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Optimal bandwidth choice for matching estimators and their finite sample properties are examined.
An approximation to their MSE is derived, as a basis for a plug-in bandwidth selector. In small
samples, this approximation is not very accurate, though. Alternatively, conventional cross-validation
bandwidth selection is considered and performs rather well in simulation studies: Compared to stan-
dard pair-matching, kernel and ridge matching achieve reductions in MSE of about 25 to 40%. Local
linear matching and weighting perform poorly. Furthermore, the scope for developing better band-
width selectors seems to be limited for ridge matching, but non-negligible for kernel and local linear
matching.
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1. Introduction

Matching estimators for estimating treatment effects have re-
ceived a lot of attention in recent years.1 Optimal bandwidth
choice for these estimators, however, has not been analyzed
so far. In this paper, a mean squared error approximation for
matching estimators is derived and its usefulness for bandwidth
selection analyzed. In addition, conventional bandwidth selec-
tion methods are examined and their finite-sample efficiency is
investigated.

Matching estimators attempt to estimate an expected value
for a particular population, by using data from a different pop-
ulation and adjusting nonparametrically for the different distri-
butions of covariates in these two populations. The prototypical
example for nonparametric covariate-distribution adjustment is
the estimation of average treatment effects in treatment eval-
uation. Suppose some individuals or units receive a particular
treatment, e.g. a medical drug, participation in a training pro-
gramme or access to subsidized loans, whereas others do not.
To assess the effectiveness of treatment, we would like to com-
pare the outcome with treatment (Y 1

i ) and the outcome without
treatment (Y 0

i ) for the same individual. Since we cannot observe
any individual at the same time in both states, treatment evalu-
ation has to rely on a comparison of the observed outcomes of

the treated individuals with those of the non-treated individuals.
Because individuals are often not randomly assigned to treat-
ment but selected on the basis of certain characteristics X (e.g.
age, motivation, income), treated and non-treated will usually
differ in their covariates, which has to be taken into account. If
one knew that the true relationship between the outcome vari-
able and these covariates X was linear, linear projections (least
squares regression) could be used to adjust for these differences
in the covariates. Nonparametric matching estimators, on the
other hand, do not rely on such functional form assumptions
and proceed by first estimating conditional expectation func-
tions to eliminate selection bias and then averaging these to get
the population mean. If Di denotes whether an individual got
treated (Di = 1) or not (Di = 0) and X contains all confounding
variables,2 then E[Y 0 | X, D = 0] = E[Y 0 | X, D = 1] and the
counterfactual mean for the treated in the hypothetical case of
not getting treated is identified as E[E[Y | X, D = 0] | D = 1].

Matching estimators can also be used in many other situa-
tions to adjust for differences in the covariates. Missing data,
for example, poses substantial problems in many survey data
sets. Missing data on the outcome variable Y might also be a de-
liberate part of the sampling design (e.g. in clinical trials) when
collecting covariate information is much cheaper than collecting
information on the outcome variable. Very often the missingness
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is not completely random and for obtaining the population mean
of the outcome variable Y, we need to estimate the mean outcome
in the non-responding population. If sufficient covariate infor-
mation X is available such that, conditional on X, data is miss-
ing at random (Little and Rubin 1987), adjusting for the differ-
ences in the covariates among respondents and non-respondents
by a matching estimator gives the mean outcome for the non-
responding population.

As another example for the applicability of matching estima-
tors, consider the analysis of discrimination according to race or
gender. Differences in wages or earnings are partly due to differ-
ences in skills (type of education, job experience) between men
and women or between whites and blacks. To separate these from
the effects of discrimination, we need to adjust for observed skill
differences. A matching estimator would deliver, e.g., the mean
wage women would receive if they had the skills and human
capital endowments of men.

As a final example, matching estimators can be used to sim-
ulate the consequences of, e.g., demographic changes in the
population on the fertility rate, health care demand or the vot-
ing behaviour, in a scenario were individuals do not adjust their
behaviour to the changing environment.

The most popular matching estimator is pair-matching, which
proceeds by finding for each observation of the first popula-
tion the most similar observation of the second population. In
treatment evaluation, it matches to each treated individual the
most similar non-treated individual. For discrimination analy-
sis, it matches to each man the most similar woman, or vice
versa. When accounting for missing data, it matches to each
observation with missing outcome data the most similar ob-
servation with complete data. Similarity can be measured by
an index function or a distance metric, such as the Mahalanobis
distance. A particularly convenient index function is the propen-
sity score, which is the ratio of the density of the covariates in
the two populations.3 Rosenbaum and Rubin (1983) showed that
matching with respect to the (one-dimensional) propensity score
is consistent. For applications of pair-matching see e.g. Angrist
(1998), Dehejia and Wahba (1999), Gerfin and Lechner (2002)
or Lechner (1999).

Since pair-matching matches only a single observation to
each observation of the other population, it may have a rather
high variance. Abadie and Imbens (2001) have shown that pair-
matching is inefficient4 and may not even be

√
n-consistent. As

an alternative to pair-matching, Heckman, Ichimura and Todd
(1997, 1998) proposed local polynomial matching and showed
its

√
n-consistency and asymptotic normality. Local polynomial

matching, however, requires the choice of a bandwidth parame-
ter and, as in other fields of nonparametric regression, the esti-
mation results are likely to be rather sensitive to the bandwidth
value. Yet, optimal bandwidth choice for matching estimators
has not been analyzed so far.

In this paper, an approximation to the mean squared error
of local polynomial matching estimators is developed, which
could be used for a plug-in bandwidth selector. The accuracy
of this MSE approximation in finite samples is then examined,

and it turns out to be not very reliable for bandwidth choice in
small samples. As an alternative, the usefulness of conventional
cross-validation bandwidth selection is examined. Although not
being consistent, cross-validation performs rather well in small
samples, at least for a particular ridge matching estimator. For
other matching estimators, however, there remains scope for
improvement.

As a second contribution of this paper, the finite-sample prop-
erties of various matching and weighting estimators are com-
pared. Matching based on local linear regression performs rather
poorly and is often even worse than pair-matching. Matching
based on kernel regression or ridge regression is usually more
precise than pair-matching by about 15 to 40%. Ridge match-
ing often performs best and, in addition, is rather robust to the
simulation design and the bandwidth value. A weighting esti-
mator, as considered in Horvitz and Thompson (1952), Imbens
(2000) and Hirano, Imbens and Ridder (2003), on the other hand,
performed much worse than the matching estimators.5

Section 2 introduces the matching estimators and develops an
approximation to their MSE. Section 3 examines the accuracy of
this approximation in finite samples. Section 4 analyzes the finite
sample properties of matching estimators with cross-validation
bandwidth selection. In Section 5, the finite sample properties
of matching on an estimated propensity score are examined.
Section 6 concludes.

2. Covariate adjustment and optimal
bandwidth choice

Let Y ∈ � be an outcome variable of interest and X ∈ � be a
covariate.6 Suppose that observations on (Y, X ) are sampled in-
dependently from a source population and observations on X are
sampled from a target population. In treatment evaluation, the
non-treated are the source population and the treated are the tar-
get population. We are interested in estimating the mean of Y in
the target population. Let f0(x) be the density of X in the source
population and f1(x) be the density in the target population. Let
m(x) = E[Y | X = x] be the conditional mean function in the
source population. Denote the source sample by {Y 0

i , X0
i }n0

i=1 and
the target sample by {X1

j }n1
j=1. The counterfactual mean of Y in

the target population is

E1[Y ] =
∫

m(x) · f1(x) dx, (1)

which can be estimated by a matching estimator (Heckman,
Ichimura and Todd 1998) as

Ê1[Y ] = 1

n1

n1∑
j=1

m̂
(
X1

j

)
, (2)

where m̂(x) is a nonparametric regression estimator of m(x).7

The different matching estimators differ in how they es-
timate the conditional mean function m(x) from the source
sample {Y 0

i , X0
i }n0

i=1. Pair-matching estimates m(x) by first-
nearest neighbour regression and is widely used in the statistics
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literature.8 Restricting the estimation to only one neighbour,
however, is likely to be inefficient and alternative variants have
been considered recently. Heckman, Ichimura and Todd (1998)
suggested to estimate m(x) by local polynomial regression and
showed

√
n-consistency and asymptotic normality of the local

polynomial matching estimator.
Local polynomial regression is a class of nonparametric

regression estimators, including Nadaraya-Watson regression
(=local constant regression)

m̂ N W (x) = T0

S0
(3)

and local linear regression

m̂ll(x) = T0

S0
+ (x − x̄)

T1

S2
, (4)

where x̄ = ∑
X0

i K ( X0
i −x
h )/

∑
K ( X0

i −x
h ) and Sr = ∑

K ( X0
i −x
h )

(Xi
0 − x̄)r and Tr = ∑

Y 0
i K ( X0

i −x
h )(X0

i − x̄)r and K (·) is a sym-
metric kernel function and h a bandwidth parameter.9 Inserting
m̂ N W or m̂ll in (2) provides the kernel matching and local linear
matching estimator, respectively.10

Local linear regression is known for its optimality properties
(Fan 1993, Fan et al. 1997). However, in small samples, local
linear regression with a fixed bandwidth often leads to a very
rugged curve in regions of sparse data, see Seifert and Gasser
(1996). The denominator S2 in (4) can become very small, or
even zero with a compact kernel. Therefore, the local linear es-
timator has infinite unconditional variance and unbounded con-
ditional variance. Seifert and Gasser (1996) also showed that the
probability for the occurrence of sparse regions is substantial if
the X0

i observations are randomly spaced. Their simulation re-
sults reveal the gravity of this behaviour, demonstrating that the
mean integrated squared error of local linear regression explodes
at bandwidth values that are only slightly below the asymptot-
ically optimal bandwidth. For reliable small sample behaviour
Seifert and Gasser (1996, 2000) proposed to modify the local lin-
ear estimator by adding a ridging term to its denominator. Their
modified local linear estimator for the Epanechnikov kernel is

m̂Ridge(x) = T0

S0
+ (x − x̄)T1

S2 + τ
, (5)

with ridge term τ = 5
16 h · |x − x̄ |, see Seifert and Gasser

(2000). The ridge regression estimator is a weighted average of
the Nadaraya-Watson and the local linear regression estimator:

m̂Ridge(x) = m̂ll(x)α + (1 − α)m̂ N W (x),

where α = S2
S2+τ

∈ (0, 1]. For h converging to zero with growing
sample size, the ridge term τ goes to zero and α → 1. Hence, the
ridge regression estimator converges to local linear regression
with growing sample size, but has better variance properties in
finite samples.

