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Abstract Timber tree plantations are considered for rehabilitating forest biodiversity in

the tropics, but knowledge on determinants of faunal diversity patterns in such human-

modified forest landscapes is scarce. We quantified the composition of beetle assemblages

on three native timber species (Anacardium excelsum, Cedrela odorata and Tabebuia
rosea) planted on former pasture to assess effects of tree species identity, tree species

diversity, and insecticide treatment on a speciose group of animals in tropical plantations.

The beetle assemblage parameters ‘abundance’, ‘species richness’, ‘Chao1 estimated

species richness’ and ‘Shannon diversity’ were significantly reduced by insecticide treat-

ment for each tree species. Shannon diversity increased with stand diversification for

T. rosea but not for A. excelsum and C. odorata. Species similarity was highest (lowest

species turnover) between beetle assemblages on T. rosea, and it was lowest (highest

species turnover) for assemblages on insecticide-treated trees of all timber species. Con-

sidering trophic guilds, herbivorous beetles dominated on all tree species and in all

planting schemes. Herbivores were significantly more dominant on T. rosea and C. odorata
than on A. excelsum, suggesting that tree species identity affects beetle guild structure on

plantation trees. Insecticide-treated stands harbored less herbivores than untreated stands,
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but exhibited a high abundance of predator beetle species. Our study revealed that even

young pasture-afforestations can host diverse beetle assemblages and thus contribute to

biodiversity conservation in the tropics. The magnitude of this contribution, however, may

strongly depend on management measures and on the selected tree species.

Keywords Canopy arthropods � Community structure � Habitat heterogeneity �
Insect diversity � Reforestation � Tourist species

Introduction

Timber harvesting from natural forests and the conversion of forests to pastures and

agricultural land act as driving forces for an intensive exploitation and deforestation of

tropical forests (FAO 2011; Zahawi 2005 and references therein). This deforestation

strongly contributes to loss of global biodiversity and climate change (Houghton 2005;

Morris 2010). The establishment of forest plantations that are adapted to local conditions

(e.g. by using native tree species) is increasingly viewed as a promising strategy for

improving habitat quality and ecosystem functions (Lamb et al. 2005; Paquette and

Messier 2010) and for rehabilitating forest biodiversity (Goldman et al. 2008; Harvey et al.

2008; Brockerhoff et al. 2008).

However, to satisfy the demand for forest products (Kelty 2006; Lamb et al. 2005),

former plantation forestry, for example in Latin America, primarily concentrated on

industrial monoculture tree plantations utilizing fast growing exotic species such as teak

(Tectona grandis), eucalypts (Eucalyptus sp.) or pines (Pinus sp.) (Kelty 2006; Park and

Wilson 2007). In such plantations, broad-spectrum insecticides are regularly applied to

protect trees from herbivore attack (Cunningham et al. 2005; Garen et al. 2009), irre-

spective of the potential collateral impact on biodiversity. Hence, existent tropical tree

plantations may foster landscape homogenization and harbor low biodiversity (Bremer and

Farley 2010; Hartley 2002; but see Chey et al. 1998).

Recent research has emphasized that using native instead of exotic tree species planted

in mixed stands instead of monocultures may have favorable effects on local biodiversity,

as such systems are more closely linked to the local biota and may have more positive

effects on local ecosystem processes (Bremer and Farley 2010; Perfecto and Vandermeer

2008; Hartley 2002 and references therein).

However, there is very little empirical evidence that mixed stands of native species

harbor greater faunal diversity than monocultures, because most studies do not compare

similar sampling units (e.g. plant species per area unit) (Grimbacher et al. 2007). Instead,

many authors have estimated animal diversity in secondary versus primary forests, in

natural forests versus plantation systems, or in natural forests versus homogeneous agri-

cultural landscapes (e.g. Cunningham et al. 2005; Estrada et al. 1998; Harvey et al. 2006;

Philpott et al. 2008; Schulze et al. 2004). Furthermore, empirical studies that assess the

effects of insecticide applications on faunal diversity in managed tropical afforestation

systems are almost completely lacking.

