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Abstract New neurons are generated throughout life in distinct areas of the mammalian brain. This process, called
adult neurogenesis, has challenged previously held concepts about adult brain plasticity and opened novel therapeutic
avenues to treat certain neuro-psychiatric diseases. Here, we review the current knowledge regarding the fate and
potency of neural stem cells (NSCs), as well as the mechanisms underlying neuronal differentiation and subsequent
integration. Furthermore, we discuss the functional significance of adult neurogenesis in health and disease, and offer
brief insight into the future directions of the adult neurogenesis field.
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Introduction

Mammalian organisms are generated from a single cell that
gives rise to tissues and organs that need to be sustained
throughout life. During embryonic development, a fertilized
egg divides into embryonic stem cells, which undergo mitosis
and lead to the formation of three germ lines: the ectoderm,
the endoderm and the mesoderm. From these three germ
lines, all tissues and organs can be generated. This
developmental process is made possible by rounds of stem
cell divisions and their subsequent differentiation into the
various cell types that compose the body. Following
development, certain tissues retain their capacity to generate
new cells from a population of somatic stem cells, also termed
adult stem cells. This regenerative capacity preserves tissue
function and homeostasis as differentiated cells are replaced
continuously throughout life (Hall and Watt, 1989). Somatic
stem cells reside in various tissues within specific niches
where they can symmetrically divide into two stem cells or
asymmetrically divide into a stem cell and a progenitor cell
(Potten and Loeffler, 1990). The lineage committed progeni-
tor cells can in turn undergo several rounds of division
followed by a multistep differentiation process, giving rise to
the different cell types that make up a tissue. Thus, somatic

stem cells are defined as self-renewing and multipotent cells
(Morrison et al., 1997). One of the most well studied
populations of adult stem cells can be found in the blood.
Throughout the life of an individual, hematopoietic stem cells
that reside in the bone marrow give rise to all blood cell types,
allowing for the regeneration of blood cells (Abramson et al.,
1977). Intestinal stem cells can also be found in the adult and
are essential for tissue homeostasis as they continuously
produce cells that line the surface of the small and large
intestines (Potten and Loeffler, 1987). For almost a century, it
was thought that no somatic stem cells resided in the brain.
However, it is now well established that neural stem cells
exist in the adult mammalian brain and that they can give rise
to neurons throughout life, in a process termed adult
neurogenesis (Gage, 2000).

Adult neurogenesis

The father of modern neuroscience, Santiago Ramón y Cajal,
who pioneered investigations on the cellular architecture of
the mammalian brain, stated that no newborn neurons were
generated in the central nervous systems of higher vertebrates
after embryonic development (Ramón y Cajal, 1928). This
finding played a central role in the field of neuroscience as it
was thought that no newborn cells could integrate into the
complex neural networks that make up the central nervous
system. Thus, it was very widely accepted that the brain
lacked any substantial regenerative capacity. Altman and
colleagues obtained the first experimental evidence for the
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existence of newborn neurons in the adult in the early 1960s.
Using 3H-thymidine labeling of mitotic cells in the adult rat
brain, they were able to detect by autoradiography, dividing
cells that had differentiated into cortical neurons (Altman,
1962). However, this striking finding went largely unnoticed
by the scientific community, until the discovery of new
detection methods using immunostaining of mitotically active
cells labeled with another thymidine analog, 5-bromo-2'-
deoxyuridine (BrdU), to label newborn neurons in the mouse
brain (del Rio and Soriano, 1989; Kuhn et al., 1996). The
newly identified neural stem cells (NSCs) were then isolated
from adult mice and their ability to self renew and
differentiate into neurons and glia was confirmed in vitro
(Reynolds and Weiss, 1992). Eriksson and colleagues then
confirmed that these cells did not merely exist in rodents but
could also be detected in the hippocampus of humans
(Eriksson et al., 1998).