In this paper, only matching with respect to a single covariate
is examined. In many applications, however, one needs to adjust
for many covariates to estimate the counterfactual mean. For

example, in treatment evaluation many confounding factors that
influenced treatment assignment have to be taken into account.
Nevertheless, the set-up of this paper still applies to those sit-
uations, because matching on the one-dimensional propensity
score is consistent for estimating the counterfactual mean, as
shown by Rosenbaum and Rubin (1983).11 Hence, instead of
adjusting for the different distributions of all covariates, it suf-
fices to adjust for the different distribution of a one-dimensional
function of the covariates. Let Z ∈ �k be a k vector of covariates
and let fZ | 0, fZ | 1 be the density of Z in the source and the target
population, respectively. Let P0/P1 denote the relative size of
the source to the target population. Define the (one-dimensional)
random variable X

X = fZ | 1(Z )

fZ | 1(Z ) + fZ | 0(Z ) P0
P1

(6)

as the propensity score.12 Then the expression (1) is identical to
covariate adjustment with respect to all characteristics Z:

E1[Y ] =
∫

E[Y | Z = z] · fZ | 1(z) dz.

Hence, matching with respect to the one-dimensional propensity
score (=propensity score matching) is often used when differ-
ences in the distribution of many covariates need to be accounted
for.13

2.1. Optimal bandwidth choice

Matching requires the choice of a smoothing parameter. In con-
ventional nonparametric regression it is usually attempted to
choose the bandwidth value that minimizes the mean integrated
squared error

MISE(h) = E

∫
(m̂(x ; h) − m(x))2 dx, (7)

and cross-validation is often used to estimate the optimal band-
width value, see Loader (1999).

However, minimizing MISE may not lead to optimal band-
width choices for the matching estimator. The MISE criterion
neglects f0 and f1, i.e. the location of the source and the target
population. Yet, precise estimation of m is particularly important
in regions where the target population is concentrated. Moreover,
by averaging over the imputed values m̂, the matching estimator
adds another smoothing step, which might change its sensitivity
to the bandwidth value. Instead of minimizing MISE, the band-
width value should be chosen to minimize the mean squared
error of the matching estimate (2).

To derive the asymptotic MSE approximation for the matching
estimator, I make use of the asymptotic linear representation of
local polynomial regression as developed in Heckman, Ichimura
and Todd (1998). A nonparametric estimator m̂(x) of m(x) at a
point x where f0(x) is bounded away from zero, on basis of the
sample {Y 0

i , X0
i }n0

i=1, is asymptotically linear if it can be written
as

m̂(x) − m(x) = 1

n0

n0∑
i=1

ψ
(
Y 0

i , X0
i , x

) + b(x) + R(x), (8)
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with the properties (i) E[ψ(Y 0
i , X0

i , X ) | X = x] = 0, (ii) plim

n
− 1

2
0

∑
b(X0

i ) < ∞ and (iii) n
− 1

2
0

∑
R(X0

i ) = op(1). The func-
tions ψ, b and R depend on smoothing parameters and therefore
depend on the sample size n0. (This dependence on n0 is kept
implicit in the notation.) The local influence function ψ has
mean zero and determines the local variance of the estimate.
b(x) is the local bias and R(x) is a remainder term. Under iid
sampling, m(x) and f0(x) being twice continuously differen-
tiable with second derivative Hölder continuous, the bandwidth
sequence satisfying n0h/ ln n0 → ∞ and n0h4 → c < ∞
and symmetric, compact and Lipschitz continuous kernel func-
tion with

∫
K (u)du = 0, the local constant and the local linear

regression estimator are asymptotically linear, see Heckman,
Ichimura and Todd (1998).

Inserting (8) in the matching estimator (2) gives the expression

1

n1

n1∑
j=1

m̂
(
X1

j

) = 1

n1

n1∑
j=1

(
m

(
X1

j

) + b
(
X1

j

) + R
(
X1

j

)

+ 1

n0

n0∑
i=1

ψ
(
Y 0

i , X0
i , X1

j

))
(9)

The bias of (9) is

E

[
1

n1

n1∑
j=1

(
m

(
X1

j

) + b
(
X1

j

) + R
(
X1

j

)

+ 1

n0

n0∑
i=1

ψ
(
Y 0

i , X0
i , X1

j

))]
− E1[Y ]

= E
[
m

(
X1

j

) + b
(
X1

j

) + R
(
X1

j

)] −
∫

m(x) f1(x) dx

=
∫

b(x) f1(x) dx, (10)

where the lower order remainder term is dropped. The variance
of (9) is

Var

(
1

n1

n1∑
j=1

(
m

(
X1

j

) + b
(
X1

j

) + R
(
X1

j

)

+ 1

n0

n0∑
i=1

ψ
(
Y 0

i , X0
i , X1

j

)))

= Var

(
1

n1

n1∑
j=1

(
m

(
X1

j

) + b
(
X1

j

) + R
(
X1

j

)))

+Var

(
1

n1n0

n1∑
j=1

n0∑
i=1

ψ
(
Y 0

i , X0
i , X1

j

))

because the covariance terms E[(m(X1
j ) + b(X1

j ) + R(X1
j )) ·

ψ(Y 0
k , X0

k , X1
l )] = E[E[(m(X1

j ) + b(X1
j ) + R(X1

j )) · ψ(Y 0
k , X0

k ,

X1
l ) | X1

j , X1
l ]] are zero since E[ψ(Y 0

i , X0
i , X ) | X = x] = 0.

The first variance term captures the variance due to the vari-
ation of m and the local bias b along x. With iid data this
term simplifies to after dropping the lower order remainder
term.

Var

(
1

n1

n1∑
j=1

(
m

(
X1

j

) + b
(
X1

j

) + R
(
X1

j

)))

= 1

n1
V ar

(
m

(
X1

j

) + b
(
X1

j

) + R
(
X1

j

))

= 1

n1

[ ∫
(m(x) + b(x))2 f1(x) dx

−
( ∫

(m(x) + b(x)) f1(x) dx

)2]
, (11)

The second variance term captures the local variance of the
nonparametric regression estimator. Summing up all covariance
elements yields

Var

(
1

n1n0

n1∑
j=1

n0∑
i=1

ψ
(
Y 0

i , X0
i , X1

j

))

= 1

n2
1n2

0

n1∑
j=1

n0∑
i=1

n1∑
l=1

n0∑
k=1

E
[
ψ

(
Y 0

i , X0
i , X1

j

)
ψ

(
Y 0

k , X0
k , X1

l

)]
.

(12)

The particular expressions for the local influence function ψ

are for kernel regression

ψ
(
Y 0

i , X0
i , x

) = εi · K
( X0

i −x
h

)
E

[
K

( X0
i −x
h

)] ,

and for local linear regression

ψ
(
Y 0

i , X 0
i , x

) = εi · (1, 0)

×
[

E
[
K

( X0
i −x
h

)]
E

[ X0
i −x
h K

( X0
i −x
h

)]
E

[ X0
i −x
h K

( X0
i −x
h

)]
E

[( X0
i −x
h

)2
K

( X0
i −x
h

)]
]−1

×
[

K
( X0

i −x
h

)
X0

i −x
h K

( X0
i −x
h

)
]

,

where εi = (Y 0
i − m(X0

i )), see Heckman, Ichimura and Todd
(1998, Theorem 3).

Denote the boundaries of the support of X by a and b, where
a may be −∞ and b may be ∞. Defining

µr (x, h) =
∫ (b−x)/h

(a−x)/h
ur K (u) du,
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and using the approximation

E

[(
X0

i − x

h

)r

K

(
X0

i − x

h

)]

=
∫ b

a

(
X0

i − x

h

)r

K

(
X0

i − x

h

)
f0

(
X0

i

)
d X0

i

= h

∫ (b−x)/h

(a−x)/h
ur K (u) f0(x + uh) du

= h

∫ (b−x)/h

(a−x)/h
ur K (u)( f0(x) + O(h)) du

= hµr (x, h) f0(x) + O(h),

where a change in variables and a Taylor series expansion of
f0(x + uh) = f0(x) + uh f ′

0(x) + o(h) = f0(x) + O(h) has been
used, the local influence functions ψ can be written as

ψ
(
Y 0

i , X0
i , x

) ≈ εi

h f0(x)
K ∗

(
X0

i − x

h
, x, h

)
,

where

K ∗
N W

(
X0

i − x

h
, x, h

)
= µ−1

0 (x, h) · K

(
X0

i − x

h

)

K ∗
ll

(
X0

i − x

h
, x, h

)

= µ2(x, h) − µ1(x, h) X0
i −x
h

µ0(x, h)µ2(x, h) − µ2
1(x, h)

K

(
X0

i − x

h

)

for Nadaraya-Watson and local linear regression, respectively.
These equivalence kernels K ∗() capture as well the interior as
the boundary region. In the interior these expressions simplify
considerably, because with a kernel function compact in [−1, 1],
the kernel moments µr (x, h) = µr do no longer depend on x
if b − x > h and x − a > h. Furthermore, with a symmetric
kernel, µr is zero for r odd, and µ0 = 1 for a kernel integrating
to one.

