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Abstract

Biological control of root pathogens – mostly fungi – can be achieved by the introduction of selected bacterial
inoculants acting as ‘biopesticides’. Successful inoculants have been identified among Gram-negative and Gram-
positive bacteria, often belonging to Pseudomonas spp. and Bacillus spp., respectively. Biocontrol activity of a
model rhizobacterium, P. fluorescens CHA0, depends to a considerable extent on the synthesis of extracellular
antimicrobial secondary metabolites and exoenzymes, thought to antagonize the pathogenicity of a variety of
phytopathogenic fungi. The regulation of exoproduct formation in P. fluorescens (as well as in other bacteria)
depends essentially on the GacS/GacA two-component system, which activates a largely unknown signal trans-
duction pathway. However, recent evidence indicates that GacS/GacA control has a major impact on target gene
expression at a post-transcriptional level, involving an mRNA target sequence (typically near the ribosome binding
site), two RNA binding proteins (designated RsmA and RsmE), and a regulatory RNA (RsmZ) capable of binding
RsmA. The expression and activity of the regulatory system is stimulated by at least one low-molecular-weight
signal. The timing and specificity of this switch from primary to secondary metabolism are essential for effective
biocontrol.

Abbreviations: AHL – N-acyl-homoserine lactone; ISR – induced systemic resistance; PCA – phenazine carboxylic
acid; PHL – 2,4-diacetylphloroglucinol; PLT – pyoluteorin; RBS – ribosome binding site; SAR – systemic acquired
resistance; TSO – tryptophan side-chain oxidase

Introduction

Plant roots provide an attractive, nutrient-rich envir-
onment to a large number of soil microorganisms.
The zone in the vicinity of the root surface, the
rhizosphere, typically contains 10 to 100 times more
microorganisms per gram than does bulk soil. The
rhizosphere microorganisms, in turn, can have a decis-
ive influence on plant health. Root pathogens, mostly
fungi, can penetrate the root tissue and cause extensive
damage to crop plants. Certain plant-beneficial mi-
croorganisms (especially strains belonging to Pseudo-
monas, Bacillus, Streptomyces and Trichoderma spp.)
are known to antagonize the effects of these pathogens
in the rhizosphere (Cook 1993; Thomashow & Weller
1995; Keel & Défago 1997; Emmert & Handelsman

1999; Ellis et al. 2000; Whipps 2001). From ecolo-
gical as well as from economical points of view, it
is particularly rewarding to analyze those situations
in which the effects of the beneficial (biocontrol) mi-
croorganisms outweigh those of the pathogens. Such
can be the case in natural disease-suppressive soils,
of which several examples have been studied in vari-
ous parts of the world. In addition, a certain level
of disease-suppressiveness can also be induced by
crop practice: in fields where wheat is cultivated
year after year, take-all disease (caused by Gaeu-
mannomyces graminis var. tritici) tends to become
less prevalent after 3 to 5 years. This take-all decline
phenomenon, like natural disease-suppressiveness, de-
pends to a large extent, but not solely, on the activities
of biocontrol microorganisms (Cook 1993).
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In his book ‘Biological control of microbial plant
pathogens’, R. Campbell (1989) concluded: “It is a
common story for biological control of soil diseases,
and take-all in particular, there seems to be some-
thing useful going on, but it cannot be really defined,
quantified and repeated successfully”. How has this
sceptical outlook evolved since the time when it was
written? Raaijmakers & Weller (2001) put it this way:
“In evaluating the last decade of research on bio-
logical control (of soil-borne plant pathogens), it is
clear that most biocontrol agents, including strains
of antibiotic-producing Pseudomonas spp., are still
too variable in their performance to be successfully
used as a common practice in agriculture and horti-
culture. This inconsistency has been attributed to a
number of factors, including the variable expression
of genes involved in disease suppression and poor root
colonization by the applied biocontrol agent.”

In the absence of a major commercial break-
through in agriculture, biocontrol research has tended
to focus on a few selected biocontrol strains with out-
standing properties and on the use of microcosms.
The main advantages of microcosms are that environ-
mental parameters, plant growth, and disease pressure
can be controlled and standardized. Biocontrol activity
of introduced strains can then be defined, quantified
and reproduced – as postulated by Campbell (1989).
In this reductionist approach, molecular genetic tech-
niques (construction of defined mutations, comple-
mentation, use of reporter genes to measure biocon-
trol gene expression) have played a major role and
have helped to unravel important biocontrol traits, e.g.
those pertaining to biocontrol strains of fluorescent
pseudomonads.

