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Abstract. The Darcy free convection boundary layer flow over a vertical flat plate is
considered in the presence of volumetric heat generation/absorption. In the present first
part of the paper it is assumed that the heat generation/absorption takes place in a
self-consistent way, the source term q ′′′ ≡ S of the energy equation being an analytical
function of the local temperature difference T − T∞. In a forthcoming second part, the
case of the externally controlled source terms S=S (x, y) will be considered. It is shown
that due to the presence of S, the physical equivalence of the up- and downflows gets
in general broken, in the sense that the free convection flow over the upward projecting
hot plate (“upflow”) and over its downward projecting cold counterpart (“downflow”) in
general become physically distinct. The consequences of this circumstance are examined
for different forms of S. Several analytical solutions are given. Some of them describe
algebraically decaying boundary layers which can also be recovered as limiting cases of
exponentially decaying ones. This asymptotic phenomenon is discussed in some detail.

Key words: volumetric heat generation, parallel flows, exact solutions, algebraic decay,
exponential decay, Similar flows, Porous media.

Nomenclature
a constant, Equations (25), (52)
b constant, Equation (32)
c constant, Equation (40b)
cp specific heat at constant pressure
f similar stream function, Equation (45a)
g magnitude of the acceleration due to gravity
Ge Gebhart number, =gβL/cp.
h heat transfer coefficient, Equation (48)
km effective thermal conductivity

∗Author for correspondence: e-mail: magyari@hbt.arch.ethz.ch

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/159151447?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


50 E. MAGYARI ET AL.

K permeability of the porous medium
L characteristic length
Nu Nusselt number, Equation (24)
Ra Darcy–Rayleigh number, =gβKT0L/ (αυ) .

qw wall heat flux
Qn coefficients, Equation (9)
S heat source/sink term, Equation (2c)
sT , sg sign functions
T fluid temperature
T0 plate temperature scale
Tw wall temperature
T∞ ambient temperature
u, v velocity components along x- and y-axes
x, y Cartesian coordinates along the plate and normal to it, respectively
Y dimensionless coordinate, Equations (26b), (40a)

Greek Symbols
α effective thermal diffusivity
β coefficient of thermal expansion
λ power law exponent, Equation (1)
η similarity independent variable, Equation (44b)
θ dimensionless temperature, Equation (15)
ρ fluid density
υ kinematic viscosity
ψ stream function

1. Introduction

Over recent several decades, fluid flow in porous media has intensively
been studied and it has become a very productive field of research. The
interest in the topic stems from its widespread practical applications in
modern industries and in many environmental issues (as e.g. nuclear waste
management, building thermal insulations, spread of pollutants, geothermal
power plants, grain storage, packed-bed chemical reactors, oil recovery,
ceramic processing, enhanced recovery of petroleum reservoirs, food sci-
ence, medicine, etc.). This circumstance has resulted in a vast amount of
both theoretical and experimental research work.

The mechanical and thermal characteristics of fluid flow in porous
media are today well understood for a large number of surface geome-
tries and (temperature and flux) boundary conditions. In this respect an
enormous amount of scientific material has been collected and analyzed
comprehensively in recent works by Bejan (1995), Ingham and Pop (1998,
2002, 2005), Nield and Bejan (1999), Vafai (2000, 2005), Pop and Ingham
(2001), Ingham et al. (2004) and Bejan et al. (2004). Considerably less
work has, however, been done for more complex situations, such as internal
heat generation (other than viscous dissipation and pressure work) and/or
absorption by sources and sinks distributed continuously in the bulk of
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porous medium. The aim of the present two-part paper is to add new
results to this field of basic importance, by invoking, in order to be spe-
cific, the case of Darcy free convection boundary layer flow over a vertical
plate.