With these expressions, the variance term (12) can be further
examined. The summation terms in (12) can be distinguished
into three groups: n0(n0−1)n2

1 terms with i 
= k, and n0n1(n1−1)
terms with i = k and j 
= l, and n0n1 terms with i = k and
j = l. With iid sampling, all terms with i 
= k are zero because
the terms εi and εk factor and integrate to zero conditional on
X0

i and X0
k . Second, the n0n1(n1 −1) terms with i = k and j 
= l

can be expressed as

∫ b

a

∫ b

a

∫ b

a

σ 2
(
X0

i

)
h2

K ∗( X0
i −X1

j

h , X1
j , h

)
f0

(
X1

j

) K ∗( X0
i −X1

l

h , X1
l , h

)
f0

(
X1

l

)

· f1
(
X1

j

)
f1

(
X1

l

)
f0

(
X0

i

)
d X1

j d X1
l d X0

i

=
∫ b

a

∫ b−x
h

a−x
h

∫ b−x
h

a−x
h

σ 2(x)
K ∗(u, x − uh, h)

f0(x − uh)

K ∗(v, x − vh, h)

f0(x − vh)

× f1(x − uh) f1(x − vh) f0(x) du dv dx

with the change in variables u = (X0
i − X1

j )/h and v = (X0
i −

X1
l )/h and x = X0

i and σ 2
(
X0

i

) = Var[Yi | X0
i ]. Assuming that

f0 and f1 are differentiable, f1(x − uh) can be approximated
by a series as f1(x) − uh f ′

1(x) + o(h) = f1(x) + O(h). Also
the equivalent kernel K ∗(u, x − uh, h) ≈ K ∗(u, x, h) for small
values of h. Notice that this latter approximation is only relevant
for boundary points, since in the interior K ∗(u, x, h) does not
depend on x. Hence for small bandwidth values

≈
∫ b

a

∫ b−x
h

a−x
h

∫ b−x
h

a−x
h

σ 2(x)K ∗(u, x, h)K ∗(v, x, h)

· f 2
1 (x)

f0(x)
du dv dx =

∫ b

a

(
σ 2(x)

f 2
1 (x)

f0(x)

∫ b−x
h

a−x
h

K ∗(u, x, h) du

×
∫ b−x

h

a−x
h

K ∗(v, x, h) dv

)
dx =

∫
σ 2(x)

f 2
1 (x)

f0(x)
dx, (13)

since
∫ (b−x)/h

(a−x)/h K ∗(u, x, h)du = 1 for Nadaraya-Watson as well
as for local linear regression.

Finally, the n0n1 covariance terms with i = k and j = l can
be expressed as

∫ b

a

∫ b

a

σ 2
(
X0

i

)
h2

K ∗2( X0
i −X1

j

h , X1
j , h

)2

f 2
0

(
X1

j

) · f1
(
X1

j

)
f0

(
X0

i

)
d X1

j d X0
i

=
∫ b

a

∫ b−x
h

a−x
h

σ 2(x)

h

K ∗2
(u, x − uh, h)

f 2
0 (x − uh)

· f1(x − uh) f0(x) du dx

with the change in variables u = (X0
i − X1

j )/h and x = X0
i .

With f1(x − uh) = f1(x) + O(h)

≈
∫ b

a

σ 2(x)

h

f1(x)

f0(x)

∫ b−x
h

a−x
h

K ∗2
(u, x, h) du dx

= n0

∫
Var[m̂(x)] f1(x)dx, (14)

with Var[m̂(x)] = (
∫ (b−x)/h

(a−x)/h K ∗2
(u, x, h)du) σ 2(x)

n0h f0(x) (1 + op(1)),
see Ruppert and Wand (1994).

Collecting the n0n1(n1 − 1) covariance terms with i = k and
j 
= l and the n0n1 covariance terms with i = k and j = l gives
for expression (12)

Var

(
1

n1n0

n1∑
j=1

n0∑
i=1

ψ
(
Y 0

i , X0
i , X1

j

))

≈ 1

n0

∫
σ 2(x)

f 2
1 (x)

f0(x)
dx + 1

n1

∫
Var[m̂(x)] f1(x) dx .
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Combining this expression with (11) and the squared bias
gives the approximate MSE as a function of h as

MSE(h) ≈
( ∫

b(x) f1(x)dx

)2

+ 1

n1

[ ∫
(m(x) + b(x))2 f1(x)dx − θ2

]

+ 1

n0

∫
σ 2(x)

f 2
1 (x)

f0(x)
dx + 1

n1

∫
V ar [m̂(x)] f1(x)dx, (15)

where θ = ∫
(m(x) + b(x)) f1(x)dx . The first term in (15) is

the squared bias contribution to the MSE, while the second,
third and fourth terms represent the variance of local polynomial
matching. The second term stems from the variation of m(x)
and b(x) along x, the third term represents the covariances of
ψ and the fourth term the variances of ψ . The bias b(x) for
local polynomial regression of order p (i.e. p = 0 for Nadaraya-
Watson regression and p = 1 for local linear regression) for a
symmetric kernel with compact support in [−1, 1] is given by

E[m̂(x, h) − m(x)]

=
( ∫ (b−x)/h

(a−x)/h
u p+1 K ∗(u; x, h) du

)
m(p+1)(x)

(p + 1)!
h p+1

+
( ∫ (b−x)/h

(a−x)/h
u p+2 K ∗(u; x, h) du

)

×
(

m(p+1)(x)

(p + 1)!

f ′(x)

f (x)
+ m(p+2)(x)

(p + 2)!

)
h p+2

−�(x, h)
m(p+1)(x)

(p + 1)!

f ′(x)

f (x)
h p+2 + op(h p+2), (16)

with �(x, h) = µ2
1(x,h)

µ2
0(x,h)

for p = 0 and �(x, h) =
µ2

1µ2µ3+µ0µ
2
2µ3−µ0µ1µ

2
3−µ1µ

3
2

(µ0µ2−µ2
1)2 for p = 1, see Ruppert and Wand

(1994). (In the latter expression the dependence of the kernel
moments µ on (x, h) is suppressed to ease notation.) This MSE
approximation (15) with bias expression (16) is henceforth re-
ferred to as the two-terms approximation.

Simpler expressions are obtained when approximating local
variance and local bias by the respective expressions for inte-
rior points and retaining only the first leading term in the bias
approximation. Then the approximate MSE is

M SE(h) ≈
( ∫

b̄(x) f1(x) dx

)2

+ 1

n1

∫
(m(x) + b̄(x))2 f1(x) dx

− 1

n1

( ∫
(m(x) + b̄(x)) f1(x)dx

)2

+ 1

n0

∫
σ 2(x)

f 2
1 (x)

f0(x)
dx + µ̄0

n0n1h

∫
σ 2(x)

f1(x)

f0(x)
dx,

(17)

with b̄(x) = h2µ2( m ′(x) f ′
0(x)

f0(x) + m ′′(x)
2 ) for Nadaraya-Watson and

b̄(x) = h2µ2
m ′′(x)

2 for local linear regression, where µr =∫
ur K (u)du and µ̄r = ∫

ur K 2(u)du. This simpler expression
is henceforth referred to as the first-term approximation.

These approximations to the MSE differ substantially from
the mean integrated squared error criterion (7). Hence, con-
ventional bandwidth selectors are not consistent for local poly-
nomial matching and bandwidth selection for matching should
therefore attempt to minimize MSE (15) through the choice of
the bandwidth value. By estimating the components of the MSE
approximation (15) or (17), using a pilot bandwidth, a plug-in
bandwidth estimator for matching estimators can be developed.
For a plug-in bandwidth selector, the first-term approximation
(17) is much more convenient than the two-terms approximation
(15). However, since the local bias and variance expressions used
in (17) are for interior points and since matching estimators are
often used in situations where much of the density mass of the
target population is located in the boundary region of the source
population, a plug-in selector based on (15) might fare better.

Yet, before embarking on developing a data-driven bandwidth
selector, it is worthwhile to examine how well the asymptotic
MSE approximations accord with the true mean squared error
of matching estimators in small samples. If the MSE approxima-
tions (15) or (17) fare well in small samples, a plug-in bandwidth
selector may outperform conventional bandwidth selectors. On
the other hand, if the MSE approximations do not conform well
with the true MSE, a plug-in selector based on (15) or (17) would
be useful only for rather large datasets.

3. MSE approximation accuracy
in finite samples

To assess the accuracy of the MSE approximation in small
samples, the approximations (15) and (17) are computed
for a variety of simulation designs and compared to the
true MSE, which is simulated via Monte Carlo replica-
tions. The MSE approximations are analyzed for 6 dif-
ferent density combinations ( f0, f1) and 8 different re-
gression curves m. The six different density combinations
are ( f0, f1) = (N1, N2), (N1, N3), (N2, N1), (N2, N3), (N3, N1),
(N3, N2), where N1, N2 and N3 refer to the three truncated nor-
mal distributions displayed in Fig. 1. For example, with the den-
sity combination (N1, N2), X is drawn from N1 in the source
sample and from N2 in the target sample. The support of X
is always [0, 1]. With the density combinations (N1, N3) and
(N3, N1), the source and target population are more distinct than
with the other density combinations.

