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Abstract We study online scheduling on m uniform ma-
chines, where m − 1 of them have a reference speed 1 and
the last one a speed s with 0 ≤ s ≤ 1. The competitive ratio
of the well-known List Scheduling (LS) algorithm is deter-
mined. For some values of s and m = 3, LS is proven to be
the best deterministic algorithm. We describe a randomized
heuristic for m machines. Finally, for the case m = 3, we
develop and analyze the competitive ratio of a randomized
algorithm which outperforms LS for any s.

Keywords Analysis of algorithms · Online algorithms ·
Competitive ratio · Randomized scheduling

1 Introduction

A uniform machine system consists of m, m ≥ 1 machines
(M1,M2, . . . ,Mm). A processing speed sj , sj ≥ 0 is associ-
ated with each machine. The machines are uniform in that a
machine Mj carries out sj units of processing in one unit
of time. An input to this problem consists of a sequence
σ = (σ1, . . . , σn) of n, n ≥ 1 jobs of different sizes (running
or processing times), each of which has to be assigned to a
machine. Sometimes, to simplify notation, we will identify
a job with its size. The job sequence σ is given online, i.e.,
the jobs arrive one by one. Neither the total number of jobs
that need to be scheduled nor the size of the jobs is previ-
ously known. The processing time of job σi becomes known
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only when σi−1 has already been scheduled. As soon as job
σi appears, it must be assigned to one of the machines. We
consider the nonpreemptive version of this problem (once a
job is started, it must be processed without interruption until
completion on the same machine). A schedule is an assign-
ment of some job sequence to the machines. The completion
time of a machine in some fixed schedule equals the total
processing time of the jobs that are assigned to this machine.

The makespan of an algorithm H for a job sequence σ is
denoted by H(σ ) and we denote by OPT(σ ) the makespan
of the optimal schedule in the offline case. The performance
of an online algorithm H on a job sequence σ is measured
by the approximation ratio

H(σ )

OPT(σ )
.

We call a deterministic online algorithm H c-competitive if,
for each job sequence σ ,

H(σ ) ≤ cOPT(σ ).

The quality of an online algorithm H is measured by its com-
petitive ratio

RH(m) = sup
σ∈X

(
H(σ )

OPT(σ )

)
,

where X is the set of all instances of the problem. List
Scheduling (LS), which always assigns the current job to
the machine that will complete it first, is a simple example
of a nonpreemptive online algorithm.

A randomized algorithm is one which somehow bases
its decision making on the outcome of random coin flips.
Randomization has proven to be a useful tool in the design
of algorithms, both online and offline. For randomized al-
gorithms, since H(σ ) is a random variable we use the ex-
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pected makespan E(H(σ )) in the definitions of approxima-
tion ratio, c-competitiveness, and competitive ratio (this cor-
responds to what is called the oblivious adversary). A ran-
dom schedule is a set of assignments of some job sequence
to the machines, where each assignment has a certain prob-
ability. Frequently, when working with randomized algo-
rithms we will employ the term makespan when we mean
the expected makespan.

In this paper, we consider the particular instance of the
above problem when sj = 1 for j = 1, . . . ,m − 1 and sm =
s ≤ 1. The machines running at speed 1 are said to be fast
and are denoted by F1, . . . ,Fm−1, while a machine having
a speed s is slow and is denoted by S. When s = 0 and ma-
chine S has a job of size t , we assume that the completion
time of this job on S is t

0 = ∞. Since our model depends
on the parameter s, for an online algorithm H, we denote by
RH(m, s) its competitive ratio. This model is also interest-
ing in the sense that for a fixed m ≥ 3, we analyze the system
with m and m − 1 identical machines together, by using one
machine whose speed can vary continuously from 0 to 1.

The paper is organized as follows. Section 2 gives a brief
history of the problem and describes the results. Section 3
analyzes the LS algorithm. In Sect. 4, a randomized algo-
rithm called (m, s,α)-Linear Invariant is presented, where
α is some parameter. We prove an upper bound for the
competitive ratio of Linear Invariant for m = 2, . . . ,7 and
some number α. Finally, we study in more detail the case
of m = 3 machines in Sect. 5. We provide a randomized al-
gorithm called TwoGroups that outperforms LS for any s

(0 ≤ s ≤ 1).

2 Previous works and results

In the classical model with m identical machines, the LS al-
gorithm is known to have a competitive ratio equal to 2− 1

m
.

Moreover, it is the best online deterministic algorithm for
m = 2 and m = 3. See, for example, (Hochbaum 1997). For
m = 2 identical machines, a randomized algorithm achiev-
ing a competitive ratio of 4

3 is presented by Bartal et al.
(1995) and is proven to be the best online randomized al-
gorithm in this model. A generalization of this algorithm
called Linear Invariant has been proposed by Seiden (2000)
for m ≥ 2 identical machines. For small values of m, it is
the best known randomized algorithm. Seiden (2000) proved
some upper bounds on the competitive ratio of Linear Invari-
ant for different values of m and some suitable parameter α,
see Table 1. Linear Invariant competes better than any de-
terministic algorithm for m = 3,4,5 and better than the best
known deterministic algorithms for m = 6,7.

The model with two uniform machines (i.e., one machine
with a reference speed 1 and the other one with a speed
s ≥ 1) has been extensively studied by Epstein et al. (2001).

Table 1 Upper bound (U.B.)
on the competitive ratio of
Linear Invariant for different
values of m and α

m α U.B.

2 2 4
3

3 1.806865 1.55665

4 2.040258 1.65888

5 2.123240 1.73376

6 2.113960 1.78295

7 2.103110 1.81681

In this case, the problem is symmetric to the case of one
machine with speed 1 and another of speed s ≤ 1. By as-
suming 0 ≤ s ≤ 1, they proved that LS is the best deter-
ministic algorithm in this model and its competitive ratio is
c(2, s) = min{1 + s, 2+s

1+s
}.

Our model with m − 1 (m ≥ 2) uniform machines each
with a processing speed of 1, and one machine with a speed
s, 1 ≤ s ≤ 2, has been studied by Cho and Sahni (1980).
They showed that

RLS(m, s) ≤ 1 + m − 1

m + s − 1
min{2, s} ≤ 3 − 4

m + 1
,

and RLS(m,2) = 3 − 4
m+1 . However, for fixed values of s

(1 < s < 2) the competitive ratio of LS is unknown.
Li and Shi (1998) proved that the competitive ratio of

LS cannot be improved for m = 2 and m = 3 by any
heuristic, and presented an algorithm which is ( 3m−1

m+1 − εm)-
competitive, where εm is a positive number close to 0. As-
ymptotically their algorithm did not improve the heuristic
LS since εm may tend to zero as m tends to infinity. For any
heuristic H, they proved that sups≥1 RH(m, s) ≥ 2. In the
master thesis Kokash (2004) presents an online algorithm
which is 2-competitive for an arbitrary s > 1 and m ≥ 3.
(See also Cheng et al. 2006.)

In this paper, we prove that in our model of m machines
with 0 ≤ s ≤ 1, RLS(m, s) is equal to

c(m, s) = min

{
2m − 3 + s

m − 1
,

2m − 2 + s

m − 1 + s

}
.

We observe that c(3, s) = 3+s
2 for 0 ≤ s ≤ smax(3) and

c(3, s) = 4+s
2+s

for smax(3) ≤ s ≤ 1, where smax(3) = −3+√
17

2 .