According to the functional dependence which determines their volumet-
ric distribution, the heat source/sink terms q ′′′ ≡S [W/m3] usually included
in the energy equation (in addition to or instead of the viscous dissipation
and pressure work terms), can be divided in two basic types, namely

(I) S=S (T −T∞) and (II) S=S (x, y, z)
The sources of type (I) depend only on the local temperature differ-
ence T − T∞, their space distribution being not externally controlled and
thus, not known a priori. This circumstance results in a self-consistent
mechanism of heat generation/absorption: the local intensity of sources is
determined by the solution T of the energy equation, while this solution
itself is governed by the activity of the sources. In other words, one is
faced here with feedback loops connecting the sources to the temperature
field. The actual space distribution of sources of type (I) is known only
a posteriori, after the temperature problem has been resolved self consis-
tently. This kind of sources occur in exothermic/endothermic chemical and
biochemical reactions, where the reaction rate is controlled by the local
temperature of the reactants.

The sources of type (II), in contrast, are externally controlled, their space
distribution and intensity being either prescribed, or they result from some
physical laws which do not depend on temperature directly, as e.g. the heat
release by absorption of infrared radiation or of microwaves. In the latter
cases the intensity of sources decay exponentially with the distance from the
surface of incidence.

Concerning the published papers with internal heat generation S which
fall into the first class (I), there are papers which describe the flow and heat
transfer due to stretching surfaces and papers which describe free convection
in cavities. Thus, Vajravelu and Nayfeh (1992, 1993), Vajravelu and Hadjini-
calaou (1993, 1997), Chamkha (1999, 2003), Chamkha and Quadri (2002),
and Abo-Eldahab and Aziz (2005) have studied the forced or convective heat
transfer at a stretching sheet when S is a linear function of T − T∞, i.e.
S∼ (T −T∞). The papers by Hossain and Wilson (2002), Molla et al. (2004),
and Hossain and Rees (2005) consider the free convection in a cavity with an
internal heat generation term S also of the linear form S∼ (T −T0) where T0

is a characteristic temperature of the fluid inside cavity. Furthermore, Abo-
Eldahab and Aziz (2004) investigated the effect of blowing/suction on hydro-
magnetic heat transfer by mixed convection over a continuously stretching
surface with power-law variation in the surface temperature or heat flux when
the source term S is a combination of two functions of type (I) and (II),
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S = A(x) · SI (T −T∞)+ SII (x, y) where SI is again a linear function of
T − T∞. The same S has also been considered by Tashtoush and Duwairi
(2003) in a transient mixed convection problem.

For the second class II of the previously studied problems, with S (x, y)=
A(x) e−η where η is a similarity variable formed from x and y, the pub-
lished papers are those due to Crepeau and Clarksean (1997) for a viscous
and incompressible fluid (clear fluid) and by Postelnicu and Pop (1999),
Postelnicu et al. (2000), Grosan and Pop (2001, 2002) and Bagai (2003) for
the problem of free convection over a vertical flat plate or over a body of
arbitrary shape embedded in a fluid-saturated porous medium by using the
Darcy or non-Darcy flow models.

The present paper aims to add new results concerning the effect of
sources on the free convection in porous media. In Part I some general
features (as e.g. the breaking of the upflow/downflow equivalence) are con-
sidered which hold for both types of sources. Then possible parallel-flow
as well as similarity solutions are investigated in the presence of self con-
sistent heat generation/absorption mechanisms by different sources of type
(I). In the forthcoming second part of the paper self similar flows in the
presence of externally controlled sources of type (II) will be investigated in
some detail.

2. Problem Formulation and Basic Equations

We consider the steady Darcy free convection in a fluid saturated porous
medium adjacent to a heated or cooled semi-infinite vertical flat plate of
power-law temperature distribution

Tw(x)=T∞ + sT T0

( x
L

)λ
(1)

Here T∞ denotes the ambient temperature of the saturated porous medium,
T0> 0 specifies the temperature scale of the plate, L is a reference length
and the sign function sT =sgn (Tw −T∞) takes the value sT =+1 for a “hot”
plate, Tw (x)>T∞ and the value sT =−1 for a “cold” one, Tw (x)<T∞. We
further assume that in the porous medium continuously distributed heat
sources are present. The rate S [W/m3] of the volumetric heat generation is
considered first to be arbitrary, the only overall restriction being S→ 0 as
y→+∞. Later in this paper, different specific forms of S as functions of
the local temperature difference the dependence T −T∞ will be examined.