The Y observations are sampled from one of the eight regres-
sion curves depicted in Fig. 2,14 with an additive mean-zero,
uniform error term with standard deviation 0.1. (The dots in
Fig. 2 illustrate the signal-to-noise ratio.) Fig. 3 further shows
an exemplary draw from the density combination (N3, N1) and
regression curve m4.
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Fig. 1. Design densities N1, N2, N3 of X

Fig. 2. Regression curves m(x).

Fig. 3. Exemplary draw from density combination (N3, N1) and m3
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Fig. 4. Approximations to the MSE for Kernel matching (curve m3, sample size 200)

3.1. MSE approximation accuracy in finite samples

For each of these 48 designs, the MSE approximations are com-
puted for different bandwidth values. The true MSE is simulated
by Monte Carlos simulations. The results for regression curve m3

and sample size n0 = n1 = 200 are exemplary shown in Fig. 4
(for kernel matching) and Fig. 5 (for local linear matching).15

The results for the other regression curves and for the sample
size n0 = n1 = 1000 are given in the supplementary appendix.

Fig. 4 shows the true MSE (solid line), the two-term approxi-
mation (15, dotted-dashed) and the first-term approximation (17,
short-dashed). For comparison, also the MISE approximation is
shown (7, long-dashed). The graph in the upper left refers to
the density combination (N1, N2), the upper middle to (N1, N3)
and so forth. Hence, the two pictures in the middle correspond
to the more difficult estimation settings where the two densities
overlap less than in the four other settings (cf. Fig. 1). The MSE
is scaled by 103. The MISE approximation is scaled by 102 to
fit into the same graph and thus only its shape and location of
its minimum can be interpreted. Since the MISE approximation
does not take into account the location of the target population,
its graph is identical for the density combinations (N1, N2) and
(N1, N3) as well as for (N2, N1) and (N2, N3) and for (N3, N1)
and (N3, N2). Hence its graph changes only in every second
picture.

At a first impression, the MSE approximations are quite close
to the true MSE in relatively large bandwidth regions, particu-
larly for sample size 1000. They respond to the location of the
target population and resemble the simulated MSE in level and

shape, with the two-term approximation usually being somewhat
more precise. Yet, for being useful for bandwidth selection, it
is important that the minima of the MSE approximation and of
the true MSE largely coincide. From Fig. 4 and the figures in
the supplementary appendix, however, we find that both approx-
imations are often rather flat for bandwidth values below 0.10.
Particularly the first-term approximation does not rise steeply
for small bandwidth values (despite increasing local variance)
since the last term in (17) is divided by n1n0. Also the two-term
approximation is often quite flat for bandwidths smaller than
0.10 and does not increase very much for small bandwidth val-
ues. By contrast, the true MSE sometimes explodes for small
bandwidth values, particularly with the more difficult density
combinations (N1, N3) and (N3, N1). Thus, a bandwidth selector
based on the MSE approximations would likely tend to under-
smooth in the sense of choosing very low bandwidths at which
the true MSE might be very large. Undersmoothing might be
even of greater risk if, as usual, the elements of the MSE ap-
proximations are not known and need to be estimated. The steep
increase of the MSE approximations at large bandwidth values,
which always sets in at lower bandwidths than for the true MSE,
would prevent choosing a bandwidth too large. But the nearly
flat MSE approximation at lower bandwidth values would com-
plicate the bandwidth choice and might often result in choosing
too small bandwidth values. Because of this limited sensitivity
to low bandwidth values, the MSE approximations (15) and (17)
seem not to be very suited as a basis for data-driven bandwidth
selection in small samples.
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Fig. 5. Approximations to the MSE for local linear matching (curve m3, sample size 200)

The MISE approximation, on the other hand, displays more
curvature around its minimum and increases steeply at small
and at large bandwidth values. Although neither its shape nor its
level resemble the true MSE at all, the true MSE at the MISE-
minimizing bandwidth value is often not much higher than at its
optimal bandwidth value. Moreover, no obvious pattern of over-
or undersmoothing can be detected, suggesting that a conven-
tional bandwidth selector might still be a useful starting point
for kernel matching.

The results for local linear matching are given in Fig. 5 and
in the supplementary appendix. The MSE approximations, par-
ticularly the two-term approximation, are often rather different
from the true MSE. The true MSE frequently has local min-
ima while the MSE approximations are always globally convex.
Moreover, the MSE approximations would many times suggest
a rather small bandwidth value, whereas the minimum of the
true MSE is often at very large bandwidths. The MISE approx-
imation, on the other hand, would often fail as well in picking
a suited bandwidth value. Hence bandwidth selection seems to
be more difficult for local linear matching.

4. Bandwidth choice by cross-validation

The previous simulation results indicated that the derived
asymptotic MSE approximations do not approximate the true
MSE very accurately in small samples. Hence, a plug-in band-
width selector based on the asymptotic MSE approximation is
unlikely to perform well in small samples. On the other hand, the
bandwidth that minimizes MISE appeared often to be closer to
the optimal bandwidth value than those suggested by the MSE
approximations. Hence, a conventional bandwidth selector, such
as cross-validation, might even perform well in small samples,

although it is not consistent for large samples since it does not
lead to asymptotic undersmoothing as required for

√
n consis-

tency of the matching estimator.16

In the following, the performance of cross-validation as a
practical data-driven bandwidth selector for small samples is
analyzed. By comparing the MSE with bandwidth selected by
cross-validation to the MSE at the optimal bandwidth (as given
by the solid line in, e.g., Figs. 4 and 5), the precision loss and thus
the potential for developing better bandwidth selectors can be
assessed. If the precision losses are rather small, cross-validation
may be a useful approach in small samples.

Leave-one-out cross-validation for nonparametric regression
chooses the bandwidth h as

arg min
h

1

n0

n0∑
i=1

(
Y 0

i − m̂−i

(
X0

i ; h
))2

,

where m̂−i (x) is the leave-one-out estimate of m(x) obtained
from the source sample without observation i.17 Notice that the
cross-validation criterion depends only on the source sample ob-
servations; the target sample {X1

j }n1
j=1 does not affect the band-

width choice. This is another reason, besides the asymptotic
undersmoothing, why cross-validation cannot lead to optimal
bandwidth choices because the location of the target population
is neglected.

With this data-driven cross-validation bandwidth selector, the
MSE of kernel matching and local linear matching is simulated
for all simulation designs of the previous section. In addition,
the MSE of pair-matching and of ridge matching is simulated.
The simulation results are summarized in Tables 1 and 2.18

Table 1 shows the simulated MSE of the matching estima-
tors relative to the benchmark pair-matching estimator, whereas
Table 2 gives the MSE relative to the MSE at their optimal
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Table 1. MSE of matching with CV bandwidth selection, relative to pair-matching

n0 = n1 = 40 n0 = n1 = 200 n0 = n1 = 1000 n0 = 200, n1 = 40 n0 = 40, n1 = 200

Densities Kernel Loclin Ridge Kernel Loclin Ridge Kernel Loclin Ridge Kernel Loclin Ridge Kernel Loclin Ridge

m1 N1-N2 97 118 89 84 96 79 83 58 60 81 77 73 112 166 112
N1-N3 91 266 87 71 154 65 71 119 83 80 131 73 92 319 91
N2-N1 89 133 82 81 91 78 77 72 73 76 82 76 108 199 94
N2-N3 79 134 73 75 86 77 76 64 83 76 79 76 83 199 79
N3-N1 70 154 69 132 239 121 109 228 112 111 192 105 66 158 67
N3-N2 72 98 68 83 94 82 79 111 82 81 83 78 62 108 61

m2 N1-N2 71 138 68 66 111 61 65 76 67 56 84 51 81 150 77
N1-N3 94 171 96 76 145 71 64 148 59 67 157 62 100 159 99
N2-N1 91 100 80 88 97 68 82 93 65 61 77 50 108 108 95
N2-N3 70 121 59 63 78 60 57 58 52 55 54 55 84 144 72
N3-N1 75 147 123 103 75 98 98 129 120 89 95 88 74 146 128
N3-N2 56 123 80 62 74 64 62 79 65 54 67 53 55 129 90

M3 N1-N2 110 101 79 78 75 63 70 73 62 69 73 58 137 112 96
N1-N3 141 133 113 73 103 64 52 157 59 67 106 61 140 132 124
N2-N1 57 117 71 54 77 64 56 55 65 46 56 46 64 148 84
N2-N3 70 93 62 64 75 63 66 60 49 58 62 62 78 108 70
N3-N1 65 197 58 58 167 56 60 138 51 57 155 55 62 203 58
N3-N2 80 105 67 75 86 62 61 78 77 67 71 61 90 119 72

m4 N1-N2 60 130 59 56 81 57 65 98 61 51 67 48 65 155 67
N1-N3 54 270 53 57 154 58 58 111 70 54 151 54 50 260 54
N2-N1 72 127 75 64 75 63 66 59 61 53 55 58 85 160 92
N2-N3 58 130 58 55 69 53 64 42 47 38 49 37 66 157 72
N3-N1 47 173 54 75 148 79 68 275 74 65 137 65 48 179 54
N3-N2 51 126 61 62 90 62 67 86 56 46 64 46 57 150 74

m5 N1-N2 56 141 75 56 112 63 54 70 53 47 82 49 60 165 88
N1-N3 50 263 101 56 174 51 62 153 54 49 196 44 51 273 101
N2-N1 118 87 78 111 88 68 114 134 69 68 72 52 153 95 96
N2-N3 50 92 59 51 77 52 65 102 49 31 44 32 59 113 69
N3-N1 136 121 125 153 90 130 161 125 127 116 93 101 149 124 132
N3-N2 79 96 75 100 88 57 119 117 57 59 62 38 94 104 88