Biocontrol traits in biocontrol rhizobacteria

Several recent reviews (Haas et al. 2000; Bloemberg
& Lugtenberg 2001; Walsh et al. 2001) have presen-
ted essentially three important properties of effect-
ive biocontrol strains (with emphasis on fluorescent
pseudomonads): Rhizosphere competence, antibiosis,
and stimulation of plant defense (Table 1). Rhizo-
sphere competence includes bacterial traits that allow
aggressive root colonization down to the tip (such as
flagella, pili, lipopolysaccharide, the sss recombinase
assumed to play a role in surface variation, etc.) (De
Weger et al. 1987; Simons et al. 1996; Dekkers et al.
1998a, b, 2000; Lugtenberg & Dekkers 1999; Chin-
A-Woeng et al. 2000; Lugtenberg et al. 2001; Benizri

et al. 2001; Turnbull et al. 2001; Espinosa-Urgel et al.
2002). Rhizosphere competence also implies that the
biocontrol bacteria are well adapted to the utilization
of root exudate compounds (carboxylic acids, sugars,
certain amino acids) and possess specific, siderophore-
mediated iron uptake systems (Raaijmakers et al.
1995; Simons et al. 1997; Loper & Henkels 1999;
Lugtenberg & Dekkers 1999; Lugtenberg et al. 1999;
Rainey 1999; Kuiper et al. 2001; Lugtenberg et al.
2001; Mirleau et al. 2001). However, these nutritional
characteristics are not unique to biocontrol strains and
can also be found in deleterious or neutral rhizosphere
microorganisms.

Antibiosis as a biocontrol mechanism has received
most attention in the last decade of research on plant-
beneficial rhizobacteria (Thomashow & Weller 1995;
Keel & Défago 1997; Bender et al. 1999; Haas et
al. 2000). The finding that certain bacterial secondary
metabolites having antifungal properties (Table 1 lists
some of them) determine to a large extent the biocon-
trol performance of many rhizobacteria, has led, on
occasion, to a misnomer: such bacteria have some-
times been classified as ‘biopesticides’, as if they acted
to kill the pathogens in the rhizosphere. However, to
our knowledge, no biocontrol strain has ever been
shown to kill, let alone to eradicate a root pathogen
in situ. Several antimicrobial metabolites produced
by biocontrol strains – phenazine carboxylic acids
(PCA), pyoluteorin (PLT), 2,4-diacetylphloroglucinol
(PHL) – have been detected and quantified in rhizo-
sphere samples (Thomashow et al. 1990; Keel et al.
1992; Maurhofer et al. 1995; Bonsall et al. 1997;
Raaijmakers et al. 1999). The amounts usually found
(typically in the micromolar range) are insufficient to
massively kill pathogenic and other microorganisms in
the rhizosphere, but may locally protect the producer
bacteria in their ecological niche, i.e., the microcolony.
We therefore feel that the term ‘biopesticide’ should
be reserved to biological control agents that kill. For
example, the Bacillus thuringiensis endotoxin is a true
biopesticide: it kills lepidopteran pests.

Several lines of evidence have established an im-
portant role of diffusible or volatile antibiotic com-
pounds in the biological control of soil-borne diseases.
(i) Mutants of Pseudomonas spp. defective in the pro-
duction of specific antibiotic compounds (e.g. PCA,
PHL, PLT, hydrogen cyanide [HCN], etc.) have lost
part of their plant-protective ability (Thomashow &
Weller 1988; Voisard et al. 1989; Fenton et al. 1992;
Keel et al. 1992; Maurhofer et al. 1994a; Kraus &
Loper 1995; Rodriguez & Pfender 1997; Chin-A-
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Woeng et al. 1998; Tambong & Höfte 2001). (ii) Ge-
netically engineered, enhanced antibiotic expression
in biocontrol strains can result in improved biocontrol
activity (Maurhofer et al. 1992; 1995; Timms-Wilson
et al. 2000; Chin-A-Woeng et al. 2001; Delany et al.
2001). However, some compounds such as PHL and
PLT, at high concentrations, can also be phytotoxic
(Keel et al. 1992; Maurhofer et al. 1992; 1995). There-
fore, care has to be taken to avoid these phytotoxic
effects in genetically modified bacteria. (iii) Expres-
sion of antibiotic biosynthesis genes of fluorescent
pseudomonads occurs in the rhizosphere and can be
monitored by the use of reporter genes (Georgakopo-
lous et al. 1994; Kraus & Loper 1995; Wood et al.
1997; Chin-A-Woeng et al. 1998; Pierson III et al.
1998; Notz et al. 2001; Seveno et al. 2001). The level
and timing of antibiotic gene expression depends on
bacterial signaling pathways (see below) as well as on
environmental stimuli (Shanahan et al. 1992; Slininger
& Sheawilbur 1995; Duffy & Défago 1999; Schnider-
Keel et al. 2000; Notz et al. 2001). In particular, plant
root exudates can have a strong impact on the expres-
sion of these genes. For instance, the PHL biosynthetic
genes of P. fluorescens are more strongly expressed on
corn and wheat roots than on bean and cucumber roots
(Notz et al. 2001).

