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Abstract At high growth rates, the biomass yield of ba-
ker’s yeast (Saccharomyces cerevisiae) decreases due to
the production of ethanol. For this reason, it is standard
industrial practice to use a fed-batch process whereby
the specific growth rate, l, is fixed at a level below the
point of ethanol production, i.e., lcrit. Optimally,
growth should be maintained at lcrit, but in practice,
this is difficult because lcrit is dependent upon strain and
culture conditions. In this work, growth was maintained
at a point just above lcrit by regulating ethanol con-
centration in the bioreactor. The models used for control
design are shown, as are the experimental results ob-
tained when this strategy was implemented. This tech-
nique should be applicable to all microorganisms that
exhibit an ‘‘overflow’’ type metabolism.
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Introduction

In order to maximize biomass yield, Saccharomyces
cerevisiae and Escherichia coli are often cultivated in a
fed-batch manner such that overflow metabolites (etha-
nol and acetate, respectively) do not accumulate [1–3].
Overflow metabolite organisms are limited in their
capacity to oxidize a given substrate. Below a certain
critical specific growth rate, lcrit, the substrate will be

completely oxidized at a high biomass to substrate yield,
Yox

sx (Fig. 1). However, from lcrit to the maximum
growth rate, lmax, the excess substrate will be converted
reductively to an overflow metabolite at a low biomass
to substrate yield, Yred

sx.
If the objective is to maximize the biomass concen-

tration starting from a sufficiently concentrated inocu-
lum, it is necessary to grow the cells at a rate as close as
possible to the critical one [4]. Yet, the critical growth
rate may vary from batch to batch, and even during the
experiment [2]. In order to avoid the risk of decreasing
the yield, a conservative approach is commonly used,
whereby the cells are grown at lconservative. An alterna-
tive is to use the overflow metabolite as an indicator of
how close or far the actual growth rate is from lcrit.
Thus, if ethanol production is maintained constant, it is
possible to fix the growth rate at a value slightly above
the critical growth rate.

In this work, a recently developed control meth-
odology [4] was implemented to accomplish exactly
this task by modeling the system as two independent
reactions. The first one describes the conversion of
substrate into overflow metabolite. It is assumed that
this reaction is always present. However, this reaction
must be limited by an appropriate control strategy.
The second reaction describes the cell growth that can
be considered as a disturbance for the first process,
since it consumes the substrate that is otherwise used
to produce the overflow metabolite. The optimum
control strategy is to run the process with a very
small, but constant, concentration of overflow
metabolite such that a high percentage of substrate is
converted to biomass at the fastest possible rate. The
developed control algorithm utilizes the measured and
desired metabolite concentrations to obtain the
necessary feed rate to maintain exponential growth
and constant metabolite concentration. This approach
requires the knowledge of only two system parameters:
the yield coefficient, Ysp, and the instantaneous con-
centration of the overflow metabolite. The yield
determines how much overflow metabolite, P, is
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produced per unit of substrate fed, S, while the
metabolite concentration is the controlled variable.

In order to implement the proposed control strategy,
the overflow metabolite must be measured on-line.
Fortunately, due to modern developments in this field, a
wide selection of methods are available [9, 10], such as
flow injection analysis [11], near infrared spectroscopy
[12, 13], mid-infrared spectroscopy [14–16], HPLC [6],
inexpensive gas sensors [8], biosensors [17, 7, 18, 19] and
mass spectrometry [20].

Although not considered explicitly in this work,
alternative methods to ascertain the metabolic state of
a culture could be used in place of measuring the
overflow metabolite concentration. For example, one
common fed-batch control approach is to maintain the
respiratory quotient, RQ, at a value indicative of sat-
urated oxidative capacity [21, 22]. The control strategy
can also be based upon a calorimetric quotient by
substituting the oxygen uptake rate with the heat pro-
duction rate [23–27]. Alternatively, when the bioreactor
is sufficiently instrumented, on-line mass balances can
be constructed, from which a control strategy can be
formulated [28, 29]. However, note that for all of these
approaches at least two measurements are required,
versus only one when the overflow metabolite concen-
tration is used.