For 0 ≤ s ≤ s1 = √
2 − 1 and m = 3, we show that LS is the

best deterministic algorithm. See Fig. 1.
Furthermore, we describe a randomized heuristic called

(m, s,α)-Linear Invariant generalizing the Linear Invariant
algorithm. In our model of m machines with one of speed
s (0 ≤ s ≤ 1), the Linear Invariant algorithm used as if all
machines were identical is proved to be c

s
-competitive for

m, α and c (U.B.) as in Table 1 (see Fig. 1 with m = 3 and
c = 1.55665).

We also develop and analyze a randomized algorithm
called TwoGroups on m = 3 machines. Its competitive ra-
tio is proved to be 2

3 (s + 2), for 0 ≤ s ≤ s2, and 2(s+3)
2s+3 for
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Fig. 1 Competitive ratio of LS
and TwoGroups and an upper
bound of 1.55665

s
for the

competitive ratio of Linear
Invariant, where m = 3,
smax(3) = −3+√

17
2 ,

s1 = √
2 − 1, s2 = −1 +

√
10
2 ,

s3 = 0.96823, c0 = 3+√
17

4 ,

c1 = 2+√
10

3 , and α = 1.806865

s2 < s ≤ 1, where s2 = −1+
√

10
2 . For s = 0, the TwoGroups

algorithm is 4
3 -competitive, hence optimal by a theorem in

Bartal et al. (1995). Moreover, for all 0 ≤ s ≤ 1, it signifi-
cantly outperforms LS. We observe that for s3 = 0.96823 ≤
s ≤ 1, Linear Invariant (with α = 1.806865) competes better
than TwoGroups. See Fig. 1.

3 Analysis of LS

In this section, we treat in detail the greedy LS approxima-
tion algorithm. We also prove that LS is the best determin-
istic algorithm for case m = 3.

Let us give a formal definition of the LS algorithm. Sup-
pose that LS has already scheduled a sequence of jobs and
the total charges of jobs on machines F1, . . . ,Fm−1, S are
t1, . . . , tm−1, tm, respectively. Suppose that a new job of size
t arrives. If min1≤i≤m−1 ti + t < tm+t

s
, then LS assigns this

job on a fast machine with index i0 = argmin1≤i≤m−1 ti , oth-
erwise LS puts it on machine S.

To study the worst case of an algorithm, we can imag-
ine that some adversary tries to choose a job sequence for
which the makespan computed by the algorithm is as large
as possible. Testing the performance of an algorithm re-
quires an estimate of its approximation ratio for a given job
sequence. Since we do not know the exact value of the opti-
mal makespan for each job sequence, we have to use some
lower bounds on the optimal makespan. We show two of
them.

Let σ be a job sequence. For each job σi , we denote by
ti its processing time. An optimal makespan cannot exceed
the average machine load, that is,

∑
σi∈σ

ti

m − 1 + s
≤ OPT(σ ). (1)

Furthermore, the optimal makespan is at least the running
time of the largest job scheduled on one of the machines Fj

(1 ≤ j ≤ m − 1):

OPT(σ ) ≥ max
σi∈σ

ti . (2)

In the following proposition, we show that the competi-
tive ratio of LS is smaller than or equal to

c(m, s) = min

{
2m − 3 + s

m − 1
,

2m − 2 + s

m − 1 + s

}
,

by using the lower bounds (1) and (2) for the optimal
makespan. The proof is a direct generalization of case m = 2
studied in Epstein et al. (2001).

Proposition 1 For any 0 ≤ s ≤ 1, m ≥ 2, LS is c(m, s)-
competitive.

Proof Let σ be a job sequence. To simplify notation, when
a job σi is scheduled on machine Fj , we write σi ∈ Fj . De-
note by σk the last job to complete processing. We may as-
sume this is the last job of the sequence. If not, we can dis-
pense with the remaining jobs and not reduce the approxi-
mation ratio. First we show that the LS algorithm is 2m−2+s

m−1+s
-

competitive. We have

LS(σ ) ≤ tk +
∑

σi∈F1, i �=k

ti (3)

=
∑
σi∈σ

ti −
m−1∑
j=2

(
tk +

∑
σi∈Fj , i �=k

ti

)

−
(

tk +
∑

σi∈S,i �=k

ti

)
+ (m − 1)tk

≤ (m − 1 + s)OPT(σ ) − (m − 2)LS(σ )

− sLS(σ ) + (m − 1)tk. (4)
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Indeed, by definition of the algorithm, the inequality (3)
is true. The inequality (4) follows from the lower bound (1)
on the optimal makespan and the definition of the algorithm.
Thus, using (2) and (4) we obtain that

(m − 1 + s)LS(σ )

≤ (m − 1 + s)OPT(σ ) + (m − 1)OPT(σ );

LS(σ ) ≤ 2m − 2 + s

m − 1 + s
OPT(σ ).

Furthermore, LS is 2m−3+s
m−1 -competitive. To prove that,

we define an algorithm called LSF. This algorithm sched-
ules every job on machines F1, . . . ,Fm−1 like LS, ignoring
machine S. Let σk′ be the last job of σ scheduled by LSF to
complete processing. We may assume that σk′ is the last job
of the sequence. Using the lower bound (1) and the defini-
tion of LSF, we have

LSF(σ ) ≤ tk′ +
∑

σi∈F1, i �=k′
ti

=
∑
σi∈σ

ti −
m−1∑
j=2

(
tk′ +

∑
σi∈Fj , i �=k′

ti

)
+ (m − 2)tk′

≤ (m − 1 + s)OPT(σ ) − (m − 2)LSF(σ )

+ (m − 2)tk′ .

Again the explanations are the same as above. The preceding
inequality together with the lower bound (2) yields

LSF(σ ) ≤ 2m − 3 + s

m − 1
OPT(σ ).

So LSF is 2m−3+s
m−1 -competitive.

It remains to show that the competitive ratio of LS does
not exceed that of LSF. Let σF be the subsequence of
σ containing σk and the jobs assigned on the fast ma-
chines F1, . . . ,Fm−1 by LS. Using the definitions of LS and
LSF, we have that LS(σ ) ≤ LSF(σF ). Since OPT(σ ) ≥
OPT(σF ), it follows that LS(σ )

OPT(σ )
≤ LSF(σF )

OPT(σF )
, which com-

pletes the proof. �

We note that c(m, s) depends on the functions s 	→
2m−3+s

m−1 and s 	→ 2m−2+s
m−1+s

. Let

smax(m) = argmax
0≤s≤1

c(m, s).

A simple computation and function analysis yield that
c(m, s) = 2m−3+s

m−1 for 0 ≤ s ≤ smax(m), c(m, s) = 2m−2+s
m−1+s

for smax(m) ≤ s ≤ 1, and

smax(m) = −(2m − 3) + √
(2m − 3)2 + 4(m − 1)

2
. (5)

See Fig. 1 for an illustration with m = 3. The following
lemma can easily be proven.

Lemma 1 The function smax of the variable m is decreasing
over the domain [2,∞) and limm→∞ smax(m) = 1

2 .

Now let us see the proof of the lower bound for the
competitive ratio of LS. We shall require the following key
lemma for proving the next proposition.

Lemma 2 Let m ≥ 2 and 0 ≤ s ≤ smax(m). For any 0 ≤ u ≤
m − 1, the inequality u

s
≥ s − 1 + 2u holds.