Beetles are a representative faunal group that can be used to assess effects of man-

agement measures on biodiversity within and across spatial units. Arboreal beetles are

particularly diverse and well studied (Novotny and Basset 2005; Stork et al. 1997). They

belong to different trophic guilds including herbivores, predators and detritivores, con-

tribute greatly to biodiversity in forest habitats, and are involved in ecosystem processes

including nutrient fluxes and food web regulation (Erwin 1997; Lassau et al. 2005).
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Members of different guilds may show differential responses to environmental charac-

teristics such as tree species composition and individual tree traits (Evans 2001; Price et al.

2011). Accordingly, considering specifically changed environmental characteristics in

human-modified landscapes such as tree plantations might lead to testable hypotheses

linking species diversity, community ecology and ecosystem functioning (Bascompte

2009; Morris 2010; Tylianakis et al. 2007). In contrast to investigations of beetle assem-

blages in canopies of natural tropical rainforests (Adis et al. 1984; Davis et al. 1997; Erwin

and Scott 1980; Farrell and Erwin 1988), comprehensive studies on arboreal beetle

assemblages on native timber trees in tropical plantations are missing yet. However, it

would be important to know whether and how plantations alter particular mechanisms

governing diversity features compared to natural forest systems (Catterall et al. 2007;

Grimbacher et al. 2007). In rainforests, beetle assemblage composition was found to be

little influenced by tree species identity when focusing on direct bi-trophic interactions

between tree species and beetle assemblages (Wagner 2000). However, beetle assemblage

composition differed between tree species when supplementary biotic factors were

included such as phylogenetic distance between tree species (Mawdsley and Stork 1997;

Novotny et al. 2002), local distances between conspecific tree individuals (Barone 2000),

or changing habitat structure (Wagner 2000). These findings support the postulate that the

impact of tree species in modified, managed forestry systems on beetle assemblage

composition may strongly vary compared to the tree species’ impact in natural forests.

In the present study, we investigated the effects of tree species identity and stand

diversification on beetle diversity and composition of beetle assemblages on native timber

tree species newly established in monocultures and in 3-species mixed stands on former

pasture. Insecticide application was used in additional treatments to achieve baseline

information on changes in beetle assemblage composition through conventional protection

measures. Our specific questions were whether and how (1) tree species identity, (2) tree

stand diversification and (3) insecticide application affect beetle abundance, diversity and

trophic guild structure on the three native timber tree species Anacardium excelsum,

Cedrela odorata and Tabebuia rosea established in an afforestation plantation system.

Materials and methods

Study site and planting design

The study was conducted at an experimental site located in Sardinilla (9�1903000N,

79�3800000W), Province Colon, Central Panama. The elevation is around 70 m a.s.l., mean

annual precipitation is 2,350 mm, with 25–50 mm per month during the dry season

(January–April), and[250 mm per month during the rainy season (May–December) (Plath

et al. 2011a). Daily and seasonal temperatures are relatively constant throughout the year,

with annual daily maximum temperatures of 33.1 �C and annual mean daily minima of

21.7 �C. The original forest, classified as semideciduous lowland forest and probably

similar to the Barro Colorado Island forest (9�90000N, 79�510000W), was logged in 1952/53.

The site was used for agriculture during two years and then converted into pasture by

seeding grasses (Scherer-Lorenzen et al. 2007).

The tree species used in this study are Tabebuia rosea Bertol. (Bignoniaceae), Ana-
cardium excelsum (Bertero and Balb. ex Kunth) Skeels (Anacardiaceae), and Cedrela
odorata L. (Meliaceae). The three species co-occur in natural Panamanian forest ecosys-

tems (Croat 1978), and are planted to an increasing degree across Central America by
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forestry companies and local farmers, because of their suitability for reforestation activities

and as valuable timber (ITTO 2006; Wishnie et al. 2007). Potted seedlings of each tree

species were raised in a PRORENA (Proyecto de Reforestación con Especies Nativas)

nursery for 3 months before being planted on the pasture in August 2006. To support tree

establishment, 15 g of 12–72–12 N–P–K granular fertilizer was applied at the time of

planting to the bottom of each planting hole and covered with soil before planting, and

again 2 months after planting to each seedling on the soil surface. Seedlings of T. rosea,

