bR(Vg) = b̃RT
1/2
c (Vg). (21)

A glance at Fig. 3b reveals that this behavior is very well
confirmed with the non-universal parameter

b̃R � 0.99. (22)

The estimates for R0−(Vg) shown in Figs. 3b and 3c also
reveal that this amplitude exhibits a pronounced Tc and gate
voltage dependence. In the limits Tc → 0 and Vg → Vgc �
10.5 V it tends to the critical value R0c � 19.35 k	. The
dashed line in Fig. 3b is

R0−(Tc) = Rc + 128 k	K−2/3T
2/3
c , (23)

and the solid line in Fig. 3c

R0−(Vg) = Rc + 1.35 k	V−1(Vg − Vgc). (24)

Fig. 3 Gate voltage and Tc dependence of the BKT- and finite size
scaling parameters Tc , R0, bR and g/L2. (a) Tc and g vs. Vg . The
solid line is Tc = 0.0011 KV−3/2(Vg − Vgc)

3/2 and the dashed one
Tc = 0.0065 KV−2/3(Vg − Vgc)

2/3 with Vgc = 10.5 V. (b) R0 and bR

vs. Tc . The solid line is R0 = R0c + 128T
2/3
c k	 with R0c = 19.35 k	

and the dashed one bR = 0.99T
1/2
c K1/2. (c) R0 vs. Vg . The solid line

is R0 = Rc +1.4(Vg −Vgc) k	 with Vgc = 10.5 V and Rc = 19.35 k	

They indicate power law behavior near the quantum critical
point at Vgc � 10.5 V and Rc � 19.35 k	 where Tc van-
ishes. The reliability of these relationships can be checked
by eliminating R0−(Vg) − Rc and solving for Tc(Vg). This
yields Eq. (19), as it should.



J Supercond Nov Magn (2013) 26:3423–3435 3429

Fig. 4 Scaling plot R(T ,Vg)/R0−(Vg) vs. Tc(Vg)/T for the data
shown in Fig. 1 using the Tc(Vg) and R0−(Vg) values shown in Figs. 3a
and 3c, respectively. The solid line is exp(−b̃R/(T /Tc(Vg) − 1)1/2) in
Eq. (25) with b̃R � 0.99 (Eq. (22))

An essential implication of relation (21) is that the BKT
expression (11) for the sheet resistance adopts the two vari-
able scaling form

R(T ,Vg)

R0−(Vg)
=

(
ξ0(Vg)

ξ(T ,Vg)

)2

= exp

(
− b̃R

(T /Tc(Vg) − 1)1/2

)
. (25)

Indeed it depends on R0−(Vg) and Tc(Vg) only. Accord-
ingly, given R0(Vg) and Tc(Vg) the sheet resistance data
R(T ,Vg) plotted as R(T ,Vg)/R0−(Vg) vs. Tc(Vg)/T should
fall on a single curve given by the right hand side of
Eq. (25). Deviations from this curve are expected close
to Tc(Vg)/T � 1 due to the finite size effect and for
Tc(Vg)/T � 1 where BKT fluctuations no longer dominate.
This scaling plot is shown in Fig. 4. The piecewise collapse
of the data onto the scaling function, marked by the solid
line clearly confirms that the BKT regime is attained. For
large values of the scaling argument it is bounded by the fi-
nite size effect with a limiting length which increases with
reduced gate voltage (Fig. 3a) and for small arguments they
reflect the fact BKT fluctuations no longer dominate.