The flow domain and the choice of the coordinate system are sketched
in Figure 1a, b where sg denotes the projection of g/ |g| on the positive
x-axis. Thus, sg = +1 when the positive x-axis points in the direction of
g (i.e. vertically downwards) and sg = −1 when it points in the direction
opposite to g (i.e. vertically upwards). In each of the two cases, depicted in
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Figure 1. Representations of the free convection forward boundary layer up- and
downflows over an upward projecting and downward projecting hot and cold plate,
respectively. In the absence of the source term (S=0) the two situations are phys-
ically equivalent. When, however S �= 0, the up- and downflows in general become
basically distinct.

Figure 1a, b, the “forward”, i.e. the usual boundary layer flows are consid-
ered, where the definite edge of the plate, x=0, represents its leading edge.
The opposite situations, i.e. the cold plate in the configuration of Figure 1a
and the hot one in the configuration of Figure 1b, correspond according
to the nomenclature introduced by Goldstein (1965), to the “backward”
boundary layer flows. The essential difference between the forward and
backward boundary layer flows consist of the fact that in the latter case
the leading edge recedes to an indefinite station infinitely far upstream,
while the definite edge of the plate, x = 0, becomes a trailing edge. As a
consequence, in the backward boundary layer flows the fluid has lost any
memory of the perturbations introduced by the leading edge. This physi-
cal situation of the backward free convection boundary layer flows in sat-
urated porous media has recently been investigated (for S=0) by Magyari
and Keller (2004), and will not be considered here. The forward bound-
ary layer flows along the upward and downward projecting hot and cold
plates shown in Figure 1a and b, will be referred to hereafter for short as
“upflows” and “downflows”, respectively.
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Following Nield and Bejan (1999) we write the continuity, Darcy and
energy equations corresponding to the situations of Figures 1a,b in the
form

∂u

∂x
+ ∂v

∂y
=0, (2a)

u=−sg gβK
υ

(T −T∞) , (2b)

ρcp

(
u
∂T

∂x
+v ∂T

∂y

)
=km ∂

2T

∂y2
+S, (2c)

where one has assumed that the boundary-layer and the Boussinesq
approximations hold. The plate is assumed impermeable, such that the
boundary conditions of the problem associated with Equations (2) are

v|y=0 =0, T |y=0 =Tw (x),

T |y→∞ →T∞, S|y→∞ →0
(3a,b,c,d)

We notice that in both situations of Figure 1a and b the product of the
sign functions sT and sg is the same,

sT sg =−1 (4)

3. The Source Term can Break the Upflow/Downflow Equivalence

Since the flow is incompressible and two dimensional, it is convenient to
introduce the stream function

(u, v)=
(
∂ψ

∂y
,−∂ψ

∂x

)
(5)

and to express the energy equation (2c) in terms of ψ with the aid of the
relationship

T =T∞ + sT υ

gβK

∂ψ

∂y
(6)

By doing so, we are left with the single partial differential equation

ρcp

(
∂ψ

∂y

∂2ψ

∂x∂y
− ∂ψ

∂x

∂2ψ

∂y2

)
=km ∂

3ψ

∂y3
+ sT gβK

υ
S (7)

accompanied by the boundary conditions
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∂ψ