A. excelsum and C. odorata were planted in stands of 36 trees, using a standardized six by

six Latin square design with a planting distance of 2 m. Tree individuals were arranged in

five planting schemes: (1–3) monocultures for all three timber species, (4) mixed stands

comprising the three species (management measure ‘stand diversification’), and (5) mixed

stands treated with the insecticide/nematicide carbofuran (carbamate, Furadan 10 GR,

5–25 g/tree depending on the effective area of canopy shade) applied to the soil every two

months, and by the insecticide cypermethrin (pyrethroid, Arribo EC 20 or 6 EC, 1.2 g/l

spray solution) applied to the foliage every 2 weeks after planting (management measure

‘insecticide treatment’). The five planting schemes were arranged at one locality, which

defined a coherent plot. This plot was replicated five times at different locations across the

study site. Concomitant vegetation in the plots was trimmed with machetes to 10 cm height

every 3 months during the rainy season (average vegetation height across plots before

cutting: 21 ± 5 cm; average tree height across plots at study onset: T. rosea: 84 ± 4.9 cm;

A. excelsum: 55.2 ± 3.7 cm; C. odorata: 45.5 ± 3.1 cm; average tree height across plots

at the end of the study: T. rosea: 201.1 ± 13.0 cm; A. excelsum: 120.4 ± 8.3 cm;

C. odorata: 83.4 ± 6.5 cm).

Insect survey

Insect counts were conducted for all timber trees on a biweekly basis from April 2007 (year

1) to April 2008 (year 2). No survey was conducted at the end of December of year 1 and in

the middle of February of year 2. Surveys were conducted as visual census of all insects on

a tree’s trunk and every leaf during the day and again during the night within a 24 h period.

Detected coleopteran individuals were assigned to morphospecies, which were deposited in

a reference collection created on the basis of initial survey samplings. Individuals of

species sampled for the first time, or individuals not immediately assignable to a mor-

phospecies (hereafter referred to as ‘species’), were collected, preserved in 70 % ethanol

and allocated to the reference collection. As in tropical regions many taxonomic beetle

groups and species remain to be formally described, morphotypes or morphospecies pro-

vide a practical solution to deal with previously unrecorded or unidentifiable organisms

(Basset et al. 2004; Hammond 1994).

The sequence of planting schemes surveyed within each plot was changed randomly.

In untreated and insecticide-treated mixed stands, all 36 trees were sampled (12 individuals

per tree species). In the monoculture stands, surveys were carried out on 12 trees for each

timber species. The studied tree individuals were randomly selected before starting the

insect assessments. To obtain planting positions comparable to the mixed stands, six trees

from the edge and six trees from the inner area were investigated each. In the insecticide-

treated mixed stands, the biweekly insecticide application was consistently conducted after

the biweekly visual insect surveys. In all planting schemes, surveys referred to the same

tree individuals for the whole research period. According to this sampling scheme, a total

of 540 trees were surveyed at the beginning of the investigation, with 60 trees per species

in each of the three planting schemes containing a particular tree species. The number of
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surveyed trees declined over the observation period of 12 months as a consequence of tree

mortality (T. rosea = 1.5 %, A. excelsum = 30.4 %, C. odorata = 54.1 %). This tree

mortality was not affected by planting schemes or herbivore impact, but appeared to be

strongly influenced by specific responses of the tree species to the given local site con-

ditions (for details see Plath et al. 2011b). Final analyses included all trees that survived

until the end of the sampling period.

Trophic guilds

We distinguished four main trophic guilds following the classification of Stork (1987) as

well as Moran and Southwood (1982): (1) herbivores, (2) predators, (3) detritivores,

scavengers and fungal feeders, and (4) tourists. The herbivore guild includes species

feeding on ‘‘higher’’ live plants. Predators feed on live animals, whereas detritivores,

scavengers and fungal feeders (comprised under the name ‘detritivores’ in the following)

feed on dead organic material and fungi. Tourists are non-feeding species that have no

intimate or lasting association with the plant during all of their life-stages (Basset et al.