Reaction system

Yeast as a model system

In order to be able to understand the processes that take
place in a bioreactor, a macroscopic description of the
interactions between the cells and the environment is
needed. This basic description can be written in the same
way as chemical reactions. Let S be the substrate fed
into the reactor. Based on the overflow metabolite model
for yeast proposed by Sonnleitner and Käppeli [11], in
the presence of oxygen, this substrate is oxidized via the
following reaction:

S þ a1O2!
r1 b1X þ c1CO2 ð1aÞ

Reaction components are microorganisms, X, oxygen,
O2, and carbon dioxide, CO2. If a limitation in the
oxygen uptake rate exists, the substrate that cannot be
oxidized is reduced into product P, which is the case of
baker’s yeast, is ethanol:

S!r2 b2X þ c2CO2 þ d2P ð1bÞ

Finally, if enough oxidative capacity is available, pos-
sibly due to a decrease in the concentration of S, the
product P will also be metabolized:

P þ a3O2!
r3 b3X þ c3CO2 ð1cÞ

The constants a1, a3, b1, b2, b3, c1, c2, c3, and d2 are the
stoichiometric coefficients, i.e., the yields of the three
reactions and r1, r2, and r3 are the rates at which the
reactions take place. Substrate and/or product can either
be oxidized (Reactions 1a and 1c) or reduced (Reaction
1b) [11]. The values for the constants are given in
Table 1.

Macroscopic modeling

From a macroscopic point of view, the relationship be-
tween the concentrations of the different reaction com-
ponents in Eq. 1 is given by the following mass balances:

d VXð Þ
dt
¼ b1r1 þ b2r2 þ b3r3ð ÞVX ð2aÞ

d VSð Þ
dt
¼ � r1 þ r2ð ÞVX þ FSin ð2bÞ

d VPð Þ
dt
¼ d2r2 � r3ð ÞVX ð2cÞ

d Vð Þ
dt
¼ F ð2dÞ

The specific biomass growth rate, l, can be obtained
by adding the biomass production for each reaction
[12]:

l ¼ b1r1 þ b2r2 þ b3r3 ð3Þ
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Fig. 1 Idealized case of biomass yield, Ysx, vs. specific growth rate
l for an overflow metabolite organism. The biomass yield is equal
to the oxidative yield, Yox

sx until a critical specific growth rate lcrit
is reached. Above this point, Ysx is a function of Yox

sx and Yred
sx,

the reductive yield. The critical growth rate is represented as an
arrow within a grayed area since it is not a fixed parameter, but may
vary with culture conditions. In the proposed control methodology,
the desired biomass yield is specified just below Yox

sx (setpoint)
such that a small quantity of metabolite is always formed through
reductive metabolism. Overflow metabolite production is thought
to occur due to a limitation or ‘‘bottleneck’’ in the metabolism. For
case 1, there is excess capacity and no metabolites are formed
(Reaction 1a). Case 2 represents growth at the critical point where
any excess substrate will ‘‘overflow’’ to a metabolite. In case 3, the
excess growth above the critical point is represented by an added
metabolite flux (Reaction 1b)
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Modeling for control

Exponential cell growth

Assumption 1: biomass production in Reaction 1 is much
higher than in Reaction 2 With this assumption, and
the fact that Reaction 1 is saturated, biomass growth
rate l can be considered as constant and equal to �l:
Thus, it is possible to integrate Eq. 2a to give:

VX ¼ VoXo exp �ltð Þ ð4Þ

In this way, biomass will be considered as a growing
exponential evolving at a constant �l: This simple
observation allows decoupling the biomass growth rate
from the substrate feed rate.

Ethanol production

Assumption 2: ethanol is constantly being produced, i.e.,
r3=0 This assumption implies Reaction 1a is saturated
with respect to oxidative capacity. Thus, the reaction
rate is maximized: r1(S)=r1,max.

Assumption 3: dynamics of the substrate concentration S
are fast, i.e., S is in quasi-steady state This assumption
can be made since a small variation in the substrate feed
rate, F, will result in an almost instantaneous change in
the substrate concentration, S. In this way, dS/dt�0,
and from Eq. 2b, the following expression is obtained:

r2VX ¼ F Sin � Sð Þ � r1;maxVX ð5Þ

From Eq. 2c, the ethanol evolution in the reactor can
then be expressed by:

d VPð Þ
dt
¼ d2 F Sin � Sð Þ � r1;maxVX

� �
ð6Þ

This last equation shows that the rate at which glucose is
transformed into ethanol is obtained from the difference
between the rate at which substrate is fed into the
reactor, F(Sin�S), and the rate at which the cells oxidize
it, r1,maxVX. A controller based on Eq. 6 would need to

have the value of the volume at each time instant.
However, this measurement may sometimes be difficult
to obtain in practice. For example, consider its evolution
for the presented experiment (Fig. 2). Even if the start-
ing and ending reactor volumes, Vo and Vf, respectively,
are precisely known, all volume added and removed
must be accurately accounted for in order to have con-
tinuous reactor volume data. In this particular case, it
was not possible to place the reactor on a balance.
Additionally, even with knowledge of the mass in the
reactor, the total volume must be further corrected for
density, which changes significantly in high cell density
fed-batch experiments. Even with proper accounting of
flows, volume correction remains a major source of er-
ror. Thus, a further simplification needs to be made.
Applying the chain rule of derivation to Eq. 6 gives:

dP
dt
¼ d2Sin

�V
F � r1;maxVX

Sin

� �
ð7Þ

where �V ¼ Vo þ Vfð Þ=2 is an averaged volume. Since P
will be maintained at a low value, P<<d2(Sin�S) and
S<<Sin, the dilution effect on P and S can be ne-
glected, i.e., (F/V)S�0 and (F/V)P�0. Notice how in
Eq. 7 the feed rate, F, and the biomass growth term, VX,
have been decoupled. The fermentation goal is now to
maintain a constant ethanol concentration. If this is
achieved, biomass will grow exponentially at a growth
rate close to lcrit. Thus, the control strategy can be
stated as: feed enough substrate so that the cells can
grow at a constant �l, while at the same time, maintain a
constant product concentration in the reactor. In this
case, the controller design can be divided in two. One
part of the controller should ensure that the cells would
always grow exponentially; a second part should guar-
antee that the desired metabolite concentration will
be maintained. The controller derivation has been

Table 1 Stoichiometric coefficients of reaction mechanism

Parameter Value

a1 0.396 g of O2/g of S
b1 0.490 g of X/g of S
c1 0.590 g of CO2/g of S
b2 0.050 g of X/g of S
c2 0.462 g of CO2/g of S
d2 0.480 g of P/g of S
a3 1.104 g of O2/g of P
b3 0.720 g of X/g of P
c3 0.625 g of CO2/g of P
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Fig. 2 Calculated reactor volume for 2-l fed-batch experiment
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published elsewhere [4] and the reader is referred to this
reference for further information.

Material and methods

Microorganism and medium

The yeast S. bayanus CBS426 was used, which, until
recently, belonged to the S. cerevisiae species. Cells
were stored frozen at �80�C in 1.8 ml aliquots. A
single aliquot added to a 500ml Erlenmeyer flask con-
taining 150 ml of medium (0.67 g/l Yeast Nitrogen
Base, Difco; 10 g/l glucose) and grown for 24 h at 30�C
provided the bioreactor inoculum. The defined media
for the batch and fed-batch experiments were adapted
from [13]. Unless otherwise noted, all chemicals were
from Fluka (Buchs, Switzerland). The batch medium
was sterilized by filtration and contained per liter: 20 g
glucose, 5 g (NH4)2SO4, 3 g KH2PO4, 0.5 g MgSO4Æ7-
H2O. The medium also contained vitamins and trace
elements: 0.01 g CaCl2Æ2H20, 2.67 mg H3BO3, 0.8 mg
CuSO4Æ5H2O, 0.27 mg KI, 2.67 mg MnCl2, 1.07 mg
Na2MoO4Æ2H2O, 12 mg ZnSO4Æ7H2O, 40 mg EDTA,
0.8 mg CoCl2, 8 mg FeSO4Æ7H2O, 2.67 Ca pentothe-
nate, 0.13 mg biotin, 66.67 mg m-inositol, 2.67 mg
nicotinic acid, 0.53 mg para-amino benzoic acid
(PABA), 2.67 mg pyridoxine hydrochloride, 2.67 mg
thiamine hydrochloride. The feed medium was steril-
ized by filtration and contained per liter: 300 g glucose,
0 g (NH4)2SO4, 12 g KH2PO4, 1.5 g MgSO4Æ7H2O.
The medium contained the same vitamins and trace
elements as in the batch medium, though concentrated
15-fold.

Cultivation conditions

Cultivations were performed in a 2-l stirred tank biore-
actor (BioRC1 calorimeter) with a working volume of
between 0.5 and 1.8 l. The temperature and agitation
were controlled at 30�C and 1,000 rpm, respectively. The
culture sparging rate was 1.5 l/min. Dissolved oxygen
tension was monitored but not controlled with a pO2

probe (Mettler Toledo, Greifensee, Switzerland). During
batch and nitrogen limited phases of cultivation, 2 M
NaOH was used to control pH at 5.0. During fed-batch
phase, 14% NH4OH was used in order to provide a
source of nitrogen. No acid control was necessary to
maintain pH. A silicone-based antifoam (Antifoam A,
Sigma, St. Louis, MO, USA) was added at regular
intervals to eliminate foaming.