Resistance to pathogens can be induced in plants,
essentially via two signaling pathways. In the first
of these, termed systemic acquired resistance (SAR),
salicylate is a key signal molecule (Reymond &
Farmer 1998; van Loon et al. 1998). Upon interac-
tion with bacterial, viral or fungal necrotizing patho-
gens, many plants respond by enhanced salicylate
production, locally at the infection site as well as
systemically. The question then arises as to whether
root-colonizing, salicylate producing bacteria can ac-
tivate the SAR pathway. In several plant-pathogen
systems (e.g., tobacco – tobacco necrosis virus; bean –
Botrytis cinerea), salicylate supplied exogenously by
fluorescent pseudomonads has afforded some protec-
tion against the pathogens (Maurhofer et al. 1994a;
1998; DeMeyer & Höfte 1997; DeMeyer et al. 1999).
However, the degree of protection is below that ob-
tained with some functional analogs of salicylate used
to elicit SAR, i.e. 2,6-dichloro-isonicotinic acid or
benzothiadiazole.

The second, well-characterized defense pathway
in plants involves jasmonate as a signal (Reymond
& Farmer 1998). This mechanism can be activated
by certain non-pathogenic rhizobacteria and has been
designated induced systemic resistance (ISR) (van

Loon et al. 1998; Pieterse & van Loon 1999; Ton
et al. 2002). Although several bacterial traits (e.g.,
siderophores and lipopolysaccharides) have been pro-
posed to trigger ISR (Hoffland et al. 1995; Leeman
et al. 1995; 1996; van Wees et al. 1997), there is
at present no compelling evidence for a specific ISR
signal produced by bacteria. By contrast, in Arabidop-
sis thaliana several mutations have been described
which do not express ISR upon exposure to selected
rhizobacteria and which are blocked in the jasmonate-
ethylene signal transduction pathway (Pieterse et al.
1998; Knoester et al. 1999; Pieterse & van Loon
1999). Interestingly, best biocontrol results are ob-
tained by the combined activation of SAR and ISR
(van Wees et al. 2000).

Some plant-beneficial bacteria may owe their
biocontrol activity to predation on pathogens or to de-
gradation of virulence factors produced by pathogens.
However, in the case of fluorescent pseudomonads,
such biocontrol mechanisms (if they exist) have not
been documented in molecular detail.

Biocontrol of root diseases critically depends on
the population densities of the beneficial microor-
ganisms in the rhizosphere and typically occurs
above threshold levels of 105 to 106 CFU/g of root
for biocontrol pseudomonads (Raaijmakers & Weller
1998; Raaijmakers et al. 1999; Paulitz 2000). This ob-
servation implies, on the one hand, that under natural
conditions biocontrol bacteria represent, at most, a
few percent of all rhizosphere microorganisms. On the
other hand, local cell densities of biocontrol bacteria
in microcolonies (Chin-A-Woeng et al. 1997; Lugten-
berg & Dekkers 1999; Bloemberg et al. 2000; Lugten-
berg et al. 2001) are probably of paramount import-
ance in that the synthesis of antimicrobial compounds
is regulated by cell density-dependent signaling.