Proof If s = 0, then the statement of the lemma is obvious.
Now suppose 0 < s ≤ smax(m). Since s > 0, the inequal-

ity u
s

≥ s − 1 + 2u is equivalent to s2 + s(2u − 1) − u ≤ 0.
Observe that the left-hand side of the preceding inequality is
a polynomial of degree 2 in s. One root of this polynomial is

provided by the function g(u) := −(2u−1)+
√

(2u−1)2+4u

2 . So,
for proving the lemma, it suffices to show that 0 < s ≤ g(u)

for any 0 ≤ u ≤ m−1. It can easily be checked that the func-
tion g is decreasing over the set of nonnegative reals. There-
fore, g(u) ≥ g(m − 1) = smax(m) for all 0 ≤ u ≤ m − 1.
Since smax(m) ≥ s, this implies the lemma. �

We state a first lower bound to the competitive ratio of
LS, in the model of m machines with 0 ≤ s ≤ smax(m). In
the proof of the next proposition, we define a job sequence
σ having a last job of size m−1. Our goal is to force the sit-
uation when, after the assignment of σ without the last job,
every fast machine has a load m − 2 + s, the slow machine
is empty, and the optimal schedule of the sequence σ has a
makespan m − 1.

Proposition 2 For any m ≥ 2 and 0 ≤ s ≤ smax(m), the
competitive ratio of LS is at least 2m−3+s

m−1 .

Proof In the following proof, we define a sequence σ con-
sisting of k + 3 lays of m − 1 jobs of the same size tj
(0 ≤ j ≤ k + 2) and one last large job of size tk+3, where k

is a nonnegative integer. We choose the numbers t0, . . . , tk+3

so that LS attributes one job of size tj to each fast machine
for all 0 ≤ j ≤ k + 2 and the last job of size tk+3 is put
on some fast machine, yielding a makespan of 2m−3+s−ε

m−1 ,
where ε is arbitrarily small. For simplicity, we may have
some jobs of zero length.

Let m ≥ 2 and 0 ≤ s ≤ smax(m). Let k be the high-
est nonnegative integer such that 1 ≤ m−1

2k ≤ 2 and δ =
(m−2)−∑k

i=1
m−1

2i . (In the case where m = 2, k = 0 and so

δ = 0.) Notice that δ = m−2− (m−1− m−1
2k ) = −1+ m−1

2k

and since 1 ≤ m−1
2k ≤ 2, we have 0 ≤ δ ≤ 1. We distinguish

the three following cases.
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(a) 0 ≤ s ≤ 1
2 . We define t0 = 0, t1 = min{s, δ}, and t2 =

max{s, δ}.
(b) s > 1

2 and δ ≤ 1
2 . We define t0 = 0, t1 = s − 1

2 , and t2 =
δ + 1

2 .
(c) s > 1

2 and δ > 1
2 . We define t0 = s − 1

2 , t1 = − 1
2 + m−1

2k+1 ,

and t2 = m−1
2k+1 .

Denote tj = m−1
2k+3−j for j = 3, . . . , k + 3 and j0 =

argminj {tj > 0}. For j = 0, . . . , k + 2 and i = 1, . . . ,

m − 1, σj(m−1)+i has a processing time equal to tj0 − ε,
if j = j0, for some 0 < ε < tj0 , and tj otherwise. The job
σ(k+3)(m−1)+1 is of length tk+3 = m − 1. We state the fol-
lowing claim.

Claim The following inequalities hold:

tj0 − ε <
tj0 − ε

s
, and

j∑
i=0

ti − ε <
tj

s
, for j = j0 + 1, . . . , k + 3.

Proof of the claim Since s < 1, it is clear that tj0 − ε <
tj0−ε

s
. For any j ≤ 2, we deal with cases (a), (b), and (c)

separately.

(a) If t1 �= 0, then t0 + t1 + t2 − ε < 2t2. Since s ≤ 1
2 , it

follows that t0 + t1 + t2 − ε < t2
s

.
(b) We have t1 + t2 = s + δ. By Lemma 1, s ≤ smax(2) =

−1+√
5

2 and so s(t0 + t1 + t2) ≤ sδ + s2 ≤ (−1+√
5

2 )δ +
(−1+√

5
2 )2 ≤ δ + 1

2 = t2. Hence, t0 + t1 + t2 − ε < t2
s

.
(c) Since 1

2 < δ ≤ 1 and δ = −1 + m−1
2k , it follows that 3

2 ≤
m−1

2k ≤ 2. This implies

3

4
≤ t2 ≤ 1 and

1

4
≤ t1 ≤ 1

2
. (6)

The inequality t0 + t1 < t1
s

is equivalent to t1 >
s(s− 1

2 )

1−s
,

by replacing t0 by s − 1
2 . Let f (s′) = s′(s′− 1

2 )

1−s′ for any

s′ ∈] 1
2 ; −1+√

5
2 ]. The function f of the variable s′ is in-

creasing over the set ] 1
2 ; −1+√

5
2 ] and 1

2 < s ≤ smax(2) =
−1+√

5
2 . Since f (−1+√

5
2 ) = 7−3

√
5

2(3−√
5)

< 1
4 and t1 ≥ 1

4

by (6), it follows that t1 > f (s) and so t0 + t1 − ε < t1
s

.
Secondly, since t0 + t1 = s − 1 + t2, the inequal-

ity t0 + t1 + t2 ≤ t2
s

is equivalent to t2 ≤ s(1−s)
2s−1 . Let

g(s′) = s′(1−s′)
2s′−1 for any s′ ∈ R. The function g of the

variable s′ is decreasing and as previously s ≤ −1+√
5

2 .

Since g(−1+√
5

2 ) = 1 and t2 ≤ 1 by (6), we deduce that
t2 ≤ g(s). Therefore, t0 + t1 + t2 − ε < t2

s
.

Fig. 2 The optimal schedule of the sequence σ = (s − ε, s − ε,1,1,2)

and the schedule of σ output from LS in case m = 3 and 0 < s ≤ 1
2

Now observe that t0 + t1 + t2 = s − 1 + m−1
2k in cases (a),

(b), and (c). So for any j ≥ 3, we have

j∑
i=0

ti − ε = s − 1 + m − 1

2k
− ε +

j∑
i=3

m − 1

2k+3−i

= s − 1 − ε + 2tj

<
tj

s
,

where the last inequality follows from Lemma 2 and the fact
that ε > 0. This terminates the proof of the claim. �

Using the claim, the following can easily be proven by
induction on j (0 ≤ j ≤ k + 2). LS with input (σ1, . . . ,

σ(j+1)(m−1)) attributes one job of size ti to each fast machine
for all 0 ≤ i ≤ j . Moreover, the last job of length tk+3 in σ is
put on some fast machine. Since t0 + t1 + t2 = s − 1 + m−1

2k ,

we have that
∑k+2

i=0 ti = m − 2 + s. From these arguments,
we deduce that LS(σ ) = 2m − 3 + s − ε.

Let us show that the optimal makespan of σ is equal
to m − 1. Let us consider case (a). We put m − 1 jobs of
size s on machine S and m − 1 jobs of size δ on fast ma-
chine F1. Then, dealing with the remaining jobs of lengths
m−1

2 , m−1
4 , . . . , m−1

2k in decreasing order, we assign jobs on
F2 until we obtain a load of m − 1; then we proceed in
the same way for F3, . . . ,Fm−1. Moreover, the total load
is

∑
σi = (m − 1)

∑k+2
i=0 ti + tk+3 = (m − 1)(m − 2 + s) +

m−1 = (m−1)2 + (m−1)s. So by scheduling any remain-
ing job (if any exists) on F1, we obtain a completion time of
m − 1 on F1. Thus, OPT(σ ) = m − 1.