It is now well established that adult neurogenesis occurs in
most mammals within two distinct regions of the brain (Fig.
1), the dentate gyrus (DG) of the hippocampus (Kuhn et al.,
1996) and the subventricular zone (SVZ) lining the lateral
ventricles (Lois and Alvarez-Buylla, 1994). Within these
specific niches, adult neural stem cells self renew and give
rise to proliferating progenitors that differentiate into all three
neural cell types: neurons, astrocytes and oligodendrocytes
(Gage, 2000).

Adult neurogenesis in the SVZ

The subventricular zone is a prominent neurogenic region
during embryogenesis and its neurogenic potential is
sustained throughout life, albeit at much lower levels. In the
adult SVZ, relatively quiescent neural stem cells, termed type
B cells, line the lateral ventricles and give rise to actively
proliferating neural progenitors, called type C cells (Doetsch
et al., 1999). These transient amplifying progenitors primarily
become neuroblasts (type A cells) and migrate out of the SVZ

along the rostral migratory stream (RMS) toward the
olfactory bulb (Lois and Alvarez-Buylla, 1994). The
immature neurons then differentiate into olfactory GABAer-
gic granule interneurons, dopaminergic periglomerular inter-
neurons or glutamatergic juxtaglomerular neurons, and
integrate into the local neuronal circuits (Carleton et al.,
2003; Brill et al., 2009). The process of cell migration from
the ventricles to the bulb takes several days as the neuroblasts
migrate in chains through a dense glial tube (Lois et al.,
1996).

Although many thousands of neuroblasts are generated
each day in the SVZ, only a small fraction survives to become
fully functional olfactory neurons. It is thought that newborn
cells play an important role in olfactory learning and memory
(Rochefort et al., 2002; Imayoshi et al., 2008). Type B stem
cells also retain the potential to asymmetrically divide into
astrocytes as well as oligodendrocytes, although it remains
unclear whether the same stem cell pool generates both
neurons and glia (Morrens et al., 2012). The balance between
neurogenesis and gliogenesis can be altered in response to
injury, as it has been shown that demyelination can induce
oligodendrocyte differentiation of neural progenitor cells in
the SVZ (Jablonska et al., 2010). The process of SVZ adult
neurogenesis has been extensively studied, and many markers
that label the different cell types have been identified, as
described in Fig. 2. Finally, it is important to note that recent
findings suggest that SVZ neurogenesis is largely absent from
adult humans and restricted to the early stages of infancy
(Sanai et al., 2011).

Adult neurogenesis in the hippocampus

The hippocampus is a cortical structure found in both
hemispheres of the mammalian brain. It is located in the
temporal lobe and along with the limbic cortex, amygdala,
septum and fornix, it forms the limbic system. Hippocampal
neurons from the dentate gyrus (DG) and the cornu ammonis
(CA) form a trisynaptic circuitry that plays a central role in
certain forms of learning and memory (Milner et al., 1998).
The main input into the hippocampus comes from the
entorhinal cortex, which can excite granule cells of the DG
via the perforant path, as well as directly excite CA3
pyramidal cells. Granule cells of the DG extend dendrites
into the molecular layer where they receive glutamatergic
input. The cell bodies of the granule cells form the dense layer
of the DG and their axons project into the hilus toward CA3
pyramidal neurons. The hilus is composed of interneurons,
unmyelinated mossy fibers as well as myelinated mossy cells.
In turn, CA3 pyramidal neurons connect to CA1 neurons via
Schaffer collateral fibers, which then connect back to the
entorhinal cortex to complete the trisynaptic loop (Amaral et
al., 2007).