Importance of cell–cell signaling in biocontrol
bacteria

Bacterial populations can coordinate certain activit-
ies in concert with cell densities. This phenomenon,
which is commonly known as quorum sensing, relies
on the accumulation of extracellular signal compounds
(also termed pheromones), which are produced by
the bacteria themselves and which, above certain
threshold concentrations, modulate expression of tar-
get genes (Bassler 1999; De Kievit & Iglewski 2000;
Williams et al. 2000; Fuqua et al. 2001; White-
head et al. 2001). Quorum sensing-regulated functions
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Table 2. Strains of fluorescent pseudomonads in which the GacS/GacA two-component system has a demonstrated role in biocontrol

Strain Products under GacS/GacA control References

P. aureofaciens 30-84 Phenazine antibiotics, HCN, exoprotease, Chancey et al. 1999

N-acyl-homoserine lactones

P. chlororaphis PCL1391 Phenazine antibiotics, exoprotease, chitinase, Chin-A-Woeng 2000

N-acyl-homoserine lactones

P. fluorescens BL915 Pyrrolnitrin, HCN, 2-hexyl-5-propyl-resorcinol, Gaffney et al. 1994; Ligon et al. 2000

exoprotease

P. fluorescens CHA0 PHL, PLT, HCN, pyrrolnitrin, phospholipase C, Laville et al. 1992; Sacherer et al. 1994; Duffy

exoprotease, tryptophan side chain oxidase (=TSO) & Défago 2000; Bull et al. 2001

P. fluorescens F113 PHL, HCN, exoprotease Aarons et al. 2000; Sánchez-Contreras et al. 2002

P. fluorescens Pf-5 PHL, PLT, HCN, pyrrolnitrin, TSO Corbell & Loper 1995; Whistler et al. 1998

typically help the bacterial populations to maintain
themselves in ecological niches, e.g. by producing
extracellular antimicrobial metabolites or enzymes.
These extracellular products can be biocontrol factors
or virulence factors, depending on the nature of the
microbe–host interaction. In Gram-positive bacteria,
peptide pheromones are common, whereas in a range
of Gram-negative bacteria quorum sensing signal-
ing can be provided by N-acyl-homoserine lactones
(AHLs) (Bassler 1999; Williams et al. 2000). How-
ever, in many bacteria the cell density-related signals
have not yet been identified chemically (Bassler 1999;
Schauder et al. 2001).

Most AHLs are the products of an enzyme fam-
ily, named LuxI after the prototype enzyme of Vibrio
fischeri (De Kievit & Iglewski 2000; Fuqua et al.
2001). These enzymes charge an acyl chain from
acyl carrier protein onto homoserine lactone recruited
from S-adenosyl-methionine (Parsek et al. 1999). In
two biocontrol strains, P. aureofaciens 30-84 and P.
chlororaphis PCL1391, the LuxI homolog PhzI pro-
duces N-hexanoyl-homoserine lactone (HHL) as the
major product (Pierson III et al. 1998; Chin-A-Woeng
et al. 2001). HHL is recognized by the transcriptional
activator PhzR (a member of the LuxR family of AHL-
activated regulatory proteins), which is required for
expression of phenazine antibiotics in both biocon-
trol strains (Pierson III et al. 1998; Chin-A-Woeng
et al. 2001). Thus, in both strains, PhzI function is
important for biocontrol. In P. fluorescens F113, N-(3-
hydroxy-7-cis-tetradecenoyl)-homoserine lactone has
been detected, the product of a novel AHL synthase
(HdtS), which is not in the LuxI family (Laue et al.

2000). The biological functions of this novel AHL are
not yet known. In other well-characterized biocontrol
strains, e.g., P. fluorescens Pf-5 and P. fluorescens
CHA0, there is evidence for quorum signals which
are unrelated to AHLs but whose chemical struc-
tures await elucidation (Heeb et al. 2002; unpublished
results of our laboratory).