m6 N1-N2 101 88 90 93 83 81 87 84 95 81 80 82 123 90 102
N1-N3 107 94 97 94 97 86 95 158 75 84 98 81 112 87 100
N2-N1 92 123 83 84 89 76 87 91 67 81 82 79 103 157 94
N2-N3 75 87 79 70 81 74 55 69 60 64 73 73 79 91 90
N3-N1 176 194 171 135 247 106 106 116 96 107 157 97 196 214 196
N3-N2 129 105 111 110 105 87 90 72 76 84 86 76 186 123 154

m7 N1-N2 102 71 66 98 78 83 113 57 97 74 69 66 134 66 65
N1-N3 126 58 55 124 94 97 109 75 106 98 68 80 137 53 53
N2-N1 89 71 66 92 74 73 89 74 76 66 65 63 111 69 68
N2-N3 85 71 64 89 69 68 88 76 56 69 68 63 105 69 68
N3-N1 126 49 53 117 76 98 90 54 108 101 72 77 131 46 53
N3-N2 102 70 66 100 76 80 120 59 85 76 75 63 128 66 66

m8 N1-N2 114 84 91 123 106 87 125 117 68 82 83 67 138 84 107
N1-N3 148 111 141 180 163 162 157 138 140 138 119 120 157 114 149
N2-N1 60 92 61 61 90 57 57 112 51 48 66 47 69 110 66
N2-N3 118 90 101 104 94 87 115 119 92 82 87 74 149 95 129
N3-N1 54 155 120 61 115 59 71 116 69 59 113 56 50 157 131
N3-N2 70 105 93 67 98 66 78 120 62 69 85 70 68 125 107

Mean 87 123 81 85 104 75 83 102 74 71 90 65 98 137 91
Median 80 117 75 77 90 68 77 92 67 68 79 63 91 127 89

Note: MSE of kernel matching (kernel), local linear matching (loclin) and ridge matching (ridge). MSE is given relative to the MSE of pair-matching
(in%). Bandwidth values chosen by Akaike penalised cross-validation. The first column indicates the regression curve. The second column indicates
the density combination. The rows ‘Mean’ and ‘Median’ give the mean and median, respectively, over the 48 different designs.
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Table 2. MSE of matching with CV bandwidth selection, relative to optimal bandwidth

n0 = n1 = 40 n0 = n1 = 200 n0 = n1 = 1000 n0 = 200, n1 = 40 n0 = 40, n1 = 200

Densities Kernel Loclin Ridge Kernel Loclin Ridge Kernel Loclin Ridge Kernel Loclin Ridge Kernel Loclin Ridge

m1 N1-N2 108 127 119 103 118 109 112 78 90 119 120 133 103 141 111
N1-N3 104 165 114 106 124 107 113 127 126 115 156 147 105 170 109
N2-N1 121 169 131 103 113 131 108 93 120 119 123 169 111 197 108
N2-N3 108 186 121 104 122 123 100 79 126 134 200 199 105 182 99
N3-N1 258 133 97 334 235 118 141 218 127 350 237 134 250 134 127
N3-N2 109 114 105 116 124 114 100 142 133 149 175 166 108 111 107

m2 N1-N2 169 139 126 101 127 104 107 92 107 111 107 112 140 117 118
N1-N3 116 190 116 102 198 111 121 154 170 101 245 126 112 176 106
N2-N1 126 113 120 120 122 111 114 138 109 98 120 118 114 113 105
N2-N3 108 188 111 102 114 105 119 90 92 103 101 124 113 168 105
N3-N1 792 203 164 105 107 103 101 150 153 112 141 104 751 239 164
N3-N2 133 141 151 160 105 114 133 108 132 203 118 133 116 143 158

m3 N1-N2 125 147 116 104 97 111 131 94 100 105 98 122 129 153 112
N1-N3 137 183 121 100 141 122 80 208 106 100 122 123 131 208 127
N2-N1 111 127 122 104 103 107 101 88 123 118 98 98 106 132 128
N2-N3 105 131 103 101 104 101 113 78 79 100 112 119 111 140 103
N3-N1 106 180 113 106 169 111 99 197 114 108 198 117 103 190 114
N3-N2 108 139 104 107 114 103 98 104 116 102 119 122 114 142 99

m4 N1-N2 129 205 111 126 107 114 141 136 132 262 154 166 101 173 107
N1-N3 266 418 115 312 186 131 367 134 140 392 238 134 232 388 141
N2-N1 167 149 105 104 114 105 114 114 92 133 126 174 137 131 120
N2-N3 143 234 110 139 117 110 116 84 114 220 171 156 115 212 105
N3-N1 476 426 158 297 102 102 93 190 104 364 112 96 465 416 183
N3-N2 195 201 109 184 107 103 157 130 95 319 124 124 174 183 146

m5 N1-N2 115 165 137 113 102 112 94 86 90 124 116 105 107 166 142
N1-N3 185 232 255 258 257 121 300 291 91 246 342 118 185 233 281
N2-N1 143 135 106 152 113 108 169 180 99 108 135 119 166 120 107
N2-N3 149 141 121 159 116 104 121 238 98 189 109 108 138 142 117
N3-N1 141 156 135 133 136 121 142 191 176 124 157 117 149 162 135
N3-N2 110 141 126 133 117 101 218 179 90 110 138 113 113 124 122

m6 N1-N2 102 100 105 103 102 101 115 101 132 101 113 119 104 110 107
N1-N3 100 128 152 98 139 160 121 178 97 101 129 132 101 169 177
N2-N1 105 146 103 106 115 105 108 103 85 107 116 122 116 171 106
N2-N3 107 112 107 100 108 104 71 100 85 101 102 109 103 124 118
N3-N1 109 239 114 104 169 100 106 138 148 106 145 113 108 277 116
N3-N2 108 122 106 108 117 118 97 95 98 103 108 124 119 123 108

m7 N1-N2 110 109 103 113 110 102 185 79 133 103 101 101 122 110 101
N1-N3 108 135 109 113 164 100 111 99 118 107 107 100 111 149 107
N2-N1 115 105 101 129 107 105 125 134 134 103 99 101 132 109 101
N2-N3 111 108 101 129 101 99 120 108 77 110 102 102 128 113 104
N3-N1 111 123 109 107 135 102 104 86 122 108 118 97 109 134 105
N3-N2 108 107 103 118 109 102 155 93 113 103 105 92 116 110 98

m8 N1-N2 106 105 118 108 116 137 122 132 97 102 115 142 114 105 111
N1-N3 111 178 113 104 306 107 88 195 98 103 190 104 115 190 113
N2-N1 151 118 117 155 122 104 99 174 84 227 113 104 128 134 106
N2-N3 113 127 119 122 107 125 144 135 149 103 118 128 118 112 113
N3-N1 155 202 290 221 139 118 229 168 134 192 157 119 147 221 351
N3-N2 107 135 140 106 127 102 133 169 85 113 110 100 105 187 158

Mean 150 162 124 134 131 111 130 135 113 146 139 123 146 166 127
Median 112 141 115 108 116 107 115 131 111 110 119 119 115 146 111

Note: MSE of kernel matching (kernel), local linear matching (loclin) and ridge matching (ridge). MSE is given relative to the MSE at the optimal
bandwidth value (in%). Bandwidth values chosen by Akaike penalised cross-validation.See note below Table 1.
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bandwidth value. The relative MSE is given in percent. The first
columns refer to the symmetric samples sizes n0 = n1 = 40
and n0 = n1 = 200 and n0 = n1 = 1000. The last columns
refer to the asymmetric samples sizes: n0 = 200, n1 = 40 and
vice versa. n0 = 200, n1 = 40 refers to a situation where the
source sample is much larger than the target sample. This corre-
sponds to the usual situation in treatment evaluation, where the
number of control observations is much larger than the number
of treated individuals. On the other hand, n0 = 40, n1 = 200
refers to a situation where only n0 = 40 control observations are
available, which are matched to n1 = 200 treated observations.
The rows refer to the different regression curves m1 to m8 and
the 6 density combinations. The last two rows give the average
over all simulation designs.

In Table 1, entries below 100% indicate that the respective
matching estimator with cross-validation bandwidth selection
performed better than pair-matching, whereas entries above indi-
cate a worse result. As a general finding, kernel and ridge match-
ing performed usually better than pair-matching. On the other
hand, local linear matching is often worse than pair-matching,
except for the sample size (n0 = 200, n1 = 40), where the
source sample is much larger than the target sample. Another
exception is the linear regression curve m7, where local linear
matching achieves substantial reductions in MSE by choosing
large bandwidth values. Ridge matching has for all sample size
configurations always the lowest MSE on average. For symmet-
ric sample sizes (n0 = n1), its average efficiency gains vis-à-vis
pair-matching increase from about 19% (median 25%) for sam-
ple size 40 to about 26% (median 33%) for sample size 1000.
Kernel and local linear matching improve their relative position
to pair-matching with growing sample size, too. These improve-
ments, however, are much less pronounced for kernel matching:
the MSE reductions are 13% in samples of size 40 and 17% for
sample size 1000. Local linear matching performs significantly
worse than pair-matching in small samples and seems to break
even only at sample size 1000. For non-symmetric sample sizes,
all local polynomial estimators become by another 10%-points
more precise if the source sample is much larger than the target
sample (n0 = 200, n1 = 40). The MSE of ridge matching is then
about 35% below that of pair-matching. On the other hand, if
the source sample is smaller than the target sample and thus the
number of control observations is small (n0 = 40, n1 = 200),
pair-matching becomes relatively more efficient because it uses
the few control observations repeatedly. Only ridge matching
still realizes significant reductions in MSE of about 10% vis-à-
vis pair-matching.