Evidence for a gate voltage driven QPT emerges from the
phase transition line Tc(Vg) pointing to an endpoint where
Tc vanishes (Fig. 3a) at a critical gate voltage Vgc � 10.5 V
and the amplitude R0(Vg) of the sheet resistance tends to
the critical value R0c � 19.5 k	 (Fig. 3c). A characteristic
property of a QPT at the endpoint of a BKT phase transition
line follows from Eq. (25) by considering the isotherms. In-
deed, as Tc(Vg) tends to zero by approaching Vgc at fixed T ,
the amplitude of the sheet resistance R(T ,Vg) tends to the
temperature independent value Rc at Vgc. Accordingly, the
isotherms merge at the endpoint of a BKT transition line

Fig. 5 Sheet resistance isotherms R(Vg) at T = 0.075 K and
T = 0.05 K. © and � denote the measured data points derived from
Fig. 1. ∗ mark the values derived from Eq. (25) using the Tc(Vg) and
R0(Vg) values shown in Figs. 3a and 3c. The solid and dashed lines
are derived from Eq. (25) using the Tc(Vg) and R0(Vg) given by the
power laws (19) and (24)

Tc(Vg) which is a characteristic property of a QPT. In Fig. 5,
showing sheet resistance isotherms derived from the data de-
picted in Fig. 1, we observe that the flow of the measured
data points (©, �) to a merging point near Vgc � 10.5 V
and Rc � 19.35 k	 is well confirmed and consistent with
respective values (
) derived from Eq. (25) and the Tc(Vg)

and R0(Vg) values shown in Figs. 3a and 3c. In contrast, the
solid and dashed lines, obtained from Eq. (25) and the power
law expressions for Tc(Vg) and R0(Vg) (Eqs. (19) and (24))
apply closer to the QPT only.

2.2 Quantum Phase Transition

The scaling theory of QPT yields for the sheet resistance to
the one variable scaling form [1, 23]

R(T ,Vg)

Rc

= G±(y), y = c|Vg − Vgc|zν
T

, (26)

c is a non-universal coefficient of proportionality, Rc the
critical sheet resistance, z the dynamic and ν the critical ex-
ponent of the zero temperature correlation length,

ξ(T = 0,Vg) = ξ0(T = 0)|Vg − Vgc|−ν . (27)

G±(y) is a universal scaling function of its argument such
that G±(y = 0) = 1. The subscript (+) marks the NI-
crossover and (−) the NS-transition line. Due to this line,
corresponding in the present case to the BKT-transition line,
the scaling function G−(y) exhibits at finite temperature a
singularity at the universal vale yc of the scaling variable.
The leading behavior of the phase transition line (11) is then
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fixed by

Tc(Vg) = c

yc

|Vg − Vgc|zν . (28)

Noting that in this limit

y

yc

= Tc(Vg)

T
, (29)

the quantum scaling function G−(y) adopts according to
Eq. (25) the explicit BKT form

G−(y) = exp
(−b̃R(yc/y − 1)−1/2). (30)

Because Rc is fixed there is one scaling parameter only,
namely y ∝ Tc(Vg)/T . Taking the gate voltage dependence
of R0 into account we obtain the two parameter scaling form

R(T ,Vg)

R0−(Vg)
= G−(y). (31)

The occurrence of a QPT at the endpoint of the BKT-
transition line implies that the isotherms merge at the crit-
ical value of the tuning parameter Vgc with sheet resis-
tance Rc. where at T = 0 the QSI-transition occurs. In the
BKT scenario where the NS-branch is considered this cross-
ing point corresponds to the merging point seen in Fig. 5. In
the quantum scaling approach the scaled data R(T ,Vg)/Rc

vs. |Vg −Vgc|zν/T should then fall onto two branches cross-
ing at the QSI critical point. The upper branch stems from
the NI-crossover and the lower one from the NS- transition.
zν is usually determined by minimizing the error in data col-
lapse [4–7]. The dashed line in Fig. 3a, given by Eq. (20),
suggests that the effective exponent zν � 2/3 mimics the
overall gate voltage dependence of Tc reasonably well. The
resulting scaling plot, including the data shown in Fig. 1 is
depicted in Fig. 6a. Admittedly the data collapse is rather
poor. For large values of the scaling argument the collapse is
affected by the finite size effect with a limiting length which
increases with reduced gate voltage (Fig. 3a) and for small
values of the scaling argument one enters T � Tc(Vg) where
BKT fluctuations no longer dominate. More alarming are
the large deviations from the BKT-behavior indicated by the
solid line. This discrepancy is attributable to the fact that at
this gate voltages the amplitude R0− decreases substantially
and differs considerably from the critical value Rc. On the
other hand adopting the suggestion of Parendo et al. [6, 7]
the quality of the data collapse can be improved by restrict-
ing the data, i.e. to the interval 0.06 K < T < 0.1 K. As
shown in Fig. 6b this improves the quality of the collapse
considerably and suggests consistency with zν � 2/3. Al-
though on a first glance compelling, this procedure is mis-
leading because the asymptotic regime where the quantum
scaling form (26) applies is not attained as the gate voltage