∂x

∣∣∣∣
y=0

=0,
∂ψ

∂y

∣∣∣∣
y=0

= α

L
Ra

(
x
L

)λ
,

∂ψ

∂y

∣∣∣∣
y→∞

→0, S|y→∞ →0
(8a,b,c,d)

where α= km/
(
ρcp

)
and Ra denotes the Darcy Rayleigh number, Ra=gβ

KT0L/ (αυ).
The boundary conditions (8) are always independent of the sign func-

tions sT and sg while Equation (7) depends in general on sT , as long
as S �= 0. If, however, the source term S is neglected, Equation (7) also
becomes independent of sT and thus we immediately recover the well
known textbook result concerning the physical equivalence of the free con-
vection flows over an upward projecting hot plate and over its down-
ward projecting cold counterpart. If however in Equation (7) the source
term S is present, then due to the sign sT = ±1 in front of S this phys-
ical equivalence gets in general broken (as already anticipated in the title
of the present Section as well as in the Caption of Figures 1). This
means that the free convection flow over the upward projecting hot plate
(“upflow”, Figure 1a) and over its downward projecting cold counterpart
(“downflow”, Figure 1b) in general become physically distinct. The conse-
quences of this circumstance will be examined in the following Sections for
different forms of the source term S.

4. S is an Analytical Function of the Local Temperature Difference T −T∞

Except for the boundary condition (3d), no other restrictions on the source
function S have been made until now. Hereafter an additional restriction
will be adopted, namely we assume that S is an analytical function of the
local temperature difference T − T∞, such that it can be expanded in a
power series of T −T∞,

S=
∞∑
n=0

Qn (T −T∞)n (9)

We mention that, choosing T∞ as origin of the temperature scale, T −T∞
represents precisely the local temperature of the fluid. Obviously, the above
assumption of analyticity is a fairly weak restriction of generality.

As a consequence of the boundary conditions (3c) and (3d), the coeffi-
cient Q0 of series (9) is always zero, while the other Qn’s may in general be
non-vanishing. Thus, having in mind Equation (6), Equation (7) becomes

ρcp

(
∂ψ

∂y

∂2ψ

∂x∂y
− ∂ψ

∂x

∂2ψ

∂y2

)
=km ∂

3ψ

∂y3
+

∞∑
n=1

Qn

(
sT υ

gβK

)n−1(
∂ψ

∂y

)n
(10)
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In this case the three relevant boundary conditions are (8a,b,c) since, owing
to (8c), the condition (8d) is satisfied automatically.

A simple inspection of Equation (10) shows that it depends in general
on the sign function sT and the upflow/downflow equivalence gets broken.
This conclusion also holds when S is an even function of T − T∞ (i.e.
Q1 =Q3 =Q5 = . . .=0). In this case Equations (9) and (6) yield

S≡Seven =
∞∑
j=1

Q2j

(
υu

gβK

)2j

(11)

When, however, S is an odd function of T −T∞ (i.e. Q2 =Q4 =Q6 = . . .=0),
then Equation (10) becomes independent of the sign function sT , and S has
the form

S≡Sodd = sT
∞∑
j=1

Q2j−1

(
υu

gβK

)2j−1

(12)

Therefore, while for S = Seven the upflow/downflow equivalence is broken,
for S=Sodd it holds, but with the important physical restriction that in one
of the cases depicted in Figure 1, heat sources and in the other one heat
sinks of the same intensity are present. From a practical point of view, this
is an essential difference compared to the familiar upflow/downflow equiv-
alence encountered in the case S=0.

5. Parallel Flows Formed Over an Isothermal (λ=0) Plate

5.1. general considerations

We consider in this Section the important special case of constant plate
temperature, Tw = constant = T∞ + sT T0 corresponding in Equation (1) to
λ=0. In this case the problem does not possess for λ=0 a natural length
scale, i.e. L may be chosen arbitrarily. Our aim in the following is to
examine the possible existence of a strictly parallel free convection flow
over the vertical impermeable plate in the presence of a volumetric heat
generation according to Equation (9) and to its special cases (11) and (12),
respectively. Under “parallel” we mean (as usual) a plane boundary layer
flow with identically vanishing transversal velocity component, (u, v) =
(u,0), that is, with a stream function which depends only on the transversal
coordinate, ψ=ψ (y). In this case Equation (10) and the boundary condi-
tions (8) reduce to

km
d2u

dy2
+

∞∑
n=1

Qn

(
sT υ

gβK

)n−1

un=0 (13)
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u|y=0 = α

L
Ra, u|y→∞ →0 (14a,b)