In addition to these average precision gains, ridge matching
further performs only rarely much worse than pair-matching. For
sample sizes 40 and 200, its MSE is only in 2 of the 48 simulation
designs more than 30% larger than the MSE of pair-matching,
only once for sample size 1000, never in the sample size combi-
nation 200–40, and 5 times for sample size 40–200. For kernel
matching these frequencies are more than twice as large, and they
are furthermore much larger for local linear matching, which
performs even for sample sizes 1000 and the favourable sample

size combination n = 200, n1 = 40 in more than 8 out of 48
simulation designs by more than 30% worse than pair-matching.
This demonstrates that ridge matching not only performs bet-
ter on average, but also that it is rather robust to the simulation
design.

Table 1 showed that local polynomial matching estimators
with cross-validation bandwidth choice can indeed yield more
precise estimates than pair-matching. From the previous sec-
tions, however, we know that cross-validation does not lead to
optimal bandwidth choices. To assess the efficiency loss due to
the cross-validation bandwidth choice, Table 2 gives the MSE
of the various matching estimators relative to the MSE at their
optimal bandwidth values.19 This indicates the potential for the
development of improved bandwidth selectors. A value of 150%,
for example, indicates that matching with cross-validation leads
to a 50% higher MSE compared to a situation where the op-
timal bandwidth is known. Notice that several entries in Table
2 are smaller than 100%, indicating a lower MSE with cross-
validation than at the simulated optimal bandwidth. Although
this is largely due to noise in the simulations (particularly for
sample size 1000 with only relatively few replications), ratios
smaller than 100% could indeed occur, because the data-driven
bandwidth selector chooses the bandwidth conditional on a given
dataset, whereas the simulated optimal bandwidths are uncon-
ditional.

For small samples (n0 = 40 or n1 = 40), the relative MSE is
around 150% for kernel matching, 160% for local linear match-
ing and 125% for ridge matching. This efficiency ratio improves
markedly for all three estimators when the sample size increases
from 40 to 200, but does not improve further when the sample
size is increased to 1000. For samples of size 200 or 1000, the
MSE of kernel and local linear matching is about 30% higher
than at the optimal bandwidth. For ridge matching it is about
15% higher.

Very large efficiency losses often occur for kernel and lo-
cal linear matching with the more difficult density combinations
(N1, N3) and (N3, N1), usually together with a bandwidth choice
below the optimal bandwidth value. In general, the bandwidths
chosen by cross-validation are on average smaller than the op-
timal bandwidths20 for kernel and local linear matching in all
sample size combinations, while no such clear pattern can be
detected for ridge matching. However, this does not imply that
selecting larger bandwidths would generally have been prefer-
able for kernel or local linear matching. Hence, the development
of better bandwidth selectors might be worthwhile for the kernel
and local linear matching estimators, but its scope seems to be
limited for ridge matching.

4.1. Sensitivity to the bandwidth value

The previous simulations with cross-validation bandwidth se-
lection indicated a superior performance of kernel and ridge
matching over local linear matching. Ridge matching, in partic-
ular, was most robust to the simulation design. The relatively
weak performance of local linear matching, however, cannot
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Fig. 6. Simulated MSE for regression curve m3 (sample size n0 = n1 = 200)

be explained by first-order asymptotic theory, since local linear
regression and ridge regression are asymptotically equivalent
(see appendix). In addition, Section 3 already indicated that the
asymptotic expressions may not be very reliable in samples of
this size.

The reason for the better finite-sample performance of ridge
matching seem to be the variance problems of local linear re-
gression with small bandwidth values. Seifert and Gasser (1996)
showed that the unconditional variance of the local linear re-
gression estimator is infinite and that the conditional variance
is unbounded in small samples. They demonstrated (page 269f)
that the variance becomes extremely large for bandwidth values
only slightly below the optimal bandwidth value (where optimal
refers to mean integrated squared error). For the matching es-
timator, to achieve

√
n-consistency some undersmoothing with

respect to the MISE-optimal bandwidth is required, which aggra-
vates even further the problems with small bandwidth values. By
adding a ridge term to the denominator, the conditional variance
of the local linear ridge regression estimator becomes bounded.
Therefore, the MSE of ridge matching will not increase as much
for small bandwidth values as it does for the pure local linear
matching estimator. Hence, the MSE of ridge matching should
generally be flatter and consequently less sensitive to the band-
width choice. This is further examined below.

The finite-sample differences between the matching estima-
tors with cross-validation bandwidth selection could originate
from two sources: Differences in the minimum value of the MSE
and differences in the curvature of the MSE around its mini-
mum. Whereas the minimum value shows the potential of the
estimator, the curvature indicates the risk when cross-validation

does not find the optimal bandwidth. This latter aspect may be
particularly relevant in small samples, since cross-validation is
known for rather variable bandwidth choices. To gain an in-
sight into the relevance of these two sources, Fig. 6 and the
corresponding figures in the supplementary appendix show the
simulated true MSE for different bandwidth values for the de-
signs of Section 3. Figure 6 displays the MSE of pair-matching
(horizontal line), kernel matching (short-dashed), local linear
matching (long-dashed) and ridge matching (solid) for the re-
gression curve m3 and sample size n0 = n1 = 200.21

Some general patterns emerge from Fig. 6, which are also
found in many of the graphs for the other simulation designs.
The problems of local linear matching with small bandwidths
become obvious as its MSE becomes very large for bandwidth
values approaching zero due to the variance problems of lo-
cal linear regression (Seifert and Gasser 1996). Although local
linear matching often performs better than pair-matching for
some bandwidths, it does so usually only in rather narrow band-
width regions. Furthermore, the MSE of local linear matching
often has local minima in the more difficult density combina-
tions (N1, N3), (N3, N1) even with large sample sizes. This cor-
responds to the trade-off between choosing a small bandwidth to
estimate m(x) with low bias in regions of dense data and choos-
ing a large bandwidth to estimate m(x) with less variability in
regions of sparse data. It might be difficult for a data-driven
bandwidth selector to distinguish between these minima to find
the global minimum.

For kernel and ridge matching the results appear more
favourable. Frequently kernel matching outperforms pair-
matching in bandwidth regions from about h = 0.05 to 0.15.
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However, at larger bandwidths its MSE increases steeply. Ridge
matching appears much less sensitive to bandwidth choice and
its MSE explodes less often at very small or large bandwidth
values. Commonly its MSE is quite flat and lies below the
MSE of pair-matching in bandwidth regions from h = 0.03 to
0.25.

Another way to assess robustness is to look at the average
MSE in a region around the optimal bandwidth. Considering
a neighbourhood of span 0.2 around hopt , i.e. if h were drawn
randomly from the interval [hopt − 0.1, hopt + 0.1], the aver-
age efficiency gain of kernel matching relative to pair-matching
is still 8% (median 16%) and for ridge matching 25% (median
34%) for sample size 200. In contrast, local linear matching
would lead on average to a 71% higher MSE than pair-matching
(median increase −2%). These figures are similar for samples of
size 40 when allowing for a neighbourhood of span 0.4 around
hopt and for sample size 1000 with neighbourhood-span 0.15.
For the sample size combination (n0 = 40, n1 = 200) the ro-
bustness of ridge matching to bandwidth choice becomes even
more apparent. If the bandwidth is randomly selected from the
interval hopt ± 0.2 the MSE of ridge matching is on average
still 13% (median 26%) lower than the MSE of pair-matching,
whereas kernel matching on average would have a 12% (median
increase 6%) larger MSE, and the MSE of local linear matching
would be 2 1

2 times the MSE of pair-matching (median increase
15%).

Hence, the better small-sample performance of ridge match-
ing seems largely be due to the lower curvature of its
MSE.

5. Matching with estimated propensity score

Propensity score matching is a convenient and popular method
when a large number of characteristics Z ∈ �k needs to be
adjusted for. In practice, however, the propensity score (6) is
usually unknown and needs to be estimated. In this section, the
performance of pair, kernel, local linear and ridge matching with
an estimated propensity score X̂ is examined.

Samples of covariates Z1, Z2, Z3 are drawn and the observa-
tions are assigned to the source and the target sample according
to the selection rule

Di = 1(α + Z ′
iβ + ε ≥ 0),

with ε a random error term. Observations with Di = 0 belong
to the source population and observations with Di = 1 belong
to the target population. The propensity score is given by

P(D = 1 | Z ),

and is estimated by maximum likelihood probit.
Z1 is a χ2

(1) random variable, Z2 is uniform[0,1] distributed,
and Z3 is either binary or normally distributed. Six dif-
ferent selection rules are examined, see Table 3. The ratio
n0/n1 of source to target observations is random and around
one.

Table 3. Selection equation

Model Selection equation Z3i εi

1 Di = 1(Z1i + Z2i + Z3i − 0.5 < εi ) N (0, 1) N (0, 4)
2 Di = 1(Z1i − Z2i + 2.5Z3i − 0.5 < εi ) D U (0, 12)
3 Di = 1(Z1i − Z2i + Z3i − 0.5 < εi ) N (0, 1) N (0, 4)
4 Di = 1(Z1i + Z2i − Z3i − 0.5 < εi ) N (0, 1) N (0, 4)
5 Di = 1(−Z1i − Z2i + 2.5Z3i < εi ) D U (0, 12)
6 Di = 1(2Z1i − Z2i + 2.5Z3i − 1.5 < εi ) D U (0, 49

3 )

Note: Error N (0, σ 2) stands for normal mean-zero random errors with
variance σ 2, error U (0, σ 2) denotes a uniform random error term with
mean zero and variance σ 2. Variable Z1 is χ 2

(1) divided by
√

2, variable
Z2 is uniform U (0, 1), and variable Z3 is normal in models 1, 3, and 4
and a dummy variable in the other models.