Fig. 6 Quantum scaling plot R(T ,Vg)/Rc vs. (Vg − Vgc)zν/T

with zν = 2/3, Tc = 19.5 k	 and Vgc = 10.5 V. (a) For
the data shown in Fig. 1. The solid line is Eq. (25) with
R0(Vg) = R0(Vgc) = Rc = 19.35 k	, b̃R = 0.99, and
Tc(Vg) = 0.0065 KV−2/3(Vg − Vgc)

zν with zν = 2/3 (Eqs. (20)
and (28)) indicates the BKT behavior. (b) For the same data but
restricted to 0.06 K < T < 0.1 K and the same solid line

dependence of Tc (see Fig. 3a) and the amplitude R0−(Vg)

reveals (Fig. 3c).
Indeed, Fig. 3a shows that zν � 2/3 is at best an ef-

fective exponent failing near criticality where zν certainly
exceeds one and zν � 3/2 is consistent with the available
data. Furthermore zν � 3/2 is consistent with the limiting
behavior of the sheet resistance isotherms close to the quan-
tum critical point as depicted in Fig. 5. According to Fig. 7
this value also leads to a piecewise excellent data collapse
onto the BKT scaling function (30) using the two parame-
ter scaling form (31). For large values of the scaling argu-
ment the deviations stem from the finite size effect with a
limiting length which increases with reduced gate voltage
(Fig. 3a) and for small arguments they reflect the fact that
BKT fluctuations no longer dominate. Considering Fig. 3a
we observe that the attainable quantum critical regime ex-
tends up to Vg � 19.5 V and according to Fig. 2b up to the
temperature T � 0.07 K. A restriction of the sheet resistance
data, i.e. to the interval 0.06 K < T < 0.1 K implies then that
in the scaling plot shown in Fig. 6b an essential part of the
quantum critical regime is missing.
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Fig. 7 Scaling plot R(T ,Vg)/R0−(Vg) vs. (Vg − Vgc)
zν/T

with zν = 3/2, Tc = 19.5 k	, Vgc = 10.5 V and the solid
line is the BKT scaling function Eq. (30) with b̃R = 0.99,
Tc(Vg) = 0.0011 KV−3/2(Vg − Vgc)

zν and zν = 3/2 (Eqs. (19)
and (28)). R0 = R0−(Vg) is taken from Fig. 3c

Next we turn to the gate voltage and Tc dependence oft
the BKT amplitude R0 shown in Figs. 4b and 4c. In D = 2
the sheet resistance, while diverging in the insulating phase,
and zero in the superconducting phase, has a finite constant
value Rc right at the quantum critical point. Indeed along
the BKT phase transition line approach both R0−(Vg) and
R0−(Tc) the critical value Rc � 19.5 k	. We observe that
In the quantum critical regime outlined above (Vg � 19.5 V
and Tc � 0.07 K) the approach to Rc is consistent with the
power laws (23) and (24). Note that in analogy to bR(Vg)

and Tc(Vg) the amplitude R0−(Vg) is also renormalized by
quantum fluctuations. To estimate the exponents z and ν we
note that according to classical dynamic scaling R0−(Vg) is
proportional to ξ−2

0 (Vg) where ξ0(Vg) is the amplitude of
the BKT correlation length

ξ(T ,Vg) = ξ0(Vg) exp
(−(̃bR/2)

(
T/Tc(Vg)−1

)−1/2)
. (32)