In cases (b) and (c), m − 1 jobs of size t1 = s − 1
2 and

one of size m−1
2 are put on machine S. (Observe that in

case (b)), if m = 2 then t2 = m−1
2 , and if m = 3 then k = 1

and t3 = m−1
2 .) In case (b) or (c), since t2 ≤ 1 or t1 ≤ 1,

by (6) we assign m − 1 jobs of size t2 or t1, respectively, on
the same fast machine. The remaining jobs are scheduled as
in case (a). Thus, OPT(σ ) = m − 1.

We conclude that the approximation ratio of LS for the
sequence σ is 2m−3+s−ε

m−1 . By letting ε tend to 0, it results

that RLS(m, s) ≥ 2m−3+s
m−1 . �
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Fig. 3 The optimal schedule of
the job sequence
σ = ( s

2 ,1,1 − s
2 , β(s),1 + s

2 )

and the schedule of σ output
from LS in case m = 3 (and
k = 2m − 2)

Proposition 3 For any m ≥ 2 and smax(m) < s < 1, we
have RLS(m, s) ≥ 2m−2+s

m−1+s
.

Proof For m = 2, a proof of the inequality RLS(2, s) ≥ 2+s
1+s

appears in Epstein et al. (2001). We give here a more direct
proof. Let smax(2) < s < 1 and consider the sequence σ =
(1 − s − ε, s, s2 + s − 1,1 + s) where 0 < ε < 1 − s. Note
that s2 + s − 1 > 0 since s > smax(2). One can verify that
OPT(σ ) = 1 + s and the approximation ratio of LS for this
sequence is 2+s−ε

1+s
. Hence, by letting ε tend to 0, it follows

that RLS(2, s) ≥ 2+s
1+s

.
For m ≥ 3, we will define a sequence t = (t1, . . . , t2m−3)

such that t1 ≤ t2 ≤ · · · ≤ tm−2 ≤ tm−1 = 1, 1 ≥ tm ≥ tm+1 ≥
· · · ≥ t2m−3, and ti + tm−1+i = 1 for i = 1, . . . ,m − 2. Then
a job sequence σ containing the subsequence t is chosen in
such a way that LS schedules ti and tm−1+i on the same
machine for any i (1 ≤ i ≤ m − 2). Moreover, t1, . . . , tm−1

are scheduled on distinct fast machines. A last job of size
1 + s

m−1 in σ yields a makespan of 2 + s
m−1 for σ , while

OPT(σ ) is proven to be equal to 1 + s
m−1 . See Fig. 3 for an

example with m = 3.
Let m ≥ 3 and smax(m) < s < 1. We define uj = j s

m−1

and vj = 1 − uj for j = 1, . . . ,m − 2. Let j0 = �m−1
2s

�.
Since s > 1

2 , we observe that j0 ≤ m − 2. Let us denote by
(t1, . . . , tm−2) the sequence obtained by an increasing order-
ing of the numbers u1, . . . , uj0, vj0+1, . . . , vm−2. Let

tm−1 = 1 and

tm−1+i =
{

vj , if ti = uj for some j,

uj , if ti = vj for some j,

for i = 1, . . . ,m − 2. We have that

ti + tm−1+i = 1 for i = 1, . . . ,m − 2. (7)

Let t = (t1, . . . , t2m−3), β(s) = s2

m−1 + 2m−3
m−1 s−1 (β(s) >

0 since s > smax(m)) and consider the LS procedure with in-
put t . Clearly, LS assigns each of the jobs t1, . . . , tm−1 to fast
machines (and no two jobs on the same machine) since s < 1
and t1 ≤ t2 ≤ · · · ≤ tm−1. It may occur that LS schedules a
job ti (i ≥ m) on the slow machine. If this happens, we de-
note by k the smallest index of a job scheduled on S and let
σ = (t1, . . . , tk−1, β(s), tk, . . . , t2m−3,1 + s

m−1 ); otherwise,

let k = 2m − 2 and σ = (t, β(s),1 + s
m−1 ). By construction

σk = β(s) (and k ≥ m).

Claim 1 LS with input (t1, . . . , tk−1) produces a schedule
with k − m + 1 fast machines of load 1 and fast machines of
load tk−m+1, tk−m+2, . . . , tm−2 (when k < 2m − 2), respec-
tively.

Proof of Claim 1 Let us prove by induction on l that for l =
m, . . . , k LS with input (t1, . . . , tl−1) produces a schedule
with l − m + 1 fast machines of load 1 and fast machines of
load tl−m+1, tl−m+2, . . . , tm−2, respectively.

If l = m, then the proof has been given previously. Sup-
pose that for some m ≤ l < k, LS with input (t1, . . . , tl−1)

produces a schedule with l − m + 1 fast machines of load 1
and fast machines of load tl−m+1, tl−m+2, . . . , tm−2, respec-
tively. Since tl−m+1 ≤ tl−m+2 ≤ · · · ≤ tm−2 ≤ 1, from the
definition of k and LS it follows that tl is assigned on a fast
machine of load tl−m+1. Using (7), we deduce that the claim
is true for l + 1. This concludes the proof of Claim 1. �

Suppose that k < 2m − 2. By Claim 1, in the schedule
obtained by LS with input (t1, . . . , tk−1), the smallest load
of a machine is equal to tk−(m−1); and since tk is assigned
on machine S, by the definition of LS, we have

tk−(m−1) + tk ≥ tk

s
. (8)

Now, let us consider the LS procedure with input σ .
Since (σ1, . . . , σk−1) = (t1, . . . , tk−1), Claim 1 holds for the
sequence (σ1, . . . , σk−1) (instead of (t1, . . . , tk−1)).

Claim 2 The job σk is scheduled on machine S.

Proof of Claim 2 If k = 2m − 2, then by Claim 1 LS with
input (σ1, . . . , σk−1) outputs a schedule all of whose fast
machines have a load 1. Since β(s) + 1 >

β(s)
s

, the job
σk = β(s) is assigned on S. Now suppose k < 2m − 2. By
Claim 1, the current smallest load is equal to tk−(m−1). So,
for showing that σk is put on S by LS, it suffices to prove
the inequality

tk−(m−1) + σk >
σk

s
. (9)
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Using (7) and (8), we have that tk
s

≤ 1. Thus, tk−(m−1) +
σk = 1 − tk + β(s) ≥ 1 − s + β(s) (where the equality fol-
lows from (7)). So, for proving (9), it suffices to show that
1− s +β(s) >

β(s)
s

, or equivalently s3 + (m−3)s2 − (2m−
3)s + (m − 1) > 0 by using the expression of β(s) in the
function of s. Let h(s′) = s′3 + s′2(m − 3) − (2m − 3)s′ +
(m − 1) for any s′ ∈]0;1[. One can verify that the slope
of the function h on its domain ]0;1[ is negative and so
h(s) > h(1) = 0 since 0 < s < 1. This proves inequality (9)
and terminates the proof of Claim 2. �

In what follows, by assuming k < 2m − 2, we show that
neither of the jobs σk+1, . . . , σ2m−2 is scheduled on machine
S whose current load is equal to β(s). Notice that each of the
jobs σk+1, . . . , σ2m−2 has a length uj , for some j ≥ j0 + 1,
or vj for some j ≤ j0. Since uj0+1 ≤ uj0+2 ≤ · · · ≤ um−2

and v1 ≥ v2 ≥ · · · ≥ vj0 , it results that

min{σk+1, . . . , σ2m−2} ≥ min{vj0, uj0+1}. (10)

Claim 3 We have that
β(s)+vj0

s
> 1 and

β(s)+uj0+1

s
> 1.