Since we are mainly interested in the heat transfer characteristics of the
flow, it is convenient to transcribe the “velocity problem” (13), (14) with
the aid of Equation (2b) into a “temperature problem” for the dimension-
less temperature θ = θ (y) defined by the relationship

T (y)=T∞ + sT T0θ (y) (15)

In terms of θ the expression (9) of S reads

S=
∞∑
n=0

Qn (sT T0)
n θn (16)

and Equations (2b) and (4) yield

u (y)= α

L
Ra θ (y) (17)

The equivalent temperature boundary value problem has the form

km
d2θ

dy2
+

∞∑
n=1

Qn (sT T0)
n−1 θn=0 (18)

θ (0)=1, θ (∞)=0 (19a,b)

Equation (18) admits the first integral

km

2

(
dθ
dy

)2

+
∞∑
n=1

Qn

n+1
(sT T0)

n−1 θn+1 = constant. (20)

Having in mind the boundary condition (19b) and assuming a sufficiently
smooth decay of the temperature field as y→∞, we see that the integra-
tion constant in (20) is zero and thus we get

dθ
dy

=±
√√√√− 2

km

∞∑
n=1

Qn

n+1
(sT T0)

n−1 θn+1 (21)

This equation along with the boundary condition (19a) yields the solution
in the implicit form y=y (θ),

y=±
θ∫

1

[
− 2
km

∞∑
n=1

Qn

n+1
(sT T0)

n−1 θn+1

]−1/2

dθ (22)
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In some simple but important special cases the implicit solution (22) can
easily be inverted to the explicit form θ = θ (y) (see below). Obviously, in
order to be physical, the solution (22) of the problem (18), (19) must also
be real and nonsingular. In addition, it must actually satisfy the boundary
condition (19b) as being assumed above.

According to Equations (15), (21) and (19a), the wall heat flux corre-
sponding to the solution (22) is

qw =−km ∂T
∂y

∣∣∣∣
y=0

=∓
√√√√−2km

∞∑
n=1

Qn

n+1
(sT T0)

n+1 (23)

In account of Equations (1) and (23) the corresponding Nusselt number is

Nu= qwL

km |Tw−T∞| =∓sT L
√√√√− 2

km

∞∑
n=1

Qn

n+1
(sT T0)

n−1 (24)

5.2. parallel flow for S=a (T −T∞)2

As a specific example for the upflow/downflow symmetry breaking described
above, we consider the case when in Equation (9) the only non-vanishing
coefficient is Q2 ≡a>0. In this case we obtain for S the simplest even func-
tion of T −T∞,

S=a (T −T∞)2 , a >0 (25)

In this case Equation (22) yields the nonsingular solution

θ (y)= (1+√−sT Y
)−2

, Y =
√
aT0

6km
y (26a,b)

The corresponding temperature and velocity fields (15) and (17) are

T (y)=T∞ + sT T0
(
1+√−sT Y

)−2
(27)

and

u (y)= α

L
Ra

(
1+√−sT Y

)−2
(28)

respectively. The Nusselt number (24) becomes in this case

Nu= sT L
√

−sT 2aT0

3km
(29)
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We now immediately see that for a > 0 the above solution is only real for
sT = −1, while for sT = +1 it becomes complex and thus non-physical. In
other words, a source term of the form (25), which is an even function of
T − T∞, actually breaks the usual upflow/downflow symmetry of the free
convection flow over a vertical plate. The (algebraically decaying) paral-
lel flow (28) can only be formed over the downward projecting cold plate
(Figure 1b), but not over its upward projecting hot counterpart (Figure 1a).
Obviously, for a<0 (heat sinks) the opposite is true.