At low temperatures where Tc(Vg) ∝ (Vg − Vgc)
zν

(Eq. (28)) applies it has to match the quantum scaling coun-
terpart

ξ(T ,Vg) ∝ (Vg − Vgc)
−νf−(y),

y = cT /(Vg − Vgc)
zν ∝ T/Tc, (33)

extending Eq. (27) to finite temperatures. The scaling func-
tion f−(y) adopts the limits:

f−(y) =
{

1: y = 0,

y−ν : y = ∞.
(34)

The matching yields an explicit form of the scaling function
f−(x) and reveals that ξ0(Vg) scales as ξ0(Vg) = ξ(T = 0,

Vg) ∝ (Vg − Vgc)
−ν ∝ T −1/z. On the other hand there

is the quantum constraint of a finite critical sheet resis-
tance Rc at T = 0 which is incompatible with the classi-
cal dynamic scaling prediction R0−(Vg) ∝ ξ−2

0 (Vg) because
ξ−2

0 (Vg) tends to zero as (Vg − Vgc)
2ν . The quantum con-

straint is then accounted for in terms of [16, 17]

R0−(Vg) − Rc ∝ 1/ξ2(T = 0,Vg)

∝ (Vg − Vgc)
2ν ∝ T

2/z
c . (35)

Using the estimates for R0−(Vg), Rc and Tc(Vg) resulting
from the finite size scaling analysis of the temperature de-
pendence of the sheet resistance at fixed gate voltages this
relationship provides a direct way to measure the critical ex-
ponents z and ν, and allows for a check on the value of zν.
Previously it was confirmed in the analysis of the sheet re-
sistance data of the superconducting LaAlO3/SrTiO3 inter-
face [16] and thin La2−xSrxCuO4 films [17]. Furthermore
ξ0 ∝ T

−1/z
c was verified in submonolayer superfluid 4He

films [31]. Combining Eqs. (35), (23) and (24) we obtain
for the critical exponents of the QSI transition the estimates

zν � 3/2, z � 3, ν � 1/2. (36)

Noting that D + z = 2 + z � 5 exceeds the upper critical
dimension Du = 4 the critical exponent of the zero temper-
ature correlation length should adopt its mean-field value
ν = 1/2. However, the fate of this clean QSI critical point
under the influence of disorder is controlled by the Harris
criterion [10, 11]. If the inequality ν ≥ 2/D is fulfilled, the
disorder does not affect the critical behavior. If the Harris
criterion is violated (ν < 2/D), the generic result is a new
critical point with conventional power law scaling but new
exponents which fulfill ν < 2/D and ν 	= 1/2. Because dis-
order is relevant it drives the system from the mean-field to
another critical point with different critical exponents and
with that to ν 	= 1/2. Unfortunately the available data are
too sparse to derive a more precise estimate of ν. Otherwise
it is clear that D + z = 2 + z � 5 exceeds the upper critical
dimension Du = 4 so that the equivalence between quantum
phase transitions in systems with D spatial dimensions and
the ones of classical phase transitions in (D + z) dimensions
does not apply.

2.3 Quantum Superconductor to Insulator Transition

In disordered 2D systems weak localization manifests itself
due to the wave nature of electrons since interference ef-
fects double the classical probability for self-crossing paths
and it slightly suppresses the conductance [36]. In the pres-
ence of strong spin-orbit coupling, the spins rotate in the
opposite direction and the interference is destructive, which
leads to an increase in the conductance, this effect being
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Fig. 8 Sheet conductance σ(T ,Vg) vs. ln(T ) for data shown in
Fig. 1. The horizontal thin line marks the critical sheet conduc-
tance σc = 1/Rc � 0.0517 k	−1. The dashed line is Eq. (37)
describing the fermionic contribution with σ1 = 0.062 k	−1 and
σ2 = 4.69 × 10−3 k	−1 and the solid one with σ1 = 0.063 k	−1 and
σ2 = 6.01 × 10−3 k	−1. The dotted and dash-dot-dot lines are the AL
expression (17) describing the Gaussian bosonic contribution to the
normal state to superconductor transition with σn = 0.0514 (k	−1),
Tc0 = 0.036 K, σn = 0.0505 k	−1 and Tc0 = 0.028 K. The dash–
dot line is the BKT behavior resulting from Eq. (25) with b̃R = 0.99
(Eq. (22)), R0− = 22.05 k	 and Tc = 0.002 K given in Fig. 3