2001; Moran and Southwood 1982). Since tourist species may act as prey of local pre-

dators, they were considered as part of the studied beetle assemblages. The assignment of

the identified beetle families to the four trophic guilds is given in Table 1.

Data analysis

Beetle abundance (N), species richness (S), Chao1 estimated species richness (SChao1), and

Shannon diversity (DH) were determined as parameters to describe beetle assemblage

composition. Beetle abundance and species richness were calculated as accumulated

number of individuals and species, respectively, found in day and night samples for each

tree individual and survey event. Singletons were considered as unique singletons (Basset

et al. 2008), i.e. species represented by a single individual in the combined data set

sampled during the 1-year survey period. We used the Chao1 species richness estimator

(for details see Chao 1984; Haddad et al. 2009; Magurran 2004) to estimate the number of

beetle species (SChao1) that can be expected to occur on the studied tree species during the

trees’ initial growth phase under differing environmental conditions (planting schemes).

The Shannon index was converted into a diversity measure using an exponential conver-

sion, following the approach outlined in Jost (2006) (see also Basset et al. 2008).

Effects of planting schemes and tree species identity on beetle assemblage composition

were assessed by linear mixed effect models permitting the consideration of multiple

nested random effect terms to account for pseudoreplication (Sobek et al. 2009a). Overall

effects of planting schemes and tree species identity were assessed using the individual

assemblage parameters as response variables (i.e. beetle abundance N, species richness S,

Chao1 values SChao1 and Shannon index DH), planting schemes and tree species as fixed

factors, and plot as a random factor, accounting for the nesting of planting schemes within

plots and species within planting schemes. The effects of planting schemes on beetle

assemblage composition for each focal tree species were assessed using linear mixed effect

models with individual assemblage parameters as response variables, planting schemes as

fixed factors and plot as a random factor, accounting for the nesting of planting schemes

within plots. To account for the potential impact of tree architecture on assemblage

parameters, tree height (measured at the end of the growing season in December of year 1)

was used as a covariate in each linear mixed effect model. Similarities (species identity) of

beetle assemblages were compared between tree species and between planting schemes
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within tree species and between tree individuals within planting schemes using Chao-

Sørensen abundance-based similarity index (for details see Chao et al. 2005; Colwell

2009). Assemblage similarities between conspecific tree individuals in the individual

planting schemes were compared by Kruskal–Wallis-tests.

The effects of planting schemes and tree species identity on trophic guild structure were

assessed by analyses of deviance of the percentage data as well as of the total individual

number, with quasi-poisson distribution errors to refit the general linear model (Crawley

2007). For the refitted model, F-tests were performed (see also Venables and Ripley 2002).

Effects of planting schemes were assessed for each trophic guild within each tree species

using one-factorial analyses of deviance with percentage individuals as response variable

and planting schemes as between-subject factors. Effect of tree species identity was tested

for each trophic guild using percentage individuals as response variable and tree species as

between-subject factors.

False discovery rate control, calculating the expected proportion of false-positives

among all significant hypotheses with P \ 0.05, was applied for multiple comparisons

following linear mixed effect models, Kruskal–Wallis-tests and analyses of deviance

(Garcia 2004; Verhoeven et al. 2005). Variables were transformed as necessary to account

for non-normal or heteroscedastic error terms. Species number was square root trans-

formed. Individual number and Chao1 were log10(x ? 1) transformed. Percentage values

of the single trophic guilds were arcsin-transformed.