Proof of Claim 3 Using the expressions β(s) = s2

m−1 +
2m−3
m−1 s −1 and vj0 = 1−�m−1

2s
� s

m−1 , the inequality
β(s)+vj0

s

> 1 is equivalent to s + m − 2 − �m−1
2s

� > 0. Since s > 1
2 ,

m−1
2s

< m − 1 and so �m−1
2s

� ≤ m − 2, which implies that

s + m − 2 − �m−1
2s

� > 0. Therefore,
β(s)+vj0

s
> 1.

Similarly, since uj0+1 = �m−1
2s

� s
m−1 + s

m−1 , we have that

β(s) + uj0+1

s
> 1 ⇐⇒

s2 +
(

(m − 1) +
⌊

m − 1

2s

⌋)
s − (m − 1) > 0. (11)

Let p be an integer such that �m−1
2s

� = m − p. Clearly,
p ≥ 2 since s > 1

2 . If p = 2, then by (11) and since s >

smax(m) it follows that
β(s)+uj0+1

s
> 1.

Now assume p ≥ 3. We have m−1
2s

< m − p + 1. Hence,
s > m−1

2(m−p+1)
. The preceding inequality together with the

expressions �m−1
2s

� = m − p and p ≥ 3 imply that

(
(m − 1) +

⌊
m − 1

2s

⌋)
s − (m − 1)

= (2m − p − 1)s − (m − 1)

≥ (2m − p − 1)s + (3 − p)s − (m − 1)

> 0.

Using (11), it follows that
β(s)+uj0+1

s
> 1. This concludes

the proof of Claim 3. �

Using (10) and Claim 3, in the same way as for proving
Claim 1, it can be proven that LS with input (σ1, . . . , σ2m−2)

produces a schedule with m − 1 fast machines of load 1 and
a slow machine of load β(s). The last job of length 1 + s

m−1
can be scheduled on any machine which gives a makespan
equal to 2 + s

m−1 .
Let us describe an optimal schedule as follows. Machine

Fj receives the jobs vj and uj+1 for j = 1, . . . ,m − 3 and
Fm−2 has the jobs σm−1 = 1 and u1. Then Fm−1 obtains the
job σ2m−1 = 1 + s

m−1 and the load of machine S is equal to

σk + vm−2 = s2

m−1 + s (since σk = β(s)). Thus, the optimal
makespan is 1 + s

m−1 and we obtain an approximation ratio

of 2m−2+s
m−1+s

. �

Theorem 1 The competitive ratio of LS is c(m, s) for all
0 ≤ s ≤ 1 and m ≥ 2.

Proof The proof follows from Propositions 1, 2, and 3. �

We conclude this section by proving that in the model of
3 machines, the competitive ratio of any deterministic algo-
rithm is at least 3

2 + s
2 = c(3, s) for all 0 ≤ s ≤ s1 = √

2 − 1.
Using Theorem 1, this implies that LS is the best determin-
istic algorithm for all 0 ≤ s ≤ s1 and m = 3 machines. (See
Fig. 1.)

Proposition 4 For all 0 ≤ s ≤ s1 and m = 3, the competitive
ratio of any deterministic algorithm is at least 3

2 + s
2 .

Proof Let 0 ≤ s ≤ s1 and σ = (σ1, . . . , σ5) be a sequence of
five jobs whose processing times are s for σ1 and σ2, 1 for
σ3 and σ4, 2 for σ5. Let H be a deterministic algorithm.

If H schedules σ1 on S, we obtain an approximation ratio
of 1

s
≥ 3

2 + s
2 (since s ≤ s1 = √

2 − 1 and OPT((σ1)) = s).
So we may suppose that σ1 is scheduled on F1. If H as-
signs the second job σ2 to S, again the approximation ra-
tio is 1

s
, while if it is scheduled on F1, the approximation

ratio equals 2 ≥ 3
2 + s

2 since s ≤ 1. So we may assume
that σ2 is on F2. If the third job σ3 is scheduled on S, the
approximation ratio is again 1

s
. Hence, we may suppose

that it is scheduled on F1. If σ4 is assigned to S, we ob-
tain an approximation ratio of 1

s(s+1)
≥ 3

2 + s
2 (since s ≤ s1

and OPT((σ1, . . . , σ4)) = s + 1). And if σ4 is scheduled
on F1, we have an approximation ratio of 2+s

1+s
≥ 3

2 + s
2 for

s ≤ √
2 − 1 = s1. So we may assume that σ4 is on F2. Fi-

nally, if the last job is scheduled on S, the approximation
ratio is 1

s
, so we may suppose that σ5 is scheduled either

on F1 or F2. Then the approximation ratio is 3
2 + s

2 (since
OPT(σ ) = 2). See Fig. 2 (with ε = 0). Thus, we have shown
that for any deterministic algorithm, the competitive ratio is
at least 3

2 + s
2 for s ≤ s1. �
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4 Randomized scheduling on m machines

We describe a direct generalization of Seiden’s Linear In-
variant algorithm (Seiden 2000) that we call (m, s,α)-
Linear Invariant for our model of m machines with one of
speed s, where α is a parameter. For s = 1, (m, s,α)-Linear
Invariant is Seiden’s Linear Invariant algorithm. We begin
by defining notation and then explain how (m, s,α)-Linear
Invariant schedules each job.

Given a schedule, we call the machines with the greatest
and the smallest completion time the tall and short machine,
respectively. If a new job σi arrives, we define the σi -second
shortest and σi -short machine as the machines whose com-
pletion time of the current load and job σi are the second
shortest and shortest one, respectively. The (m, s,α)-Linear
Invariant algorithm places each new job σi on the σi -short
or σi -second shortest machine.

After k jobs are scheduled, there are K = 2k sched-
ules Π1, . . . ,ΠK that the algorithm might have chosen. The
algorithm keeps track of each of these schedules, and of
the probability with which it has chosen each schedule. In
schedule Πj , we let xj and zj be the completion time of the
tall and short machine, respectively. We let pj be the proba-
bility of Πj (we describe how the pj ’s are chosen later). We
define

x =
∑
j

pjxj , z =
∑
j

pj zj .

The expected makespan is x.
The (m, s,α)-Linear Invariant algorithm schedules each

new job σi on the σi -short or σi -second shortest machines,
maintaining the invariant

x ≥ αz (12)

where α is a real constant greater than 1. The intuition be-
hind this invariant is that the algorithm should keep the load
on the short machine low in order to “be prepared” for the
possibility of a large job arriving.

This is accomplished as follows. When a new job σi ar-
rives, let zshort and xshort be the new values of z and x,
respectively, if σi is scheduled on the σi -short machine in
every schedule. Let z2nd and x2nd be the new values of z and
x if σi is scheduled on the σi -second shortest machine in
every schedule. If xshort ≥ αzshort, then σi is scheduled on
the σi -short machine in every schedule. Otherwise, note that
z2nd = z and that x2nd ≥ x. Therefore, x2nd ≥ αz2nd. Let

p = x2nd − αz2nd

x2nd − αz2nd − (xshort − αzshort)
.

It is not hard to see that p ∈ [0,1]. We schedule σi on the
σi -short machine with probability p, and on the σi -second
shortest machine with probability 1 − p. Thus, the invariant
is maintained at each step.