Analytical methods

Cell mass concentration was quantified gravimetrically.
A volume of 10 ml of culture broth was added to
pre-weighed glass tubes, followed by immediate cen-

trifugation for 10 min at 3,000 rpm. The supernatant
was removed and the tubes dried for 36 h at 100�C.
Medium components and extracellular metabolites
were quantified by HPLC (1,100 system, Agilent, Palo
Alto, CA, USA) with a refractive index (RI) detector
and a diode array detector (DAD). Samples were fil-
tered, placed into sealed vials, and frozen at �20�C
until analysis. Analyses were performed with an ion
exchange chromatography column (300 mm Supelco H,
Supelco, Bellefonte, PA, USA) and a guard column
(Supelguard C610H, Supelco) at 60�C. The mobile
phase consisted of 0.02 M H2SO4 solution made with
MilliQ water (Millipore, Bedford, MA, USA). The flow
rate of mobile phase was 0.8 ml/min.

Off-gas composition was monitored with an infra-
red analyzer for CO2 and ethanol (model PSA-401
Servomex, Crowborough, UK), and a paramagnetic
(model 1100-A Servomex) analyzer for oxygen. The
infrared analyzers had an iridium light source and a
LiTaO3 detector. The CO2 analyzer measured the
difference in absorbance at 2,335 cm�1 (CO2) and
2,531 cm�1 (reference). The ethanol analyzer measured
the difference in absorbance at 2,940 cm�1 (ethanol)
and 2,531 cm�1 (reference). Measured signals were
corrected for a water vapor content of 3.5% [14]. The
ethanol concentration in the liquid phase was related
to the gas phase concentration with an empirical
partition coefficient.

The biomass concentration was estimated on-line,
based upon the rate of base consumption [3]. Since the
medium was defined and there was no significant pro-
duction of organic acids, the ammonia uptake rate was
directly proportional to the rate of base addition. The
biomass was then estimated by assuming constant
nitrogen content. The biomass composition was taken to
be: XC=1.00, XN=0.19, XH=1.78, XO=0.613, ash =
9.6%, MW=26.9 g/C-mol [15]. The on-line estimate of
biomass was in agreement with off-line dry cell weight
data.

Results and discussion

Several fed-batch experiments were conducted in a 2-l
bioreactor to validate the control strategy. The ethanol
was measured in the gas phase, and then related to liquid
phase concentration through an empirically determined
partition coefficient Ke. As shown in Fig. 3, the control
strategy was able to maintain the ethanol concentration
in bioreactor around the desired setpoint of 0.5 g/l. At
the cessation of feeding, the residual ethanol was rapidly
consumed.

As expected for a constant overflow metabolite con-
centration, the biomass growth rate was also constant,
and gave rise to an exponential increase in the total
biomass, XV. This is clearly seen in Fig. 4, where XV
increased exponentially until �15 h, at which point the
mass transfer of oxygen into liquid phase was the lim-
iting factor, not the oxidative capacity of cells.
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The controller automatically adapted the feed rate of
glucose to compensate for this disturbance. As shown in
Fig. 5, the molar rates qiV increased exponentially until
�15 h, and linearly thereafter. The molar rates started
increase more rapidly at �21 h because the reactor
volume had reached a sufficient level that the second

Rushton turbine in the bioreactor could now contribute
to oxygenation of medium, and hence exponential
growth could resume. This is interesting because it
demonstrates two points: (1) that oxygen was really
limiting growth, not some other factor (e.g., nutrient
deficiency), and (2) that the controller was able to adapt
once again to a new growth regime.

Constant production of ethanol implies a constant
specific cell growth rate above lcrit. This can be verified
by looking at the respiratory quotient (RQ), which is
defined as the ratio between the carbon dioxide pro-
duction rate rc and the oxygen uptake rate ro. If only

0 5 10 15 20 25
0

20

40

60

80

100

X
V

 [g
] a

nd
 p

O
2 

[%
]

0 5 10 15 20 25
10

0

10
1

10
2

lo
ga

rit
hm

ic
 X

V
 [g

]

time t [h]

XV = 0.539 e0.259t

15.2

35 g/l

77 g/l

XV online        
exp fit   
linear fit
XV offline
pO2

18.8 21.2

XV = 7.2(t-15.2)
        + 25.0

Fig. 4 Total biomass production, XV, and dissolved oxygen profile
for yeast fed-batch fermentation. XV was estimated on-line from
base consumption rate, and was in close agreement with off-line
measurements (dry cell weight)

0 5 10 15 20 25
0

100

200

300

400

500

600

700

q iV
 [C

-m
m

ol
/h

]