In the present context of the Darcy free convection over a vertical plate
adjacent to a fluid saturated porous medium, a volumetric heat generation
of type (23) is actually realized by the viscous dissipation. Indeed, in this
case S is proportional to the dissipation function and has the expression
(see Ene and Sanchez-Palencia, 1982; Bejan, 1995)

S= ρυ

K
u2 (30)

Comparing Equations (30) to (25) and having in mind Equation (2b), we
easily find that the constant aT0/km occurring in Equations (26)–(29) can
be put in the form aT0/km =RaGe/L2 where Ge is the Gebhart number,
Ge=gβL/cp. Thus, the Nusselt number (29), with sT =−1, is given in this
case by

Nu=−
√

2
3
RaGe (31)

The existence of the parallel flow solutions (27), (28) due to the pres-
ence of viscous dissipation, has first been pointed out by Magyari and
Keller (2003). Later, Rees et al. (2003) have shown that these solu-
tions represent precisely the asymptotic profiles toward which the classical
Cheng–Minkowycz solution (Cheng and Minkowycz, 1977) evolves gradu-
ally with increasing distance x from the leading edge. On this reason, these
solutions were named “Asymptotic Dissipation Profiles” (ADP’s).

5.3. parallel flow for S=b (T −T∞)

We consider the case of the simplest odd function of T − T∞ which is
obtained when in the general expression (9) of S the only non-vanishing
the coefficient is Q1 ≡b i.e., S is the linear function

S=b (T −T∞) (32)

In this case Equation (22) yields the solution

θ (y)= exp

(
−
√

− b

km
y

)
(33)
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The corresponding temperature and velocity fields (15) and (17) are

T (y)=T∞ + sT T0 exp

(
−
√

− b

km
y

)
(34)

and

u (y)= α

L
Ra exp

(
−
√

− b

km
y

)
(35)

respectively.
One sees that this solution is only real for b < 0, i.e. when the source

term S is of the form

S=−sT T0 |b| exp

(
−
√

|b|
km
y

)
(36)

Therefore, the parallel flow solutions (34) and (35) can be realized over the
cold plate (sT =−1) if in the volume heat sources are present (S >0), and
over the hot plate (sT =+1) if heat sinks (S < 0) of the same intensity |S|
are distributed in the volume of the saturated porous medium. This specific
result is in full agreement with the general features described in Section 5.1.
In contrast to the algebraically decaying parallel flow solutions (34) and
(35) corresponding to the quadratic source term (25), the solutions (34),
(35) associated with the linear law (32) show a rapid exponential decay.

The Nusselt number (24) with the lower sign becomes in this case

Nu= sT L
√

|b|
km

(37)

5.4. parallel flow for S=a (T −T∞)2 +b (T −T∞)

After the pure power law cases (25) and (32), we consider the simplest
“mixed case” in which in the expression (9) of S the coefficients are Q1 ≡b
and Q2 ≡a>0 are simultaneously non-vanishing, but all the other Qn’s are
zero, i.e. S is the quadratic function

S=a(T −T∞)2 +b (T −T∞) , a >0 (38)

It can be shown that in this case the boundary value problem (18), (19)
does not admit solutions for b>0 (the condition θ (∞)=0 can not be sat-
isfied for b > 0). For b < 0, however, there exist solutions for both signs
sT =±1. They can again given in a explicit form, namely
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θ (y)= sT

c

[
1−

( √
1− sT c+ tanhY

1+√
1− sT c tanhY

)2]
(39a)

or, equivalently,

θ (y)= 1
(
1+√

1− sT c · tanhY
)2

cosh2
Y

(39b)

where

Y =
√

|b|
km

y

2
and c= 2aT0

3 |b| (40a,b)

The corresponding Nusselt number (24) is

Nu= sT L
√

|b|
km

√
1− sT c= Nu|a=0 ·

√
1− sT c (41)

where Nu|a=0 denotes the Nusselt number (37). One sees that for sT =+1
the solution (39) is real only if

0<c�1 (sT =+1) (42)

In particular, for c=1, Equations (39) and (41) reduce to

θ(y)= 1

cosh2
Y
,Nu=0, (sT =+1, c=1) (43a,b)

For sT = −1, on the other hand (40) the solution exists without further
restriction on the positive parameter c.