The number of schedules which are remembered can
be reduced to k, using a technique due to Bartal et al.
(1995). This yields an algorithm which schedules all jobs
in O(k2 logm) time. Seiden has shown that the number of
schedules may be reduced to O(1) at the expense of an in-
creased competitive ratio (Borodin et al. 1995; Sgall 1994).
This yields a total running time of O(k logm).

Note that (m, s,α)-Linear Invariant with m = 2, s = 1,
and α = 2 is the 2-machine algorithm of Bartal et al. (1995).

In our model of m uniform machines with one of speed s,
we may use the Linear Invariant algorithm as if the slow
machine were identical to the fast machines. We deduce the
following upper bound on the competitive ratio of this algo-
rithm.

Theorem 2 The Linear Invariant algorithm is c
s
-competitive

with α and c (U.B.) in Table 1, for m = 2, . . . ,7.

Proof Let 2 ≤ m ≤ 7, α and c (U.B.) be the numbers in
some row of Table 1. In the model of m identical ma-
chines, the following lower bounds on the optimal (offline)
makespan are well known:

• The total amount of processing divided by m.
• The size of any job.
• Twice the size of the smallest job in a set of m + 1 jobs.

For a sequence σ , let us denote by lower_bound(σ ) the
maximum number among the three previous lower bounds.
Seiden (2000) has proven that

LINEAR INVARIANT(σ ) ≤ c · lower_bound(σ ).

Now let us consider our model of m uniform machines
with one of speed s. Let σ be a job sequence. Let us sched-
ule σ as if the slow machine were identical to machines
F1, . . . ,Fm−1, by using Linear Invariant. Let x be the ob-
tained makespan. From the previous inequality, it follows
that

x ≤ c

s
lower_bound(σ ) ≤ c

s
OPT(σ ). �

5 Randomized scheduling on 3 machines

In this section, we will concentrate on the case m = 3
machines for our model. An analytical proof of an upper
bound on the competitive ratio of (3, s, α)-Linear Invariant,
for some fixed α and s (0 ≤ s ≤ 1), seems to be difficult.
So, we develop and analyze a randomized algorithm called
TwoGroups which is proven to have a competitive ratio of

c2 =
⎧⎨
⎩

2
3 (s + 2), if 0 ≤ s ≤ −1 +

√
10
2 ,

2(s+3)
2s+3 , if −1 +

√
10
2 < s ≤ 1.
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For values of s close to 1, we may apply Linear Invariant
with α = 1.806865 (see Table 1), as if the slow machine
were identical to the others.

Let us describe the TwoGroups algorithm. The three ma-
chines are divided into two groups. The first one contains
machine S and the second one is composed of machines F1

and F2. Suppose that a job sequence (σ1, . . . , σk−1) has been
assigned and a new job σk , with processing time tk , arrives.
TwoGroups computes the total load of jobs scheduled on S,
say c, and the total load of jobs assigned to {F1,F2} divided

by 2, say d . Let α(s) = 4s2+8s−6
s2+6s

.

Procedure TwoGroups
Input: A random schedule of (σ1, . . . , σk−1) and a job σk .
Output: A random schedule of (σ1, . . . , σk).

For s > −1 +
√

10
2 , if c

s
≤ α(s)d , then the job σk is sched-

uled on machine S.
Otherwise, σk is always scheduled on group {F1,F2}, by
using (2,1,2)-Linear Invariant.

For s > −1 +
√

10
2 , the TwoGroups algorithm maintains

machine S with a large load. This enables us to schedule
a big job on {F1,F2} without increasing the makespan too
much. We denote M the makespan of TwoGroups and OPT

the optimal makespan (in the offline case) for the job se-
quence σ := (σ1, . . . , σk). Let d ′ be one-half the total load
of jobs assigned to group {F1,F2} and c′ the total load of S

after scheduling σ . We will use the same lower bounds on
the optimal makespan as in the deterministic case.

We recall here the definitions and basic facts about
(2,1,2)-Linear Invariant analyzed in Bartal et al. (1995).
We distinguish the machines of group {F1,F2} according to
their load. Indeed, we denote the tall and short machines
of group {F1,F2} to be the machines with the greatest and
smallest loads to date, respectively. We denote by y and z

the expected load of the tall and the short machine, respec-
tively, in group {F1,F2}. Then the algorithm from Bartal et
al. (1995) maintains the following invariant:

y ≥ 2z. (13)

We say that the invariant is tight if y = 2z. For an exam-
ple of the scheduling of a job sequence by (2,1,2)-Linear
Invariant, see Fig. 4.

A job σi is said to be big if it is scheduled on {F1,F2}
and if it is at least as large as the sum of all previous jobs as-
signed to {F1,F2}. In Bartal et al. (1995), it has been shown
that we can divide the times where the invariant is not tight
into phases. A job starts a new phase if it is big, and after the
job is added, the invariant is not tight. The phase consists
of that job and all successive jobs up to but not including
the first job which starts a new phase or makes the invari-
ant tight. Moreover, during a phase each job is scheduled

Fig. 4 Job sequence σ = (1,1, s) scheduled by (2,1,2)-Linear In-
variant on {F1,F2}, where p is the probability of the schedule with σ2
on F2

deterministically on the smallest machine in each schedule.
Finally, it has been shown that after the first job in a phase is
scheduled, the expected makespan does not increase during
the phase and is at most 4

3 times the size of the latest big
job.

After k jobs have been scheduled on group {F1,F2},
we may assume that there are k current schedules denoted
by Π1, . . . ,Πk . In a schedule Πi , we let yi and zi be
the heights of the tall and short machines, respectively, of
group {F1,F2} and let pi be the probability of Πi . Let

y = ∑k
i=1 piyi and z = ∑k

i=1 pizi . If the invariant is tight
after the assignment of σk , then since y = 2z and y+z = 2d ′
we have

y = 4

3
d ′. (14)

Before studying the competitiveness, we state a very sim-
ple lemma.

Lemma 3 Let f : R → R be a convex function, a, b ∈ R,
a ≤ yi ≤ b and 0 ≤ pi,p ≤ 1 for i = 1, . . . , k (k ∈ N) such
that

∑k
i=1 pi = 1 and pa + (1 − p)b = ∑k

i=1 piyi . Then

k∑
i=1

pif (yi) ≤ pf (a) + (1 − p)f (b).

Proof For each i, let 0 ≤ qi ≤ 1 such that yi = qia +
(1 − qi)b.

Thus, pa + (1 − p)b = ∑k
i=1 piqia + ∑k

i=1 pi(1 −
qi)b = ∑k

i=1 piqia + (1 − ∑k
i=1 piqi)b. Since any number

between a and b can be written in a unique way as λa +
(1 − λ)b where 0 ≤ λ ≤ 1, we deduce that p = ∑k

i=1 piqi

and 1 − p = ∑k
i=1 pi(1 − qi). By using the convexity of f,

it follows that

k∑
i=1

pif (yi) =
k∑

i=1

pif
(
qia + (1 − qi)b

)
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≤
k∑

i=1

pi

(
qif (a) + (1 − qi)f (b)

)

= pf (a) + (1 − p)f (b). �

For the analysis of the competitiveness, we consider a se-
quence σ of k jobs, c, c′, d , d ′, y, and z as defined above.

First we study the case 0 ≤ s ≤ −1 +
√

10
2 . Observe that

by the definition of the algorithm we do not have to con-
sider machine S. Thus, we only focus on what happens in
group {F1,F2}. Using some ideas of Bartal et al. (1995), we
prove the upper and lower bounds on the competitive ratio
of TwoGroups.