Table 4. Outcome equations

Model Outcome equation with normal error

1 Yi = Z1i Z2i + Z 2
3i + √

Z1i + ui

2 Yi = −Z1i + Z2i + ui

3 Yi = Z1i · 1(Z3i > Z2i ) + ui

4 Yi = Z1i Z3i + Z 2
2i + √

Z1i + ui

5 Yi = −Z2i + Z3i + ui

6 Yi = Z1i + Z3i · 1(Z1i > Z2i ) + Z2i + ui

Note: The outcome variable Yi is observed only for the non-participants,
i.e. the observations with Di = 0. The error term ui ∼ N (0, 1).

The outcome variable is generated from one of the six regres-
sion curves of Table 4, disturbed by an additive normal error
term.

For these 36 different simulation designs, the mean squared
error of pair, kernel, local linear and ridge matching with es-
timated propensity score is simulated.22 Samples of size n =
n0 + n1 = 200, 500, and 2000, respectively, are considered.
The simulation results relative to the MSE of pair-matching (in
percent) are given in Table 5, where the columns one and two
indicate the selection rule and the regression curve. More de-
tails can be found in Tables C1 to C3 in the supplementary
appendix.

For all sample sizes, the local polynomial matching estimators
are usually substantially superior to pair-matching. The relative
efficiency of kernel and ridge matching vis-à-vis pair-matching
seems to decrease somewhat with growing sample size from re-
ductions in MSE of 32% (42%) at sample size 200 to 24% (35%)
at sample size 2000 for kernel matching (ridge matching). On
the other hand, the efficiency gains of local linear matching are
stable at about 21%. Although kernel matching has on average
a lower MSE than local linear matching, it seems to be less ro-
bust to the selection rule and regression curve, as it performs in
about 7–9 out of the 36 designs worse than pair-matching. With
local linear matching this occurs only in 3–4 designs. The MSE
of ridge matching is never larger than that of pair-matching for
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Table 5. MSE of matching with estimated propensity score, relative to pair-matching

n0 = n1 = 200 n0 = n1 = 5000 n0 = n1 = 2000

Di Yi Kernal Locin Ridge Kernal Locin Ridge Kernal Locin Ridge

1 1 93 108 71 79 129 73 78 143 76
2 31 77 52 38 86 60 68 91 81
3 45 75 46 55 76 43 80 74 50
4 106 93 69 114 91 67 114 83 66
5 22 64 42 22 64 41 20 52 40
6 102 94 91 106 90 123 124 77 177

2 1 59 59 51 55 61 53 46 48 62
2 67 72 67 64 74 63 50 73 61
3 64 61 51 54 61 51 48 46 44
4 57 76 56 55 66 53 49 90 50
5 89 64 62 76 64 62 74 62 61
6 67 64 54 64 64 56 57 48 51

3 1 37 99 42 43 130 43 52 188 48
2 117 65 66 135 67 76 177 90 117
3 103 83 63 132 101 69 177 76 85
4 105 88 69 117 79 68 107 78 77
5 60 85 47 52 90 45 51 94 44
6 60 85 63 89 79 67 123 55 50

4 1 91 103 72 83 128 72 69 177 77
2 31 80 52 38 93 63 86 83 82
3 24 77 42 22 85 37 19 55 32
4 30 78 41 29 88 39 32 81 40
5 61 89 48 53 79 44 51 88 45
6 103 74 54 120 73 54 123 74 67

5 1 66 96 62 60 79 60 56 72 75
2 68 85 63 72 77 65 71 69 67
3 39 66 52 43 69 49 43 63 49
4 65 103 57 66 89 59 85 52 69
5 98 83 78 96 76 89 113 74 97
6 66 86 67 66 75 63 58 71 70

6 1 76 57 51 71 57 52 90 62 57
2 67 68 63 65 64 60 65 65 63
3 54 63 53 51 59 51 49 60 56
4 57 70 56 56 70 56 61 85 48
5 108 61 59 100 68 61 113 70 62
6 63 71 56 63 66 54 65 61 60

Mean 68 78 58 70 80 60 76 79 65
Median 65 77 56 64 76 60 67 74 61

Note: MSE of kernel matching (kernal), local linear matching (loclin) and ridge matching (ridge). MSE is given relative to the MSE of pair-matching
(in%). Bandwidth values chosen by Akaike penalised cross-validation. The first column indicates the selection rule Di . The second column indicates
the outcome equation Yi . the rows ‘Mean’ and ‘Median’ give the mean and median, respectively, over the 36 different designs.

sample size 200, only once for sample size 500, and twice for
sample size 2000.

Concerning variance and bias, the results are similar to the
previous. Pair-matching and local linear matching are nearly
unbiased, whereas about 25% of the MSE of kernel matching
and about 20% of the MSE of ridge matching are due to squared
bias. Given their lower average MSE, this indicates again that
reducing local variance at the cost of incurring bias could be

beneficial. For detecting systematic under- or oversmoothing of
the cross-validation bandwidth selector, the local polynomial
matching estimators are also evaluated at 0.7, 0.8, 0.9, 1.1, 1.2,
and 1.3 times the bandwidth selected by cross-validation. For
kernel matching smaller bandwidths would on average have
been preferable, whereas local linear matching would have been
slightly better off with larger bandwidths. Again, ridge matching
is hardly affected by changes in the bandwidth value.
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6. Conclusions

In this paper, the problem of optimal bandwidth choice has
been analyzed and the finite-sample properties of various match-
ing estimators been examined. An asymptotic approximation to
their MSE has been derived and its accuracy in finite samples
investigated. However, the approximations did not appear to be
sufficiently reliable in small samples for being useful as the basis
for a plug-in bandwidth selector.

On the other hand, conventional cross-validation turned out
to be a quite fruitful method for bandwidth selection, albeit
not being asymptotically optimal. Particularly, matching based
on a modified local linear regression estimator of Seifert and
Gasser (1996, 2000) appeared to be rather insensitive to band-
width choice. Moreover, the potential for further efficiency gains
through better bandwidth selection seems to be rather limited for
ridge matching. As another main result of this paper, the relative
ordering of the various estimators in terms of mean squared error
remained remarkably stable across sample sizes and simulation
schemes: ridge matching always turned out to be superior to all
other estimators, followed by kernel matching. The relative or-
dering among pair-matching, local linear matching and weight-
ing estimators is less clear-cut. Local linear matching is suscep-
tible to regions of sparse data and sensitive to bandwidth choice.
The weighting estimator is sensitive to trimming and its relative
performance worsens with increasing sample size. Weighting
without trimming, however, fails completely, and further us-
age of the weighting estimator would require the development
of an appropriate method for estimating the optimal trimming
level.

The MSE of ridge matching was on average about 25% smaller
than the MSE of pair-matching when matching on an observed
covariate. On the other hand, when matching on an estimated
propensity score, the reduction in MSE is about 40%. Hence,
pair-matching performs even worse with an estimated propen-
sity score. Pair-matching becomes less precise (relative to all
other estimators) when matching on estimated covariates, be-
cause it compares each target sample observation with only one
source sample observation. Although the observations within
each matched pair are supposed to have identical characteris-
tics, they might be rather different if the propensity score is
imprecisely estimated. Hence matching each target sample ob-
servation to many source sample observations (as in local poly-
nomial matching) reduces not only the susceptibility of the es-
timate with respect to the variability in Y but also with respect
to the variance of the estimated propensity scores. For kernel
matching these precision gains are about 15 and 30%, respec-
tively, but with scope for improvement through better bandwidth
selection.

A reduction in MSE of about 40% means that pair-matching
needs almost 70% more observations to achieve the same pre-
cision as ridge matching. If the source sample is larger than the
target sample, which is often the case in treatment evaluation

with a large control sample, the precision gains of local polyno-
mial vis-a-vis pair-matching are even larger.

Appendix

Asymptotic MSE of ridge matching

In the following the mean squared error for ridge regression is
examined. The ridge regression estimator (5)

m̂Ridge(x) = T0

S0
+ δT1

S2 + τ
,

with δ = x − x̄ , can be written as

= (s2 + τ )t0 − s1t1
(s2 + τ )s0 − s2

1

,

where sr = ∑
K ( X0

i −x
h )(X0

i − x)r and tr = ∑
Y 0

i K ( X0
i −x
h )

(X0
i − x)r are centered at x only.23 Define further s̄r = ∑

K 2

( X0
i −x
h )(X0

i − x)r . For h → 0 and with standard regularity con-
ditions, see e.g. Fan and Gijbels (1996),

sr = E[sr ] + Op(
√

Var(sr ))

= nhr+1( f µr + h f ′µr+1 + Op(h2 + 1/
√

nh)),

and

s̄r = E[s̄r ] + Op(
√

Var(s̄r ))

= nhr+1( f µ̄r + h f ′µ̄r+1 + Op(h2 + 1/
√

nh)),

where f is shorthand for f0(x) and m for m(x). For a symmetric
kernel µr is zero for r odd, and µ0 = 1 for a kernel integrating
to one.