Linear mixed effect models were performed using R 2.13.0 (2011, The R Foundation for

Statistical Computing). Sample-based rarefaction curves (Coleman curves), Chao1, Shannon

diversity and Chao-Sørensen similarity indices were computed with 50 randomizations using

EstimateS (Version 8.2.0, R. K. Colwell, 2009, http://purl.oclc.org/estimates). As EstimateS

computes Chao1 and Shannon diversity only for samples where the most abundant species is

represented with a minimum of 2 specimens (Colwell 2009), sample numbers (i.e. tree

individuals per planting scheme and plot) in estimator analyses differed from analyses on

beetle abundance and species richness (for details see Electronic Supplementary Material 1).

All remaining statistical analyses were conducted with SPSS 19.0.0 for Mac OS X (2010;

IBM SPSS Statistics, Chicago, IL, USA). For clarity, all figures show untransformed data.

Results

Composition of beetle assemblages and related trophic guilds

A total of 5975 beetle individuals belonging to 221 species (morphospecies) in 28 families

were collected (Table 1, see also Electronic Supplementary Material ESM 1). Chryso-

melidae were the dominating family with 4,203 individuals (70.3 %) followed by Cant-

haridae and Lampyridae with 558 (15.1 %) and 343 (5.7 %) individuals. Eighty-six species

occurred as singletons (38.9 %). The species richness of the collected beetles differed

greatly among the families, with more than two-fifths of the species belonging to

Chrysomelidae (42.1 %, n = 93) and nearly one-fifth belonging to Curculionidae (17.2 %,

n = 38). Fifty-five beetle species (24.9 % of total species number) occurred exclusively on

T. rosea, 33 species (14.9 %) on A. excelsum, and 22 species (10.0 %) on C. odorata.

Herbivores were the most abundant (n = 4735, 79.2 %) of the four trophic guilds

distinguished in this study, followed by the predators (n = 805, 13.5 %) (for details see

Table 1). The detritivore and the tourist guilds were represented by relatively few indi-

viduals (detritivores: n = 92, 1.5 %; tourists: n = 343, 5.7 %). Similar to individual
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abundance, the herbivores showed the highest absolute species richness (n = 159, 71.9 %)

of the four trophic guilds, followed by the detritivores (n = 30, 13.6 %), the predators

(n = 27, 12.2 %), and the tourists (n = 5, 2.3 %).

Effects of planting schemes and tree species identity on beetle assemblage composition

Management measures strongly affected different aspects of beetle assemblage composi-

tion in our experimental tree plantation (Table 2). Planting schemes significantly affected

overall beetle abundance (N: F2,8 = 24.4, P \ 0.001), species richness (S: F2,8 = 47.0,

P \ 0.001), Chao1 (SChao1: F2,8 = 16.8, P = 0.001), as well as Shannon diversity (DH:

F2,8 = 7.6, P = 0.014). Tree species identity, in contrast, had no significant impact on

these assemblage parameters (P [ 0.05 for each response variable). Significant planting

scheme 9 tree species interactions were found for beetle abundance (N: F4,24 = 4.75,

P = 0.006), species richness (S: F4,24 = 4.71, P = 0.006), and for Chao1 (SChao1:

F4,22 = 3.91, P = 0.015), but not for Shannon diversity (DH: F4,22 = 1.52, P = 0.230).

Intraspecific comparisons of beetle assemblage composition for each focal tree species

revealed significant effects of planting schemes (Table 2; Fig. 1), particularly insecticide

treatment. For each tree species, mean beetle abundance and mean species richness per tree

individual were significantly lower in the insecticide-treated stands compared to untreated

monocultures (T. rosea: N: P \ 0.001; S: P \ 0.001; A. excelsum: N: P = 0.016,

Table 2 Effects of tree height,
tree species identity and planting
scheme on beetle assemblage
composition described by indi-
vidual number, observed species
number, estimated species num-
ber (Chao1 richness estimator)
and diversity (Shannon diversity)
per tree individual (linear mixed
effect model, P \ 0.05)