The expression of the quorum sensing regulat-
ory pair PhzR-HHL in the biocontrol strains P.
chlororaphis PCL1391 and P. aureofaciens 30-84
depends on the two-component system GacS/GacA
(Chancey et al. 1999; Chin-A-Woeng 2000). Sim-
ilarly, in the opportunistic pathogen P. aeruginosa
GacS/GacA positively regulates the quorum sensing
machinery (Reimmann et al. 1997; Pessi & Haas
2001). This widely conserved two-component system
consists of the sensor kinase GacS (equipped with a
primary autophosphorylation/transmitterdomain, a re-
ceiver domain, and a C-terminal secondary transmitter
termed Hpt) and the response regulator GacA (Fig-
ure 1; Heeb & Haas 2001). Phosphotransfer from the
GacS homolog BarA to the GacA homolog UvrY of
Escherichia coli has been demonstrated in vitro (Per-
nestig et al. 2001). The signal(s) activating GacS are
unknown. Interestingly, GacS/GacA control also oper-
ates in bacteria in which AHL signals have not been
detected, e.g. in the biocontrol strains Pf-5, CHA0
and BL915 of P. fluorescens (Whistler et al. 1998;
Haas et al. 2000; Ligon et al. 2000). In each case,
the GacS/GacA system is essential for the expres-
sion of extracellular biocontrol factors (Table 2) and
gacS/gacA mutants are strongly impaired in biocontrol
activity in several plant-pathogen systems.
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Figure 1. Proposed pathway of signal transduction involving the two-component system GacS/GacA in P. fluorescens CHA0. Activation of
the sensor kinase GacS by unknown signals triggers a phosphorelay (H [His]→ D [Asp]→ H [His] in GacS→ D [Asp] in GacA), activating
the response regulator GacA. Phosphorylated GacA positively controls transcription of regulatory RNA(s) such as RsmZ which sequester
translational repressors like RsmA, rendering the RBS of target mRNAs accessible for translation; hcn, apr, and phl denote biosynthetic
genes for HCN, alkaline protease, and PHL, respectively. Note that induction of rsmZ transcription by GacA may be indirect. Whether RsmZ
sequesters the RsmA homolog RsmE has not yet been determined.

How does the GacS/GacA system regulate biocon-
trol activity? At present, the genes directly controlled
by the transcriptional regulator GacA are unknown.
From a limited genetic analysis, it appears that the
structural genes encoding biocontrol factors are not
subject themselves to transcriptional control by GacA
(Heeb & Haas 2001). Rather, recent evidence obtained
from P. fluorescens CHA0 suggests that GacA control
of biocontrol functions is exerted essentially at a post-
transcriptional level (Blumer et al. 1999; Haas et al.
2000). This control involves several elements of which
only a few have been elucidated by mutational ana-
lysis. In P. fluorescens as well as in the plant pathogen
Erwinia carotovora, GacA positively controls the ex-
pression of an untranslated regulatory RNA, termed
PrrB (in strain F113) (Aarons et al. 2000), RsmZ
(in strain CHA0) (Heeb et al. 2002) or RsmB (in

E. carotovora) (Cui et al. 2001; Hyytiäinen et al.
2001). This RNA has a poorly conserved nucleotide
sequence, but a characteristic secondary structure con-
sisting of a number of stem-loop elements, with ribo-
some binding site (RBS) motifs in the loops (Figure 1).
In Gram-negative bacteria, RsmB and its homologs
are known to sequester a small RNA-binding protein,
termed RsmA (CsrA), thereby preventing mRNA de-
cay (Romeo 1998; Cui et al. 2001; Ma et al. 2001).
It is believed that RsmA binds to target mRNAs at or
near the RBS. Whether RsmA being a small protein of
about 7 kDa has some mRNA recognition specificity
itself, remains to be investigated. In strain CHA0,
overexpression of RsmZ or mutational inactivation of
RsmA cause derepression of the synthesis of biocon-
trol factors (Blumer et al. 1999; Heeb et al. 2002).
Conversely, overexpression of RsmA results in repres-
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sion of the synthesis of these factors (Blumer et al.
1999). These findings lead to a simplified model (Fig-
ure 1), according to which the GacS/GacA system,
towards the end of exponential growth, upregulates the
production of regulatory RNAs. These regulators then
may relieve translational repression of target mRNAs
by RsmA (Figure 1).

Clearly, a number of regulatory elements are still
missing from this hypothetical scheme. For instance,
an rsmZ-negative mutant of strain CHA0 is only
weakly affected in the production of extracellular
metabolites (Heeb et al. 2002). Hence, it is possible
that other GacA-controlled regulatory RNAs may ex-
ist. Similarly, RsmA may not be the sole RNA-binding
protein involved. In our recent experiments, we have
obtained evidence for a second, structurally related
RNA-binding protein, RsmE (unpublished results of
our laboratory). Several point mutations in the RBS
region preceding the hcnABC cluster (encoding HCN
synthase) abolish or alter regulation by GacA, RsmA
and RsmE (Blumer et al. 1999; unpublished results
of our laboratory), suggesting that both RsmA and
RsmE are downstream elements of the GacS/GacA
signal transduction pathway. It will be interesting to
see where exactly the AHL and non-AHL signals in-
teract in this regulatory cascade in various biocontrol
strains.
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