opposite to the weak localization and known as weak anti-
localization [21]. The influence of spin-orbit coupling in-
creases for heavy elements since it strongly depends on the
atomic number Z, thus bismuth, being the heaviest group-V
semimetal, is a suitable material for the study of its elec-
tronic transport properties through the analysis of the weak
anti-localization contribution [20]. The fermionic part com-
prises the sheet conductance and its modifications due to
weak localization, electron-electron- and spin orbit interac-
tion, yielding[37]

σn = σ1 + σ2 ln(T ). (37)

Note that

σ2 = e2

πh
� 1.23 × 10−2 k	−1 (38)

is generally attributed to the electron–electron interaction
contribution [38]. In the vicinity of the normal state to su-
perconductor transition there is also a bosonic contribution
due to Cooper pair fluctuations. In the Gaussian approxi-
mation it is given by the Aslamosov–Larkin (AL) expres-
sion (17). In Fig. 8 we show the sheet conductance σ vs.
ln(T ) for gate voltages covering the normal state to su-
perconductor transition and the normal state to insulator
crossover. Considering the behavior at Vg = 0 V and Vg =
7 V we observe consistency with weak anti-localization. In-
deed the gate voltage dependent values for σ2 are substan-
tially smaller than the electron-electron interaction contri-
bution [38]. The saturation above ln(T ) ≈ −3 is again at-

tributable to the finite size effect preventing the diverging
length associated with weak localization to grow beyond the
limiting length L. Although there is evidence for weak anti-
localization at Vg = 12.5 V and even at Vg = 11 V below
ln(T ) ≈ −2 Cooper pair fluctuations dominate at low tem-
peratures as the comparison with the AL-behavior (Eq. (17))
and BKT behavior reveals (see Fig. 2b). Here the approach
to a normal state to superconductor transition, limited by
the finite size outlined above, is apparent. Noting that at
Tc, σ ∝ ξ2 ∝ L2, the gate voltage dependence of the sat-
uration in σ reflects the reduction of the limiting length L

with reduced gate voltage (see Fig. 3a). Similarly, as the
gate voltage increases on the insulating side from 0 V to
7 V the saturation level decreases because the diverging
length is limited again by a length which decreases by ap-
proaching the critical gate voltage Vg � 10.5 V from be-
low. The features emerging from Fig. 1 can be summarized
as follows: A characteristic feature of the normal state ap-
pears to be the competition between weak anti-localization
and superconductivity. For Vg < 10.5 V superconductivity
is suppressed and a finite size limited insulating ground
state is approached. This approach is in agreement with
previous work [20] consistent with weak anti-localization.
On the contrary for Vg > 10.5 V pair fluctuations domi-
nate at sufficiently low temperatures and a finite size lim-
ited approach to the superconducting ground state is ob-
served. From the merging point seen in Fig. 5 we know
that the flows to the superconducting and insulating ground
states are separated by the quantum critical point at Vgc �
10.5 V and σc = 1/Rc � 0.0517 k	−1. The temperature
dependence of the sheet conductance at various gate volt-
ages seen in Fig. 8a is then consistent with the approach
to the QSI-critical point with finite critical sheet conductiv-
ity.