-q V
g

q V
x
 

q V  
c

q V
e
 

-q Vo 

0 5 10 15 20 25
0

100

200

300

400

500

600

700

q oV
 [m

m
ol

/h
]

time [h]

15.2     18.8   21.2

Fig. 5 Molar rates: Glucose consumption –qgV, biomass produc-
tion qxV, CO2 production qcV, ethanol production qeV, and oxygen
uptake –qoV

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
R

Q
 [m

ol
/m

ol
]

time [h]

21.218.815.2

RQ = 1.10

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

es
tim

at
ed

 s
pe

ci
fic

 g
ro

w
th

 ra
te

 µ
 [1

/h
]

 µ = 0.26 1/h

Fig. 6 Respiratory Quotient, RQ, and estimated specific growth
rate, l. The oscillating RQ signal converges to a value of 1.1, which
corresponds to an oxido-reductive metabolism

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
]l/g[ lonahte

time [h]

fb15e

empirical ethanol
partition coefficient:
Ke = ye/xe = 0.675

gas analyzer
HPLC

0.53

15.2 18.8 21.2

Fig. 3 On-line ethanol measurement in gas phase and HPLC
validation points. Overshoot occurs at 15.2 h where oxygen became
limiting. At 18.8 h, an unknown disturbance caused a spike in
ethanol concentration, while at 21.2 h, an increase in the oxygen
transfer rate caused ethanol concentration to decrease below
setpoint

381



glucose oxidation takes place, i.e., l £ lcrit, then RQ@1.
The RQ evolution for this experiment is shown in Fig. 6.

Initial oscillations in the RQ signal, resulting from
the oscillations in the substrate feed rate, converged to a
constant value of 1.10, indicating that the cells were
consuming glucose via Reactions 1a and 1b. Notice how
this growth metabolism is maintained even when dis-
solved oxygen concentration is limiting in the latter part
of experiment. Thus, even if the critical growth rate
diminishes, the actual growth rate is always maintained
slightly above it.

The specific carbon dioxide and oxygen rates (rc and
ro) were approximately constant during exponential
growth phase (Fig. 7). The maximum oxygen uptake
rate ro

MAX was between 5.3 and 5.5 mmol/g-h, which is
in the same range found by Duboc et al. [16] for the
same strain of S. cerevisiae. Duboc et al. also found that
ro

MAX was not fixed, but rather, varied between 3.3 and
5.6 mmol/g-h, depending upon culture history. In this
work, growth was maintained at ro

MAX without a priori
knowledge of its value. From ro

MAX, the critical growth
rate was calculated from the stoichiometry according to:

lcrit ¼ rX ¼ rMAX
o �MWo �

Ysx

Yso
¼ 5:5� 32� 0:52

0:35
¼ 0:26 ð8Þ

where MWo is the molecular weight of oxygen (g/mol),
Yso is the oxygen to substrate yield (g/g), and Ysx the
biomass to substrate yield (g/g). A lcrit of 0.26 h�1 is
consistent with the value estimated from the XV
regression line seen in Fig. 4.

Ethanol is the principal overflow metabolite in S.
cerevisiae. However, there was a risk that, by con-
straining ethanol flux to a low value, the excess glyco-
lytic flux would then overflow to another metabolite.
Concentrations of acetate, acetaldehyde, glycerol, suc-
cinate, fumarate, pyruvate, and 2,3-butanediol all re-
mained below 0.25 g/l, even with over 70 g/l biomass in
the bioreactor.

Conclusion

In this article, a recently developed control strategy was
successfully applied to a fed-batch experiment with S.
bayanus. The controller ensured keeping the ethanol
concentration at a very small non-zero level, thereby,
forcing the culture to grow both very close to the critical
growth rate and with a near-optimal biomass yield. Even
though the controller was based upon a very simple
‘‘bottleneck’’ model, exponential growth was maintained
near the critical point until oxygen was limiting, and,
thereafter, the feed profile was adapted to maintain
growth in the low oxygen environment. Furthermore,
production of by-products other than ethanol was
minimal. Unlike many other strategies, the only input to
the controller was the ethanol concentration measured
in the gas phase. The method also provided a quick
means to characterize strains. Both the critical growth
and the maximum oxygen uptake rates were determined
on-line from fed-batch experiments, as opposed to the
more time consuming continuous cultures. Finally, the
method was very straightforward to implement, and
should be widely applicable to many industrially
important processes. In the case of baker’s yeast fer-
mentation, ethanol can be measured in the gas phase
very inexpensively, whereas for non-volatile metabolites
(e.g., pyruvate or lactate) measurements could be made
directly in the liquid phase with spectroscopic or enzy-
matic techniques.
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