Adult hippocampal neural stem cells give rise to granule
cells of the DG in a well-characterized multistep process.
First, relatively quiescent NSCs residing in the subgranular

Figure 1 Neurogenic regions in the adult mouse brain. Neural
stem cells (NSCs) reside in the dentate gyrus (DG) of the
hippocampus as well as in the subventricular zone (SVZ) of the
lateral ventricles (NSC niches shown in green). In the DG, NSCs
give rise to mature granule cells. In the SVZ, progenitor cells
actively proliferate and give rise to neuroblasts that migrate along
the rostral migratory stream (RMS) toward the olfactory bulb
(OB), where they differentiate into olfactory interneurons
(neuroblast migratory path shown in red).
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zone (SGZ) of the DG divide either symmetrically or
asymmetrically. During a symmetric division, two radial
glia-like cells are generated; these cells are known as type 1 or
radial NSCs. During an asymmetrical division, NSCs can
either self renew and give rise to an NSC and a progenitor or
terminally divide into two progenitors (Bonaguidi et al.,
2011; Encinas et al., 2011). Secondly, the progenitors, known
as type 2 or non-radial NSCs, can give rise to actively
proliferating neuroblasts also called type 3 cells. The
neuronally committed neuroblasts then begin to branch out
processes as they migrate up into the granule cell layer.
Finally, over a period of three weeks the newborn neurons
project out a large dendritic arbor into the molecular layer and
an axon into the hilus that terminates in the CA3 (van Praag et
al., 2002; Zhao et al., 2006). Over a period of 8 weeks, the
cells become fully mature DG granule cells that functionally
integrate into the local circuitry (Toni et al., 2008).

Several methods exist to identify the different cell types
generated during the course of neurogenesis. Proliferating
NSCs can be labeled by injection of nucleotide analogs or by
stereotactic injection of retroviruses expressing fluorescent
proteins (van Praag et al., 2002). Both these techniques take
advantage of the fact that within the neurogenic niches,
progenitors and neuroblasts make up the majority of dividing
cells. In addition, transgenic mouse lines, such as NestinGFP,
can be used to study NSCs labeled with the fluorescent
protein GFP, expressed under control of the Nestin promoter
(Yamaguchi et al., 2000). Alternatively, immunohistochem-
ical analysis can be performed to label the different cell types
which express a wide range of markers as described in Fig. 3.

Over the last few decades, numerous studies of the SVZ
and DG have led to the detailed characterization of adult
neurogenesis in these two niches. However, we are only just
beginning to understand why adult neurogenesis is restricted
to the SVZ and DG in adult mammals. Future studies, aiming
to understand the differences between the two neural stem cell
niches, may hold the potential to “unlock” this regenerative
process in other brain regions.

Mechanism regulating adult neurogenesis

In the human hippocampus, NSCs give rise to up to a
thousand new neurons everyday and throughout life (Knoth et
al., 2010). However, as the cells mature, only a small fraction
survives and integrates into the local circuitry. The mechan-
isms that regulate the quiescence, proliferation, differentiation
and survival of cells during adult hippocampal neurogenesis
have been extensively studied and will be described in the
following section.

Mechanisms responsible for stem cell maintenance and
quiescence

To ensure lifelong neurogenesis, adult NSCs are required to
differentiate into neuronal progenitors, while maintaining a
pool of multipotent stem cells. This balance between stem cell
maintenance and differentiation is regulated by numerous cell
intrinsic and extrinsic factors. The transcription factor Sox2
has been shown to be critical for this process as it is highly
expressed in quiescent NSCs and is downregulated upon
differentiation (Suh et al., 2007). Furthermore, conditional
deletion of Sox2 in Nestin expressing NSCs leads to a marked
reduction in the number of type 1 and type 2 cells in the adult
hippocampus (Favaro et al., 2009). Downstream targets of
Sox2 include Wnt and Shh (sonic hedgehog), two important
regulators of NSC proliferation. It has been shown that Sox2
activation of Shh is required for stem cell quiescence and that
loss of Sox2 in NSCs can be rescued at least partially by
adding Shh to in vitro cultures (Favaro et al., 2009).
Interestingly, Sox2 can also inhibit transcriptional activation
of Wnt in NSCs, a signaling molecule that is required to drive