Otherwise it is also expected that in disordered films
variable-range hopping controls the insulating phase where-
upon the sheet conductivity scales as [22]

σ(T ,Vg) = σh(Vg) exp
(−(

T0(Vg)/T
)1/3)

. (39)

T0(Vg) denotes the variable-range hopping crossover tem-
perature. In this context it should be kept in mind that the
irrelevance of disorder at the BKT-transition does not ex-
clude its relevance at zero temperature. As our estimate
ν � 1/2 violates in D = 2 the Harris criterion we know
that disorder is relevant at zero temperature. For this rea-
son we consider below an insulating ground state controlled
by variable-range hopping. An approach to the QSI criti-
cal point requires then that σh(Vg) → σh(Vgc) = σc and
T0(Vg) → T0(Vgc) = 0. To explore this scenario quantita-
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Fig. 9 (a) R(Vg)/R0+(Vg) vs. (T0(Vg)/T )1/3 derived from the
sheet resistance data of Parendo et al. [6, 7]. R0+(Vg) and
T0(Vg) are chosen to minimize the error in data collapse onto
the scaling function exp(T0(Vg)/T )1/3. (b) Resulting estimates for
R0+(Vg) and T0(Vg). The dashed line is T0(Vg) � f 3|Vg − Vgc|zν
with f = 0.065 K−1/3V−3/2 and zν = 3/2 and the solid one
R0+(Vg) = Rc − 2.4 k	V−1/2(Vg − Vgc)

1/2 (c) R0+ vs. T0 The solid

line is R0+ = Rc − 37 k	K−1/3T
1/3

0

tively we note that Eq. (39) leads according to Eq. (26) to
the quantum scaling form

R(T ,Vg)

R0+(Vg)
= σ0+(Vg)

σ (Vg)
= G+(y), y = c|Vg − Vgc|zν

T
,

(40)

with the explicit scaling function

G+(y) � exp
(
fy1/3), (41)

and the crossover temperature

T0(Vg) = f 3|Vg − Vgc|zν, (42)

where the value of zν applies on both side of the QSI-
transition. In Fig. 9a we depicted the scaling plot R(Vg)/

R0+(Vg) vs. (T0(Vg)/T )1/3 by choosing R0+(Vg) = 1/

σh(Vg) and T0(Vg) to minimize the error in data col-
lapse onto the scaling function exp(T0(Vg)/T )1/3. Though
the quality of the collapse is satisfactory and points to a
variable-range hopping controlled insulating ground state,
it is again subjected to the limiting length identified with
the finite size scaling analysis of the BKT transition. It
leads to the saturation at low temperature. Additional in-
sight emerges from the gate voltage dependence of the ad-
justed parameters T0(Vg) and R0+(Vg) shown in Figs. 9b
and 9c. In contrast to the BKT-transition line (see Fig. 3a)
the quantum scaling form (42) of the crossover temperature
T0(Vg) applies over the entire gate voltage range and con-
firms zν � 3/2. The strong gate voltage dependence of the
amplitude R0+(Vg) uncovers again the limitations of one
parameter scaling. It appears to be related to the inverse of
the zero temperature correlation length. Indeed close to the
QSI transition we observe consistency with

R0+(Vg) − Rc ∝ |Vg − Vgc|1/2 ∝ T
1/3
0 . (43)

It suggests that

R0+(Vg) − Rc ∝ 1/ξ(T = 0) ∝ |Vg − Vgc|ν ∝ T 1/z, (44)

with ν � 1/2 and z � 3 applies, and with it these critical
exponents apply on both sides of the QSI transition (see
Eq. (36)).

The full quantum scaling plot R(T ,Vg)/R0±(Vg) vs.
|Vg − Vgc|3/2/T is shown in Fig. 10. The upper branch
stems from the NI-crossover and the lower one from the NS-
transition. The two branches merge at the QSI-transition as
the solid and dashed curves indicate. The solid line marks
the BKT form G−(y) given by Eq. (30)) while the dashed
line is G+(y) (Eq. (41)) with f = 0.065 K−1/3V−3/2 and
the R0+(Vg) estimates given in Fig. 9b. The strong gate volt-
age dependence of R0+ exposes clearly that two parame-
ter scaling (y, R0+) is required to enter the quantum crit-
ical regime of the variable-range hopping controlled insu-
lator. This findings are fully analogous to those observed
in the BKT-counterpart where R0−(Vg) exhibits a strong
gate voltage dependence (Fig. 3c) as well. The piecewise
data collapse on the respective scaling function line extends
roughly over two decades of the scaling argument. For large
values of the scaling argument the deviations stem from
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Fig. 10 Quantum scaling plot R(T ,Vg)/R0±(Vg) vs.
|Vg − Vgc|3/2/T . The lower branch taken from Fig. 7 origi-
nates from the NS-transition where R0(Vg) = R0−(Vg). The solid line
marks the BKT quantum scaling function given by Eqs. (21) and (25).
The upper branch stems from the NI-crossover. The dashed line is the
scaling form Eq. (40) with f = 0.065 K−1/3V−3/2. It is characteristic
for a variable-range hopping controlled insulating ground state and
determines the crossover temperature T0(Vg) (Eq. (41))