Significant P-values are given in
bold

Beetle numDF denDF F P

Individual number

Tree height 1 369 164.88 <0.001

Species 2 24 3.37 0.051

Planting schemes 2 8 24.39 <0.001

Species 9
planting schemes

4 24 4.75 0.006

Species number

Tree height 1 369 146.21 <0.001

Species 2 24 2.27 0.125

Planting schemes 2 8 47.02 <0.001

Species 9
planting schemes

4 24 4.71 0.006

Chao1 species number

Tree height 1 259 57.27 <0.001

Species 2 22 2.10 0.147

Planting schemes 2 8 16.84 0.001

Species 9
planting schemes

4 22 3.91 0.015

Shannon diversity

Tree height 1 259 12.83 <0.001

Species 2 22 1.51 0.242

Planting schemes 2 8 7.59 0.014

Species 9
planting schemes

4 22 1.52 0.230
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S: P = 0.006; C. odorata: N: P \ 0.001; S: P \ 0.001), as well as compared to untreated

mixed stands (for all tree species N: P \ 0.01, S: P \ 0.01) (Fig. 1A, B). Similarly, Chao1

was significantly lower in insecticide-treated stands than in monocultures and untreated

mixed stands for both T. rosea (SChao1 in monoculture: P = 0.001; in mixture: P \ 0.001)

and C. odorata (SChao1 in monoculture: P = 0.002; in mixture: P = 0.011), whereas no

such effects were found in A. excelsum (P [ 0.05) (Fig. 1C). Effects of insecticide

treatment on Shannon diversity differed across the three tree species. Shannon diversity in

treated mixed stands was either significantly lower compared to untreated mixed stands

(T. rosea, P = 0.005), significantly lower compared to both untreated stand types (C. odorata,

P B 0.001), or not affected by insecticide treatment (A. excelsum, main effect: P [ 0.05).

Stand diversification significantly affected beetle diversity (DH) on T. rosea (Fig. 1D).

Diversity was significantly higher in untreated mixed stands than in monocultures

(P = 0.005). No effects of stand diversification on other studied assemblage parameters

were detected for any of the studied tree species (for each tree species and pairwise

comparison P [ 0.05).

Similarity of beetle assemblages among tree species and planting schemes

Species composition of beetle assemblages on the three tree species was relatively similar,

as indicated by Chao-Sørensen similarity values considering the total species pool of each

tree species in each planting scheme (A. excelsum/C. odorata = 0.893, T. rosea/A.
excelsum = 0.946, T. rosea/C. odorata = 0.975). Comparisons of the individual planting

schemes revealed lowest similarities between beetle assemblages on C. odorata in

insecticide-treated stands and beetle assemblages on A. excelsum in monocultures (0.763)

and untreated mixed stands (0.785), respectively (Table 3). Highest similarities occurred

between beetle assemblages on T. rosea in monocultures and T. rosea in untreated (0.965)

or treated mixed stands (0.952).

Intraspecific comparisons of beetle assemblage similarities between tree individuals

within the single planting schemes revealed significant differences for each tree species

(Fig. 2; T. rosea: H2,5251 = 936.2, P \ 0.001; A. excelsum: H2,3277 = 113.0, P \ 0.001,

C. odorata: H2,1596 = 152.3, P \ 0.001). For all tree species, beetle assemblages among

tree individuals within insecticide-treated stands were significantly less similar than

beetle assemblages among tree individuals within monocultures (T. rosea: U = 690488.0,

z = -28.0, P \ 0.001; A. excelsum: U = 551744.0, z = -6.6, P \ 0.001; C. odorata:

U = 83894, z = -12.3, P \ 0.001) or untreated mixed stands (T. rosea: U = 1078378.50,

z = -14.8, P \ 0.001; A. excelsum: U = 245919.0, z = -11.0, P \ 0.001; C. odorata:

U = 32044.0, z = -9.07, P \ 0.001). Beetle assemblages among tree individuals within