Proposition 5 For 0 ≤ s ≤ −1 +
√

10
2 , the approximation

ratio of TwoGroups for σ is upper bounded by 2
3 (s + 2).

Proof Assume that the sequence σ has been scheduled.
Suppose first that the invariant is not tight. Consider the lat-
est big job, denoted by J . Let ȳ and z̄ be the expected load
of the tall and short machine respectively just before the as-
signment of J . We have the invariant ȳ ≥ 2z̄ and J ≥ ȳ + z̄.
So J ≥ 3z̄. By the definition of (2,1,2)-Linear Invariant,
J is deterministically assigned to the short machine and
the makespan does not change during the phase starting
by J . Using (2) and the inequality z̄

J
≤ 1

3 , we deduce that
M

OPT
= J+z̄

OPT
≤ J+z̄

J
≤ 4

3 ≤ 2
3 (s + 2).

Now suppose that the invariant is tight. We have M = y.
By (14) M = 4

3d ′. From (1), it follows that

M

OPT
≤

4
3d ′
2d ′
s+2

= 2

3
(s + 2).

�

Proposition 6 For 0 ≤ s ≤ −1 +
√

10
2 , the competitive ratio

of TwoGroups is at least 2
3 (s + 2).

Proof To show the proposition we consider the following
job sequence of three jobs σ1, σ2, and σ3 whose processing
times are 1 for σ1 and σ2, s for σ3. See Fig. 4.

The TwoGroups algorithm schedules σ1 (w.l.o.g.) on F1.
If the second job is scheduled on the small machine, i.e.,
F2, then the invariant (13) is not maintained. So in order to
obtain a tight invariant we have to tentatively move the job
σ2 to the tall machine F1. Let p be the probability of the
schedule with σ2 on the less loaded machine. We determine
that p = 2

3 . If the third job is deterministically scheduled
on the less loaded machine in both schedules, then the in-
variant (13) remains. So the job σ3 is permanently assigned
to the less loaded machine in each schedule. We compute
an expected makespan of 2

3 (1 + s) + 1
3 2 = 2

3 (s + 2). Since
OPT((σ1, σ2, σ3)) = 1, we obtain an approximation ratio of
2
3 (s + 2). �

Theorem 3 For 0 ≤ s ≤ −1 +
√

10
2 , the competitive ratio of

TwoGroups is equal to 2
3 (s + 2).

Proof The proof is a direct consequence of Propositions 5
and 6. �

Now we consider the case −1 +
√

10
2 < s ≤ 1. We distin-

guish three cases according to the values that c′
s

can take.

Case 1: c′
s

≤ d ′

Case 2: d ′ ≤ c′
s

≤ 2d ′

Case 3: 2d ′ ≤ c′
s

.

For each case, we compute an upper bound on the ap-
proximation ratio. We will choose α(s) so that the upper
bounds in cases 1 and 3 fit. In case 2, we will obtain an up-
per bound on the approximation ratio smaller than those of
cases 1 and 3.

Lemma 4 In case 1, the approximation ratio of TwoGroups
is upper bounded by 2

3
α(s)s+2s+4

α(s)s+2 .

Proof Since c′
s

≤ d ′, the makespan is given by a machine of
group {F1,F2} in any schedule Πi . If the invariant in group
{F1,F2} is not tight, we can show as in Proposition 5 that
the expected makespan M is upper bounded by 4

3 OPT.
Now suppose that the invariant is tight. Using (14), we

deduce that M = 4
3d ′. W.l.o.g., we may suppose that the job

σk is on group {F1,F2}. Indeed, if σk is assigned to ma-
chine S, then since the makespan does not increase and the
optimum does not decrease, the inequality TWOGROUPS(σ )

OPT(σ )
≤

TWOGROUPS((σ1,...,σk−1))

OPT((σ1,...,σk−1))
is true. Thus, 2d ′ = 2d + tk . We have

M

OPT
≤

4
3d ′

max{tk, 2d+tk+c
s+2 } (15)

≤ 2

3

2d + tk

max{tk, 2d+tk+α(s)sd
s+2 } . (16)

The inequality (15) uses lower bounds (1) and (2) for the
optimum and the expression M = 4

3d ′, while inequality (16)
follows from the equality 2d ′ = 2d + tk and the definition
of the algorithm (by assumption job σk is assigned to group
{F1,F2} and so c

s
> α(s)d).

If tk ≤ 2d+tk+α(s)sd
s+2 , then d

2d+tk
≥ s+1

α(s)s+2s+4 ; using (16)
we deduce

M

OPT
≤ 2

3

2d + tk
2d+tk+α(s)sd

s+2

= 2

3
(s + 2)

1

1 + α(s)sd
2d+tk
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≤ 2

3
(s + 2)

1

1 + α(s)s(s+1)
α(s)s+2s+4

= 2

3

α(s)s + 2s + 4

α(s)s + 2
.

Otherwise, tk ≥ 2d+tk+α(s)sd
s+2 . Then d

tk
≤ s+1

α(s)s+2 and using

(16) we also obtain the inequality M
OPT

≤ 2
3

α(s)s+2s+4
α(s)s+2 . �

Lemma 5 In case 2, s+2
s+1 is an upper bound for the approx-

imation ratio of TwoGroups.

Proof Suppose first that the invariant is tight. Using (14),
we have

M =
k∑

i=1

pi max

{
c′

s
, yi

}

=
k∑

i=1

pi

(
yi + c′

s
+ |yi − c′

s
|

2

)

= 2

3
d ′ + c′

2s
+ 1

2

k∑
i=1

pi

∣∣∣∣yi − c′

s

∣∣∣∣. (17)

The first equality in (17) gives the expected makespan of
the algorithm after k jobs have been assigned. This value
depends on different schedules for which the makespan can
be determined either by machine S or a machine of group
{F1,F2}.

Let f (u) = |u − c′
s
|. Clearly f is a convex function and

d ′ ≤ yi ≤ 2d ′ for i = 1, . . . , k. Since the invariant is tight,
we have

∑k
i=1 piyi = 4

3d ′ and 4
3d ′ = 2

3d ′ + 1
3 (2d ′). So we

can apply Lemma 3 with a = d ′, b = 2d ′, and p = 2
3 . We

obtain

k∑
i=1

pif (yi) ≤ 2

3
f (d ′) + 1

3
f (2d ′). (18)

Thus, by (17) and (18), we deduce

M ≤ 2

3
d ′ + c′

2s
+ 1

2

[
2

3

(
c′

s
− d ′

)
+ 1

3

(
2d ′ − c′

s

)]
(19)

= 2

3

(
c′

s
+ d ′

)
. (20)

Now suppose that the invariant is not tight. Denote by J

the size of the last job which is big.
If c′

s
≤ J , then the makespan is determined by what hap-

pens in group {F1,F2}, and as in the proof of Proposition 5,
one can prove that it is upper bounded by 4

3 OPT.
Otherwise, let β , γ and 0 ≤ p ≤ 1 be such that βJ is the

total load of group {F1,F2}, ∑k
i=1 piyi = γ J and pJ +(1−

p)βJ = γ J . Note that βJ
2 = d ′. Since c′

s
> J and βJ ≥ c′

s

(by assumption of case 2), it follows that β > 1. We have

p = β − γ

β − 1
. (21)

Before the assignment of J , the total load of group {F1,F2}
was (β − 1)J . From the invariant (13), the expected load of
the smallest machine was at most (β−1)

3 J . The fact that J is
scheduled deterministically on the smallest machine implies
that γ J ≤ β−1

3 J + J = β+2
3 J . Furthermore, γ is clearly

greater than 1. So

1 ≤ γ ≤ β + 2

3
. (22)

Furthermore,

J ≤ yi ≤ βJ ∀i and
k∑

i=1

piyi = γ J.