As an illustration of the above results, in Figure 2 some of tempera-
ture profiles (39) are plotted as functions of the dimensionless transversal
coordinate Y for sT =+1, sT =−1 and a couple of values of the parameter
c. We see that the upflow (sT = +1) to downflow (sT = −1) equivalence is
broken again. This becomes especially manifest for the value c= 1 where
the corresponding Nusselt numbers are Nu=0 and Nu=−2

√
2 for sT =+1

and sT =−1, respectively.
It is easy to show that in the limiting case a→ 0, which implies c→ 0,

the exponentially decaying solution (39b) goes over, as it should be, in (33)
which is valid for b<0 and which is exponentially decaying, too. Of much
more interest however, is the limiting case b→0 in which the exponentially
decaying solution (39) should go over in the algebraic decaying asymptotic
dissipation profile given by Equation (26) for sT = −1. This is indeed the
case since, according to Equation (40), for b→0 one has c→∞, Y→0 and

thus Equation (39b) yields θ (y)→ (
1+√

c ·Y )−2 =
(

1+√(aT0/6km) ·y
)−2
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Figure 2. Plot of the temperature profiles (39) for sT =+1 and sT =−1 for specified
values of the parameter c.

which is precisely Equation (26) for sT =−1. This result is a further explicit
example which bridges the historical disagreement concerning the feasibility
of exponentially and algebraically decaying boundary layers (for historical
details and further examples see Brown and Stewartson 1965; Merkin 1978;
Kuiken 1981a,b, 1983; Kahn and Stewartson 1984; Magyari and Keller
2004; Magyari et al. 2005).

6. Self-similar Flows Formed over a Non-isothermal (λ �=0) Plate

The question whether the problem (7), (8) with a source term of the form (9)
admits similarity solutions, is of an obvious basic interest. A suitable general
similarity transformation which allows to find answer on this question is

ψ (x, y)=α
√
Ra

( x
L

) λ+1
2
f (η)

η=
√
Ra

( x
L

) λ−1
2 y

L

(44a,b)

Inserting Equation (44a,b) in Equations (7) and (8) furnishes the boundary
value problem for the similar stream function f ,

f ′′′ + λ+1
2

ff ′′ −λf ′2 + L2

kmRa

∞∑
n=1

Qn (sT T0)
n−1

( x
L

)(n−2)λ+1
f ′n=0 (45a)

f (0)=0, f ′ (0)=1, f ′ (∞)=0 (45b,c)

where the prime denotes differentiation with respect to η. The velocity and
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temperature field is given in terms of the solution of boundary value prob-
lem (45) as follows

u= α

L
Ra

( x
L

)λ
f ′ (η)

v=−α
L

√
Ra

( x
L

) λ−1
2

[
λ+1

2
f (η)+ λ−1

2
ηf ′ (η)

] (46a,b)

T =T∞ + sT T0

( x
L

)λ
f ′ (η) (47)

The dimensionless similar wall heat transfer coefficient is obtained as

h=−sT f ′′ (0) (48)

A simple inspection of Equation (45a) shows that the similarity reduction
of the problem is only possible when in the expression (9) of S only a sin-
gle coefficient Qn is non-vanishing, namely that for which the relationship

(n−2) λ+1=0 (49)

holds. For λ > 0, Equation (49) admits (for n= positive integer) a single
solution which is n=1, while for negative values of λ it admits an infinite
number of solutions as e.g. (λ=−1, n=3) , (λ=−1/2, n=4) , (λ = −1/3,
n= 5) etc . . . Obviously, for a source term of the form S =Q0 (T −T∞)n

with arbitrary n, the problem of similarity solutions makes sense (at least
for sT =+1) also for other values of the temperature exponent λ which sat-
isfies Equation (49). In this case Equation (45a) becomes

f ′′′ + λ+1
2

ff ′′ −λf ′2 + L2Q0

kmRa
(sT T0)