For the terms tr , the conditional expectations and covariances
are

E
[
tr | X0

1, . . . , X0
n0

] =
∑

K

(
X0

i − x

h

)(
X0

i − x
)r

m
(
X0

i

)

=
∑

K

(
X0

i − x

h

)(
X0

i − x
)r

(
m(x) + m ′(x)

(
X0

i − x
)

+ m ′′(x)

2

(
X0

i − x
)2 + Op

((
X0

i − x
)3))

= m(x)sr + m ′(x)sr+1 + m ′′(x)

2
sr+2 + Op(sr+3),

and

Cov
(
tk, tl | X0

1, . . . , X0
n0

)

=
∑

K 2

(
X0

i − x

h

)(
X0

i − x
)k+l

σ 2
(
X0

i

) = σ 2s̄k+l ,

under the assumption of a constant variance σ 2
(
X0

i

) = σ 2.
With these preliminaries and after some algebra, the condi-

tional bias of m̂Ridge given the sample is given by
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E
[
m̂Ridge(x) − m(x) | X0

1, . . . , X0
n0

] = (s2 + τ )E[t0] − s1 E[t1]

(s2 + τ )s0 − s2
1

− m(x)

= (s2 + τ )
(
ms0 + m ′s1 + m ′′

2 s2 + Op(s3)
) − s1

(
ms1 + m ′s2 + m ′′

2 s3 + Op(s4)
)

(s2 + τ )s0 − s2
1

− m(x)

= h2
h2 m ′′

2

(
f 2µ2

2 + Op(h2)
) + τµ2

nh

(
m ′ f ′ + m ′′

2 f + Op(h)
)

h2( f 2µ2 + Op(h2)) + τ
nh ( f + Op(h2))

= h2
h2 m ′′ f 2µ2

2
2 + Op(h4) + Op

(
τ

nh

)
h2 f 2µ2 + Op(h4) + Op

(
τ

nh

) ,

and the conditional variance is

Var
[
m̂Ridge(x) | X0

1, . . . , X0
n0

] = (s2 + τ )2Var(t0) + s2
1 Var(t1) − 2(s2 + τ )s1Cov(t0, t1)(

(s2 + τ )s0 − s2
1

)2

= σ 2 (s2 + τ )2s̄0 + s2
1 s̄2 − 2(s2 + τ )s1s̄1(

(s2 + τ )s0 − s2
1

)2

= σ 2

nh

h4µ2
2 f 2( f µ̄0 − h f ′µ̄1 + Op(h2)) + 2τ

nh h2µ2( f 2µ̄0 + Op(h2)) + τ 2

(nh)2 ( f µ̄0 + h f ′µ̄1 + Op(h2))

(h2( f 2µ2 + Op(h2)) + τ
nh ( f + Op(h2)))2

= σ 2

nh

h4µ2
2 f 2( f µ̄0 − h f ′µ̄1) + Op(h6) + Op

(
τh2

nh

) + Op

(
τ 2

n2h2

)
(
h2 f 2µ2 + Op(h4) + Op

(
τ

nh

))2

If

τ

nh
= op(h4), (18)

the impact of the ridging term on the conditional bias and the
conditional variance is overshadowed by the lower order terms
Op(h4) and Op(h6) in the above expressions. In this case, ridging
has no effect on the first-order asymptotic approximations to
mean and variance.

For the particular choice of the ridge parameter

τ = 5

16
h · |δ|

and using δ = −s1/s0, it follows

τ = 5h

16

∣∣∣∣ s1

s0

∣∣∣∣ = 5

16
h3

∣∣∣∣ f ′µ2 + Op(h)

f + Op(h2)

∣∣∣∣ = Op(h3).

Hence, for this ridge parameter, the condition (18) holds if

1

nh
= o(h). (19)

In nonparametric regression usually h is chosen such that 1
nh =

O(h4) to equilibrate variance and squared bias. For achieving√
n-consistency of the matching estimator, the squared bias has

to be of order n, such that 1
n = O(h4). In both cases, the condition

(19) is satisfied and ridge regression is asymptotically equivalent
to local linear regression.
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Notes

1. See e.g. Heckman, Ichimura and Todd (1997, 1998), Heckman et al. (1998)
and the Symposium on the Econometrics of Matching of the Review of
Economics and Statistics, 86 (2004).

2. X must contain all variables that affected D as well as Y 0. This is also known
as selection on observables (Heckman and Robb 1985), ignorable treatment
assignment (Rosenbaum and Rubin 1983), or conditional independence
assumption (Lechner 1999).

3. In treatment evaluation, it is the probability of being assigned to treatment
given the covariates x.

4. With respect to the semiparametric efficiency bound derived by Hahn
(1998).

5. The results for the weighting estimators as well as additional simulation
results are given in a supplementary appendix, available on the author’s
internet page.
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6. X could be an index of several characteristics. In particular, X could be
the propensity score, as discussed below. Hence, the restriction for X to be
one-dimensional is not as restrictive as it appears.

7. The common support condition for identification requires that f0(x) > 0
everywhere where f1(x) > 0.

8. In applications pair-matching appears in two variants: matching with and
without replacement. Matching without replacement reduces variance at
the cost of a larger bias. However, matching without replacement is only
possible if the source sample is larger than the target sample (n0 ≥ n1), and
it is likely to perform very poorly if n0 ≈ n1. Matching without replacement
is not further considered in this paper. For other pair-matching techniqes
see e.g. Gu and Rosenbaum (1993).

9. The notation follows Seifert and Gasser (2000). Throughout the study always
the Epanechnikov kernel K (u) = 3

4 (1 − u2)1[−1,1](u) is used.
10. Local linear regression with an infinite bandwidth value corresponds to

ordinary least squares regression. Therefore, least squares regression and
pair-matching can be considered as the two extremes of matching estima-
tors, where pair-matching uses the smallest local neighbourhood possible to
estimate m, whereas least squares regression uses all observations equally.

11. In applications also other forms of matching on a one-dimensional index
function, e.g. the Mahalanobis distance, are often observed.

12. The propensity score refers to the propensity of being in the target pop-
ulation. In treatment evaluation, the source population represents the non-
treated and the target population the treated. Let D indicate whether a person
got treated (D = 1) or not (D = 0). The treatment propensity given char-
acteristics ≥ is P(D = 1 | Z = z), which equals (6) by Bayes’ theorem.
As shown in Frölich (2002), the population size ratio P0

P1
in (6) is irrelevant

for consistency of propensity score matching and can be set to any arbitrary
number, e.g. P0

P1
= 1.

13. In the supplementary appendix, also the small sample properties of Horvitz
and Thompson (1952) weighting estimators are examined. Writing (1) as
E1[Y ] = ∫

m(x) f1(x)
f0(x) f0(x)dx = E0[Y f1(X )

f0(X ) ], then E1[Y ] can be estimated
by the weighting estimator

Ê1[Y ] = 1

n0

n0∑
i=1

Y 0
i

f̂ 1
(
X0

i

)
f̂ 0

(
X0

i

) .

If covariate adjustment needs to account for multiple covariates Z ∈ �k ,
then E1[Y ] = ∫

E[Y | Z = z] · fZ | 1(z) dz = E0[Y X
1−X ] P0

P1
, and weighting

by the propensity score X estimates E1[Y ] as

Ê1[Y ] = 1

n1

n0∑
i=1

Y 0
i

X0
i

1 − X0
i

.

14. Population regression curves m1 to m8: m1(x) = 0.4 + 0.25 sin(8x −
5) + 0.4 exp(−16(4x − 2.5)2), m2(x) = 0.5 − 4(x − 0.2)2 − 1.2 ln(1.1 −
x), m3(x) = 0.2 + 2(x − 0.9)2 + 5(x − 0.7)3 + 100(x − 0.6)10, m4(x) =
0.5 + 0.3e−2x sin(16x), m5(x) = 0.2 + √

x − 0.6(x − 0.1)2, m6(x) =
−0.1 + 0.25(x + 0.3)−1 + 0.4 exp(−24(x − 0.25)2) + 0.1 exp(−60(x −
0.75)2), m7(x) = 0.15 + 0.7x, m8(x) = 0.1 + 2(x − 0.35)2.

15. For sample size n0 = n1 = 40, MSE is computed/simulated at the 50
bandwidth values h = 0.02, 0.04, . . . , 1.00. For sample size 200, h =
0.01, 0.02, . . . , 0.50. For sample size 1000, h = 0.0075, . . . , 0.375.

16. For
√

n consistency of the matching estimator, the squared bias has to be of
order O( 1

n ). Cross-validation, however, chooses the bandwidth to balance

squared bias and variance, such that bias is of order O( 1
nh ).

17. Also the performance of the penalized cross-validation bandwidth selectors
of Akaike, Rice, and Shibata (see Pagan and Ullah (1999) p. 119) were com-
pared and led to similar results. The Akaike penalised cross-validation se-
lector chooses the bandwidth h as arg min exp ( 2

n0h )·∑n0
i=1(Y 0

i −m̂(X0
i ; h))2.

18. More details can be found in Tables B1 to B5 in the supplementary appendix.
As bandwidth search grid the same 50 bandwidth values as in the previous
section are used. Number of replications is 10’000; for sample size 1000
only 100 replications. In the supplementary appendix, also additional results
for the weighting estimator and for OLS are given.

19. I.e. relative to the minimum of their simulated MSE, as given for example
in Figs. 4, 5 and 6. These minimum MSE values are given in Tables A1 to
A5 in the supplementary appendix.

20. These are given in the Tables A1 to A5 in the supplementary appendix.
21. The MSE of kernel and of local linear matching are identical to the solid

lines of Figs. 4 and 5.

22. Between 5’000 to 20’000 replications; for sample size 2000 only 200 repli-
cations. For kernel, local linear and ridge matching, the bandwidth is chosen
by penalized cross-validation from the grid h = 0.01, 0.02, . . . , 0.80.

23. This follows from T0 = t0 and T1 = t1 + δt0 and T2 = t2 + 2δt1 + δ2t0 and
analogously for S0, S1 and S2. Since furthermore, S1 = 0 it follows with
S1 = s1 + δs0 that δ = −s1/s0.
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