Figure 2 Stages of adult neurogenesis in the SVZ. Type B
neural stem cells that line the lateral ventricles (LV), reside in the
subventricular zone (SVZ), express Sox2 (SRY sex determining
region Y-box 2, blue), GFAP (glial fibrillary acidic protein, red)
and Nestin, and have a process that projects into the ventricle. The
type B cells can asymmetrically divide into another B cell and a
type C progenitor cell. The actively proliferating type C cells
express markers such as Ascl1 (achaete-scute homolog 1) and
give rise to neuroblasts (type A) that migrate to the olfactory bulb
(OB) and are positive for DCX (doublecortin) and Dlx2 (distal-
less homeobox 2).
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NSC proliferation in vivo (Lie et al., 2005). Recent studies
have shown that neuronal activity can influence Wnt levels to
regulate stem cell quiescence (Jang et al., 2013), and that
deletion of the Wnt inhibitor Dickkopf1 can activate
quiescent NSCs to restore hippocampal neurogenesis in
aged mice (Seib et al., 2013).

Another major pathway implicated in the maintenance of
many embryonic and somatic stem cell populations is the
Notch signaling pathway. Hes5 (hair and enhancer of split 5),
a target gene and reporter of canonical Notch signaling is
selectively expressed in quiescent type 1 NSCs (Lugert et al.,
2010). Also, deletion of RBPJk (recombining binding protein
suppressor of hairless), the transcriptional activator in the
Notch signaling cascade (Ables et al., 2010; Ehm et al.,
2010), in adult hippocampal NSCs, leads to an increase in
neuronal differentiation and an eventual depletion of the stem
cell pool. Interestingly a similar phenotype was observed
when BMP (bone morphogenic protein) signaling was
inhibited in adult hippocampal NSCs, both in vivo and in

vitro (Mira et al., 2010). Furthermore, ablation of proliferat-
ing progenitor cells by administration of AraC (cytosine-β-D-
arabinofuranoside), an anti-mitotic drug, has been shown to
induce the activity of quiescent NSCs, allowing for the
repopulation of the stem cell niche (Doetsch et al., 1999; Seri
et al., 2001).

Finally, in vitro cultures of adult NSCs require EGF
(epidermal growth factor) and FGF2 (fibroblast growth factor
2) to be maintained as multipotent proliferating cell cultures,
and their removal leads to neuronal and glial differentiation
(Reynolds and Weiss, 1992; Palmer et al., 1995).

One current limitation in the field of adult neurogenesis is
the lack of markers that specifically label quiescent neural
stem cells. Due to the potential glial origin of radial NSCs,
many of the known markers are also expressed in astrocytes
that can be found throughout the brain. Developing markers
and assays that allow investigators to specifically test the
functional role of bona fide neural stem cells would represent
a major advancement for the field.

Figure 3 Stages of adult neurogenesis in the DG. Relatively quiescent type 1 NSCs express Sox2 and GFAP, and are labeled with GFP
in the NestinGFP and Spot14GFP transgenic mouse lines. Non-radial type 2 NSCs also express Sox2 and NestinGFP and give rise to
neuroblasts that actively proliferate and express MCM2 (minichromosome maintenance complex component 2) and Tbr2 (T-box brain 2)
as well as the immature neuron marker DCX. The newborn neurons continue to express DCX and Prox1 for 2–3 weeks as they mature into
granule cells that express Prox1, NeuN and Calbindin. During the early stages of neurogenesis, newborn neurons receive excitatory
GABA input. At three weeks of age, newborn neurons switch to inhibitory GABA and excitatory glutamatergic input, and project axons
toward CA3 neurons.
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Mechanisms regulating stem cell proliferation