In the same way as we obtained (17), we compute

M = γ J

2
+ c′

2s
+ 1

2

k∑
i=1

pi

∣∣∣∣yi − c′

s

∣∣∣∣. (23)

Applying Lemma 3 as above, with a = J and b = βJ ,
from (23) it follows that

M ≤ γ

2
J + c′

2s
+ 1

2

[
p

(
c′

s
− J

)
+ (1 − p)

(
βJ − c′

s

)]
.

If we replace p by its value (21) on the right-hand side of
this inequality, we obtain a linear expression in γ denoted
h(γ ):

h(γ ) = 1

β − 1

[
c′

s
(β − γ ) + β(γ − 1)J

]
.

In particular,

h(1) = c′

s
and h

(
β + 2

3

)
= 2

3

[
c′

s
+ βJ

2

]
≥ h(1),

where the inequality comes from the hypothesis βJ ≥ c′
s

.
Since h is linear in γ with a positive slope, using (22) we
deduce

M ≤ h(γ ) ≤ h

(
β + 2

3

)

= 2

3

[
c′

s
+ βJ

2

]
= 2

3

(
c′

s
+ d ′

)
. (24)

Whenever the invariant is tight or not, using the lower
bound (1) on the optimal makespan it follows from (20) or
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(24) that

M

OPT
≤ 2

3

(s + 2)

s

c′ + sd ′

c′ + 2d ′

= g(c′),

where g(x) = 2
3

(s+2)
s

x+sd ′
x+2d ′ . We may verify that g is an in-

creasing function, whenever 0 ≤ s < 2. Since c′
s

≤ 2d ′, we
deduce that M

OPT
≤ g(c′) ≤ g(2d ′s) = s+2

s+1 . �

Lemma 6 In case 3, the approximation ratio of TwoGroups

is upper bounded by α(s)s2+2α(s)s+2
s(α(s)s+2)

.

Proof Since 2d ′ ≤ c′
s

, w.l.o.g. we may suppose that the
job σk has been assigned to machine S. So we have c′ =
c + tk and c ≤ α(s)sd by definition of the algorithm. We
define the function ḡ(x) := s+2

s
x+tk

x+2d+tk
. Since the func-

tion ḡ is increasing in the interval [0;∞), it follows that
ḡ(c) ≤ ḡ(α(s)sd). The preceding inequality together with
c ≤ α(s)sd imply that

M

OPT
=

c+tk
s

OPT
≤

c+tk
s

max{tk, c+2d+tk
s+2 }

≤ 1

s

α(s)sd + tk

max{tk, α(s)sd+2d+tk
s+2 } , (25)

where the first inequality comes from lower bounds (1) and
(2) for the optimum. Studying the cases where tk is greater
or smaller than α(s)sd+2d+tk

s+2 , in the same way as for proving
Lemma 4, we deduce from (25) that

M

OPT
≤ α(s)s2 + 2α(s)s + 2

s(α(s)s + 2)
,

by using the implications tk ≤ α(s)sd+2d+tk
s+2 ⇒ d

α(s)sd+tk
≥

s+1
(s+2)α(s)s+2 and tk ≥ α(s)sd+2d+tk

s+2 ⇒ d
tk

≤ s+1
α(s)s+2 . �

Proposition 7 For −1 +
√

10
2 < s ≤ 1, the competitive ratio

of TwoGroups is at least 2 s+3
2s+3 .

Proof In this proof, c and d will denote the total load of
S and one-half the total load of {F1,F2}, respectively, just
before the assignment of some job. To show the theorem
we consider the job sequence σ = (σ1, . . . , σ4) of four jobs
whose processing times are 4s2 + 8s − 6 for σ1, 2(2s + 3)

for σ2, 2(3 − s) for σ3, and finally 2(2s + 3) for σ4. Let us

observe that for s > −1 +
√

10
2 , α(s) = 4s2+8s−6

s2+6s
> 0.

At the beginning, we have c = d = 0. The first job σ1

is scheduled on machine S (since the condition c
s

≤ α(s)d

is satisfied). Then c = 4s2 + 8s − 6 and d = 0. The sec-
ond job is scheduled on group {F1,F2} (since 4s2+8s−6

s
>

Fig. 5 The optimal schedule for the job sequence
(4s2 + 8s − 6,2(2s + 3),2(3 − s),2(2s + 3))

α(s)d = 0). So d = 2s + 3. The third job is also as-

signed to group {F1,F2} (since 4s2+8s−6
s

> α(s)d ⇔ s +
6 > d = 2s + 3). Then d = s + 6. Finally σ4 is sched-

uled on machine S (since 4s2+8s−6
s

= α(s)d ⇔ s + 6 = d).

Then c
s

= 4s2+8s−6+2(2s+3)
s

= 4s + 12 > 2d = 2s + 12.
Thus, the makespan is determined by machine S. Since
OPT(σ ) = 4s +6, the approximation ratio is 4s+12

4s+6 = 2 s+3
2s+3 .

See Fig. 5. �

Theorem 4 For −1 +
√

10
2 < s ≤ 1, the competitive ratio of

TwoGroups is equal to 2(s+3)
2s+3 .

Proof The lower bound on the competitive ratio of Two-
Groups follows from Proposition 7.

To obtain an upper bound to the competitive ratio of Two-
Groups, we compare the results from Lemmas 4, 5, and 6.
We choose the function α(s) yielding the smallest approxi-
mation ratio. This happens when the approximation ratios

of cases 1 and 3 are equal. We obtain α(s) = 4s2+8s−6
s2+6s

.

Note that for s ≥ 0, α(s) ≥ 0 if and only if −1 +
√

10
2 ≤

s. By replacing the last fraction corresponding to α(s) in
α(s)s2+2α(s)s+2

s(α(s)s+2)
, we obtain an approximation ratio of 2(s+3)

2s+3
for cases 1 and 3. We may verify that the approximation ratio
s+2
s+1 of case 2 is bounded by 2(s+3)

2s+3 for s ≥ 0. So TwoGroups

is 2(s+3)
2s+3 -competitive, for −1 +

√
10
2 < s ≤ 1. �

6 Conclusion

In this paper, we have settled the nonpreemptive determin-
istic and randomized version of the online scheduling of
independent jobs on m uniform machines, m − 1 of them
being identical. We have determined the competitive ratio
of the well-known LS algorithm, and we have determined
its competitive ratio for any 0 ≤ s ≤ 1 and m ≥ 2. For
0 ≤ s ≤ smax(m), LS has the same competitive ratio as LSF.
This means that we do not need the slow machine if its speed
lies in this interval; one might indeed have expected the exis-
tence of such a threshold value for the slow machine’s speed.
We also have shown that LS is the best online deterministic
algorithm for 0 ≤ s ≤ −1 + √

2 and m = 3 machines.
Furthermore, a randomized heuristic on m machines has

been described. In the model of 3 machines, a randomized
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algorithm called TwoGroups has been developed and stud-
ied. The TwoGroups algorithm has been proven to be more
competitive than LS for any s in the interval [0,1]. The tech-
nique for analyzing its competitive ratio certainly could be
adapted to deal with other scheduling problems. For s close
to 1, we have shown, as expected, that Linear Invariant com-
petes better than TwoGroups.
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