λ−1
λ f ′ 2λ−1

λ =0 (50)

In order to be specific, we restrict our considerations in the present Section
to the case λ=n=1. In this case Equation (50) reduces to

f ′′′ +ff ′′ −f ′2 +af ′ =0 (51)

where

a=Q0

km

L2

Ra
(52)

The problem admits the elementary solution

f (η)= 1− exp
(−√

1−a ·η)√
1−a (53)
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The corresponding heat transfer coefficient (48) is

h= sT
√

1−a (54)

The explicit coordinate dependence of the source term is given by

S=Q0 (T −T∞)= sTQ0T0
x

L
exp

(
−√

1−a ·η
)

(55)

Obviously, the solution (52) is physical only for a < 1. We mention that
the problem (51), (45b,c) admits physical solutions also for as well as a�1
which, however can be obtained only numerically.

7. Summary and Conclusion

The steady Darcy free convection in a fluid saturated porous medium
adjacent to a heated or cooled semi-infinite vertical flat plate of power-law
temperature distribution was analyzed in this paper with focus on the effect
of continuously distributed heat sources/sinks q ′′′ ≡S[W/m3] in the bulk of
the porous medium. It has been assumed that these sources/sinks S are
in general other than the viscous dissipation and pressure work terms of
energy equation, but S→ 0 as the distance from the plate goes to infinity.
The main results of the paper can be summarized as follows.

1. Due to the presence of S, the physical equivalence of the up- and down-
flows gets in general broken, in the sense that the free convection flow
over the upward projecting hot plate (“upflow”) and over its downward
projecting cold counterpart (“downflow”) in general become physically
distinct.

2. When S is an analytical (but otherwise arbitrary) function of the local
temperature difference T − T∞, the free convection problem for an iso-
thermal plate admits in general a parallel flow solution which can be
obtained by quadratures (see Equation (22)).

3. In the special case S = a (T −T∞)2 of the quadratic dependence on
T −T∞ with a > 0 (heat release), parallel flow can only be formed over
the upward projecting hot (isothermal) plate, but not over its down-
ward projecting cold counterpart. This result is one of the main con-
sequences of the broken upflow/downflow equivalence in the presence
of heat sources. The corresponding parallel free convection flow decay
algebraically with increasing distance from the plate. Incidentally, the
effect of sources of type S=a (T −T∞)2 is equivalent in the Darcy free
convection with the effect of viscous dissipation (see Section 5.2).

4. In the linear case S = b (T −T∞) parallel flow solutions only exist for
b<0 which means volumetric heat absorption for the hot plate and heat
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generation for the cold plate (see Equation (36). In contrast to the qua-
dratic case S = a (T −T∞)2, the solution decays now exponentially (see
Equations (33–35)).

5. In the parabolic case S = a (T −T∞)2 + b (T −T∞) , a > 0 examined in
Section 5.4, parallel flow solutions exist both for the hot (sT =+1) and
cold (sT =−1) plate but only for b<0. These solutions decay exponen-
tially with increasing distance from the plate for b �= 0. However, the
exponential decaying solution corresponding to sT =−1 goes over (as it
should) in the algebraic decaying solution of the above point 4 as b→0.
This result furnishes an explicit example which bridges the historical dis-
agreement concerning the feasibility of exponentially and algebraically
decaying boundary.

6. The present free convection problem also admits plane boundary layer
similarity solutions when the source term has the power law form
S∼ (T −T∞)n, regarding that n and the exponent λ of the plate temper-
ature distribution satisfy the relationship (n−2) λ+1=0. For the special
case n=λ=1 (linearly rising plate temperature) an exponentially decay-
ing (see Section 6) analytical solution could be found.

The forthcoming Part II of the paper (Magyari et al., 2006, Submit-
ted), will be concerned mainly with the similarity solutions of the pres-
ent free convection problem in the presence of the externally controlled
sources/sinks of type (II), S=S(x, y).
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