Proliferation of neural progenitor cells and neuroblasts in the
DG greatly influences the total number of newborn neurons
generated each day. The mechanisms that are responsible for
regulating this process are of particular interest as targeting
these can result in increased levels of neurogenesis. One key
environmental factor that has been shown to positively
regulate progenitor proliferation is running. In both mice and
humans, it has been shown that running increases cell
proliferation and newborn neuron numbers, resulting in an
increased hippocampal volume (van Praag et al., 1999;
Erickson et al., 2011). Also, several secreted factors are
known to increase neural stem and progenitor cell prolifera-
tion, including Wnt (Lie et al., 2005), BDNF (brain derived
neurotrophic factor) (Scharfman et al., 2005), IGF2 (insulin
growth factor 2) (Bracko et al., 2012) and VEGF (vascular
endothelial growth factor) (Jin et al., 2002). In line with its
positive influence on NSC proliferation, it has been shown
that administration of IGF2 in the adult rat hippocampus
significantly enhances memory consolidation (Chen et al.,
2011). A similar improvement in memory function is also
observed after running, correlating enhanced neurogenesis
with improved hippocampal function (van Praag et al., 1999).

Much of what we know about the molecular mechanisms
that regulate stem cell proliferation has come from studies of
transcription factor regulation of the cell cycle and growth
factor signaling. However, it has recently been shown that the
metabolic state of a stem cell can influence the balance
between quiescence and proliferation. Studies in hemato-
poietic stem cells have shown that the Lkb1 gene can
influence the cell cycle by regulating cellular energy
metabolism (Nakada et al., 2010). Interestingly, adult NSCs
require high levels of fatty acid synthase (FASN)-dependent
lipogenesis for proper proliferation (Knobloch et al., 2013),
whereas relatively quiescent NSCs display low levels of this
metabolic process. Spot14, an inhibitor of this pathway that is
selectively expressed in relatively quiescent NSCs, mediates
the switch between high and low levels of de novo
lipogenesis.

Mechanisms regulating neuronal differentiation and
survival

Although thousands of neuroblasts are generated every day in
the mammalian brain, only a small fraction survive and fully
mature into granule cell neurons (Tashiro et al., 2007). Early
on during neurogenesis, transcription factors such as
NeuroD1 (neuorgenic differentiation 1) (Gao et al., 2009)
and Prox1 (prospero-related homeobox 1) (Lavado et al.,
2010; Karalay et al., 2011) are required for neuroblast
survival and differentiation. Deletion of these pro-neural
genes in adult NSCs leads to a significant decrease in
newborn neuron numbers within the DG. At later stages of
neurogenesis, Cdk5 (cyclin dependent kinase 5) (Jessberger

et al., 2008), Disc1 (disrupted-in-schizophrenia 1) (Duan et
al., 2007) and the Rho GTPase Cdc42 (cell division control
protein 42) (Vadodaria et al., 2013), as well as several other
genes (Zhao et al., 2008) are required for neuronal maturation
as their deletion in NSCs leads to aberrant process extension
and dendritic length defects respectively.

Certain environmental factors are known to enhance adult
neurogenesis. For example, mice housed in enriched
environments display significantly more newborn neurons
than their littermates housed in standard cages (Kempermann
et al., 1997). This increase in adult neurogenesis is attributed
to an increase in neuronal survival rather than a boost in
proliferation (van Praag et al., 1999).

Moreover, newborn neurons require synaptic input to
survive and fully integrate into the existing hippocampal
circuitry. It has been shown that newborn cells display
heightened excitability and enhanced synaptic plasticity
(Schmidt-Hieber et al., 2004; Wang et al., 2005; Marín-
Burgin et al., 2012) compared to more mature cells, which
allows them to develop mature spines and form novel
synapses in the adult brain (Toni et al., 2007). There is a
critical period between 1 and 1.5 months in which newborn
neurons exhibit enhanced long-term potentiation (LTP) (Ge et
al., 2007), a property that is important for encoding new
memories.