the finite size effect with a limiting length which increases
with reduced gate voltage (Fig. 3a). In the lower branch
and small scaling arguments they reveal that BKT fluctua-
tions no longer dominate. The scaling function of the upper
(Eq. (41)) and lower branch (Eqs. (25) and (31)) are very
different but both exhibit at the QSI-transition an essential
singularity.

3 Summary and Conclusions

Over the past 20 years the analysis of sheet resistance
data taken on superconducting films, expected to undergo
a thickness, magnetic field, or gate voltage tuned QSI transi-
tion, was predominantly based on the one parameter scaling
form (26). zν was usually determined by minimizing the er-
ror in data collapse using the critical sheet resistance Rc and
critical tuning parameter determined from the crossing point
of the sheet resistance isotherms [4, 6]. Though one param-
eter scaling is asymptotically correct its application requires
that the quantum critical regime is attained. However, the
generically observed saturation of the sheet resistance at low
temperatures points to a finite size effect which makes this
nearly impossible. Indeed our finite size scaling analysis of
the BKT behavior clearly revealed that the saturation at low
temperature is fully consistent with a limiting length L pre-
venting the correlation length to grow beyond L. Noting that
disorder is irrelevant at the BKT-transition L is attributable
to the limited homogeneity of the films. In agreement with
previous studies [16, 17] we noticed that L decreases sub-
stantially by approaching the QSI transition. Thus variation
of the gate voltage does not affect the carrier density but the

inhomogeneity landscape as well. Of course, improved ho-
mogeneity of the films would allow to circumvent these dif-
ficulties. Here we pursued a different route, we invoked two
parameter with the variable y ∝ |Vg − Vgc|zν/T replaced
by Tc(Vg)/T along the BKT-transition line and T0(Vg)/T

along the insulator crossover line. The tuning parameter
dependent amplitude R0±(Vg) is taken as second variable.
At QSI criticality where R0±(Vgc) = Rc and Tc(Vg) ∝
T0(Vg) ∝ |Vg − Vgc|zν the standard quantum scaling form
is recovered. But given a strong gate voltage dependence
of R0±(Vg) as encountered in the Bi film, the outlined two
parameter scaling is indispensable to produce scaling plots
yielding realistic estimates for zν. Noting that R0−(Vg)−Rc

is controlled by the amplitude of the zero temperature cor-
relation length ξ(T = 0,Vg) = ξ0±(T = 0)|Vg/Vgc − 1|−ν

in terms of R0−(Vg) − Rc ∝ ξ−2
0− (T = 0) (Eq. (35)) and

R0+(Vg) − Rc ∝ ξ−2
0+ (T = 0) (Eq. (44)), the strength of

quantum fluctuations increases with reduced ξ0±(T = 0),
a substantial gate voltage dependence of R0±(Vg) − Rc ap-
pears to be a generic feature of the QSI-transition. Accord-
ing to this the two parameter scaling outlined here opens a
window to attain and enter the critical regime of the QSI
transition and to obtain estimates for the exponents zν, z,
ν and not for zν only. Indeed the value of ν is essential
to clarify the relevance of disorder at zero temperature via
the Harris criterion [10, 11] and given z the validity of hy-
perscaling can be verified. We are hopeful that the two pa-
rameter scaling analysis of the sheet resistance will deepen
our understanding of the QSI transition in superconducting
films.
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