Excitatory and inhibitory input in newborn cells

Neurotransmitters mediate excitatory and inhibitory input to
cells during all stages of adult neurogenesis, from the radial
NSC to the mature granule cell. Recent work has shown that
radial NSCs respond tonically to GABA (gamma-aminobu-
tyric acid) released by parvalbumin expressing interneurons.
This excitatory input regulates the balance between quies-
cence and activation of radial NSCs in response to neuronal
activity (Song et al., 2012). In addition, type 2 NSCs and
progenitors also express GABAA receptors and respond to
excitatory GABA input. Their depolarization induces the
expression of genes such as NeuroD1, which in turn drives
neuronal differentiation (Tozuka et al., 2005). As the newborn
neurons differentiate and grow dendritic spines, they receive
both inhibitory GABAergic synaptic input from local
interneurons, and excitatory glutamatergic synaptic input
from the entorhinal cortex. It has been shown that the survival
and functional integration of newborn neurons into the adult
hippocampal circuitry requires NMDA (N-methyl-D-aspar-
tate) receptor mediated response to glutamate (Tashiro et al.,
2006). Finally, hyperpolarized mature granule cells that
display enhanced LTP, project mossy fibers into the hilus
toward CA3 neurons, forming neuronal circuits required for
memory formation as well as pattern separation (Deng et al.,
2010).

Whereas embryonic neurogenesis mainly occurs in a series
of distinct steps, adult neurogenesis is characterized by the
presence of all different maturation stages at any given time.
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Thus, understanding the signaling pathways that allow both
pro- and anti- proliferative cues as well as differentiation and
integration cues to co-exist in the same niche, may offer new
insight to improve neural stem cell transplants.

Functions of adult neurogenesis

Learning and memory

The hippocampus is a brain structure that plays a central role
in the formation of episodic and spatial memories. Patients
with hippocampal lesions can suffer from anterograde
amnesia, a condition characterized by an inability to form
new memories while maintaining the ability to recall events
that occurred before the lesion (Squire, 2009). The densely
packed granule cell layer of the DG plays a critical role in
encoding, consolidation and retrieval of new memories. Adult
NSC derived mature granule cells integrate into this DG
circuitry and display unique properties that have been shown
to contribute to the memory process. Importantly, increased
levels of neurogenesis have been correlated with improved
memory function, as mice with increased levels of neurogen-
esis, induced by running or enriched environments, per-
formed better in spatial learning tasks (Kempermann et al.,
1997; van Praag et al., 1999). However, these effects may be
attributed to neurogenesis independent functions that are also
stimulated by running or enriched environments, therefore
extensive studies have since been performed to determine
neurogenesis specific functions. Using a transgenic mouse
model, Deng and colleagues were able to lower neurogenesis
levels by expressing the HSV thymidine kinase gene under
the control of the Nestin promoter, allowing for Ganciclovir
mediated cell ablation in proliferating neural stem cells. With
this model, they were able to show that reduced neurogenesis
levels led to defective longterm retention of spatial memory
and impaired extinction of conditioned contextual fear, again
suggesting an important role for immature neurons in
hippocampus-dependent learning and memory (Deng et al.,
2009).

Recent studies have focused on more specific hippocampal
tasks, revealing a central role for adult neurogenesis in pattern
separation. This function is defined as the ability to
differentially encode small or weak changes derived from
increasingly similar or interfering inputs and is particularly
important for the accuracy of memory encoding (Clelland et
al., 2009). Using focal irradiation and virus mediated
inhibition, it has been shown that mice with reduced levels
of adult hippocampal neurogenesis show impaired spatial
memory, characterized by an inability to correctly perform
pattern separation tasks (Clelland et al., 2009). This finding
was further supported by studies showing that enhanced
levels of neurogenesis are sufficient to improve pattern
separation. In these experiments, neurogenesis was boosted
by impairing immature neuron cell death through the

inducible ablation of the pro-apoptotic gene Bax (bcl2
associated x) in NSCs (Sahay et al., 2011). Taken together,
these results indicate that adult neurogenesis is important for
proper pattern separation, i.e., the ability to correctly
discriminate between highly similar memories. However,
despite the general acceptance of this function, several studies
have been published revealing potential inconsistencies in
this theory (Aimone et al., 2011).

The recent development of optogenetic techniques has
proven to be an exciting new tool for the field of
neuroscience. This neuromodulation technique is character-
ized by the expression of light sensitive channels in neurons
(Channelrhodopsin or Halorhodopsin), allowing for light
inducible excitation or inhibition of neuronal activity (Fenno
et al., 2011). Using retrovirus-expressed optogenes, Gu and
colleagues were able to selectively silence 4 week old neurons
in the DG of adult mice, resulting in impaired retrieval of
hippocampal-dependent memory (Gu et al., 2012). These
results, along with other ablation experiments (Arruda-
Carvalho et al., 2011), suggest that newborn neurons function
in a time-dependent manner, contributing to memory
formation at around 4 weeks, before maturing into the
hippocampal circuitry where they become important for
memory retrieval.

Olfaction

Thousands of new neurons are born everyday in the olfactory
bulb of most mammals. This constant supply of neurons is
essential to maintain the structure of the OB, as blocking SVZ
neurogenesis leads to a decrease in OB interneuron numbers
over time (Imayoshi et al., 2008). Studies have shown that
ablating neurogenesis also has functional implications for
olfaction. Impaired neurogenesis affects the threshold of
olfactory detection as well as certain forms of olfactory
memory (Nissant and Pallotto, 2011). Although these
findings have been questioned by contradicting reports,
these discrepancies are probably due to the variety of
methods used to ablate stem cells which could explain the
different behavioral phenotypes (Lazarini and Lledo, 2011).

There is increasing evidence that newborn neurons of
different ages have specific functions within the adult brain.
Novel tools such as optogenetics and other inducible systems
may offer new insight into the relationship between the birth
and maturation of newborn neurons and their contribution to
the formation of new memories. In addition, these tools could
be used to determine whether newborn neurons of the same
age function together or independently.

Adult neurogenesis in disease

Impaired adult neurogenesis has been shown to play a critical
role in many diseases affecting the central nervous system.
Diseases that have been associated with altered neurogenesis
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include among others, affective disorders, age-related cogni-
tive decline, stroke, epilepsy, and neurodegenerative diseases
such as Alzheimer’s disease. Although abnormal neurogen-
esis may not be the major cause of these brain disorders, it is
believed that certain symptoms associated with these diseases
are dependent on the generation of newborn neurons.
Therefore targeting processes that regulate neurogenesis
may provide novel therapeutics for treating certain brain
disorders.

Neurodegenerative disorders

Neurodegenerative diseases are characterized by a progres-
sive neuronal cell death in various regions of the adult brain,
often induced by the aggregation of toxic proteins. Numerous
studies have shown abnormal levels of adult neurogenesis in
transgenic mouse models of neurodegenerative disease, as
well as behavioral phenotypes consistent with impaired
neurogenesis. In Parkinson’s disease models such as the α-
synuclein overexpressing mouse line, adult neurogenesis
levels are reduced in both the DG and SVZ (Winner et al.,
2004). Similarly, NSC proliferation is reduced in animal
models of Huntington’s disease expressing mutant Huntingtin
protein, which display impaired olfactory function (Lazic et
al., 2004). In Alzheimer’s disease models, the effects on
neurogenesis appear to be dependent on the different mouse
models as both increased and decreased levels of newborn
neurons have been observed. Interestingly, in the triple
mutant (APP, PSEN1 and tau) Alzheimer’s disease mouse
model, NSC proliferation was reduced and associated with
the presence of amyloid-β plaques in hippocampal neurons
(Rodríguez et al., 2008). Furthermore, Alzheimer’s patients
suffer from memory impairment and cognitive decline,
functions associated with neurogenesis in the hippocampus.
However, it is important to note that neurodegeneration is not
at all restricted to the neurogenic niches, but can be found
throughout the brain. Also, the relatively low number of
newborn neurons generated in the adult brain is insufficient to
replace the vast number of degenerating neurons. Thus,
studying adult neurogenesis in the context of neurodegenera-
tion rather offers insight into the mechanisms responsible for
the disease rather than an immediate therapeutic target.
Studying neural stem cell proliferation, maturation, survival
and integration in the context of disease, has improved our
understanding of the causes of neuronal degeneration.

Affective disorders

Shortly after the discovery of adult neurogenesis, studies
identified a correlation between the beneficial effects of
antidepressant treatment and increased levels of NSC
proliferation (Malberg et al., 2000). This finding generated
much enthusiasm in the field, as the cellular mechanisms of
antidepressant treatment remain largely unknown despite
their considerable use over the last decades for treating

millions of depressed individuals throughout the world.
Interestingly, chronic but not acute treatment with selective
serotonin reuptake inhibitors (SSRIs) induces neurogenesis,
consistent with the delayed beneficial effect of antidepres-
sants (Malberg et al., 2000). Furthermore, it was shown that
adult neurogenesis is required to mediate the behavioral
effects of antidepressants, as blocking neurogenesis by
irradiation of the hippocampus prevents these effects.
However, inhibiting neurogenesis is not sufficient to induce
a depressive or anxious behavior in mice, suggesting that low
levels of neurogenesis are not the cause of affective disorders
(Santarelli et al., 2003). It is thought that SSRI treatment
increases levels of the neurotrophic factor BDNF, which in
turn stimulates NSC proliferation. The subsequent increase in
new granule cells is believed to modulate the hypothalamic-
pituitary-adrenal (HPA) axis, leading to changes in mood.
Recent studies have shown that ablating neurogenesis, using
transgenic mice expressing thymidine kinase in NSCs, leads
to a depressive-like behavior in response to stress (Snyder et
al., 2011). These results suggest that new neurons may
function in buffering stress levels to modulate the effects of
stress on emotional behavior.

Stroke and epilepsy

Strokes are the second most common cause of death
worldwide. Interestingly, neurogenesis levels are stimulated
after an ischemic insult in both the SVZ and DG.
Furthermore, it has been shown in animal models that in
response to a stroke, SVZ progenitors are able to migrate to a
lesion site in the striatum and differentiate into neurons
(Arvidsson et al., 2002). This finding suggests that adult
NSCs contribute to brain repair in response to damage, even
outside the neurogenic niche.

Epileptic seizures are also potent inducers of neurogenesis
in the DG and SVZ (Parent et al., 1997). However, newborn
granule cells generated following seizures display aberrant
processes and although they stably integrate into the
hippocampal circuitry, it is believed that they disrupt its
proper function (Jessberger et al., 2007b; Pun et al., 2012).
Blocking seizure-induced neurogenesis with valproic acid
protects animals from subsequent cognitive decline asso-
ciated with epilepsy (Jessberger et al., 2007a).

The clinical relevance of targeting adult neurogenesis for
the treatment of neuro-psychiatric diseases remains to be
determined as modulating neurogenesis levels will likely not
be sufficient to cure patients. However, targeting NSCs that
reside in the human brain to harness their regenerative
capacity may be of benefit to patients. The aim of this
approach is to instruct NSCs to proliferate, migrate to
damaged brain areas and differentiate into the required
neuronal and glial cell types. Although still very far from
being clinically applicable, this approach is very appealing as
it avoids many of the limitations associated with transplanting
cells.
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Conclusion

The discovery of adult neurogenesis has greatly influenced
our understanding of the mammalian brain. Studying the
mechanisms responsible for neural stem cell activity in a
tissue made up of billions of post-mitotic cells has changed
our views on brain plasticity. We are beginning to understand
the functional roles of newborn neurons and their contribution
to memory. Future studies will be required to determine the
potential of adult neural stem cells for brain repair.
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