Fig. 1 Effects of different planting schemes on the beetle assemblages of the three timber species Tabebuia
rosea, Anacardium excelsum and Cedrela odorata planted in monocultures (MON) of each tree species, in
3-species mixed stands (MIX), or in 3-species mixed stands treated with insecticides (INS): A individual
number (N; mean ± SE), B species number (S; mean ± SE), C estimated species number (SChao1;
mean ± SE) and D Shannon diversity (DH; mean ± SE). Contrasting small letters refer to significant
differences among planting schemes for each single species (after false discovery rate control of pairwise
comparisons; linear mixed effect model, P \ 0.05). Number of analyzed trees per tree species and planting
scheme in (A) and (B): T. rosea: MON = 60, MIX = 60, INS = 59; A. excelsum: MON = 57, MIX = 42,
INS = 41; C. odorata: MON = 44, MIX = 26, INS = 26; number of analyzed trees in (C) and (D):
T. rosea: MON = 57, MIX = 57, INS = 35; A. excelsum: MON = 38, MIX = 30, INS = 24; C. odorata:
MON = 31, MIX = 18, INS = 13

b
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Kruskal–Wallis-test, P \ 0.05). Number of comparisons analyzed within each planting scheme and tree
species: T. rosea: MON = 1770, MIX = 1770, INS = 1711; A. excelsum: MON = 861, MIX = 1596,
INS = 820; C. odorata: MON = 946, MIX = 325, INS = 325

Table 3 Comparisons of species similarity (Chao-Sørensen abundance-based similarity index) of beetle
assemblages of the three timber species Tabebuia rosea, Anacardium excelsum and Cedrela odorata planted
in monocultures (MON) of each tree species, in 3-species mixed stands (MIX), or in 3-species mixed stands
protected by insecticides (INS)

T. rosea A. excelsum C. odorata

MON MIX INS MON MIX INS MON MIX INS

T. rosea

MON – 0.965 0.952 0.864 0.917 0.913 0.909 0.925 0.870

MIX – – 0.911 0.828 0.910 0.910 0.899 0.898 0.801

INS – – – 0.807 0.851 0.838 0.873 0.849 0.843

A. excelsum

MON – – – – 0.882 0.857 0.855 0.795 0.763

MIX – – – – – 0.850 0.861 0.852 0.785

INS – – – – – – 0.840 0.839 0.796

C. odorata

MON – – – – – – – 0.871 0.833

MIX – – – – – – – – 0.822

INS – – – – – – – – –

3434 Biodivers Conserv (2012) 21:3423–3444

123



monocultures were significantly more similar than within mixed stands for T. rosea
(U = 938730.0, z = -20.7, P \ 0.001) and less similar for A. excelsum (U = 602096.5,

z = -5.1, P \ 0.001). No differences in similarity were found for untreated stands of

C. odorata (P [ 0.05).

Effects of tree species identity and planting schemes on trophic guild structure

Tree species identity significantly affected the contribution of herbivores (F2,412 = 6.8,

P = 0.001) and of predators (F2,412 = 4.8, P = 0.009) to beetle guild structure (Fig. 3;

Table 4). Herbivores occurred in significantly lower percentages in beetle assemblages on

A. excelsum (58.8 ± 3.0 %) than in assemblages on T. rosea (71.4 ± 2.1 %, P = 0.002)

or on C. odorata (74.0 ± 2.9 %, P = 0.002), whereas no differences were found between

T. rosea and C. odorata (P [ 0.05). In contrast to herbivores, predators occurred in sig-

nificantly lower percentages in beetle assemblages on C. odorata (11.4 ± 2.0 %) than on

A. excelsum (20.7 ± 2.2 %, P = 0.003), whereas no differences were found between
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T. rosea (16.2 ± 1.6 %) and the two other tree species (for both P [ 0.05). No differences

were found between the tree species for the contribution of the detritivore and the tourist

guilds to the beetle assemblages (P [ 0.05).

Similarly to tree species identity, planting schemes strongly affected the individual

beetle guilds within each tree species (Fig. 3). Intraspecific comparisons of beetle guild

structure for each tree species revealed significant effects of planting schemes on per-

centage of herbivorous beetles (on T. rosea and A. excelsum), of predators (on T. rosea and

A. excelsum) and of tourists (on C. odorata) but not of detritivores. Planting schemes also

affected the total individual numbers of herbivores (on all three tree species), of predators

(on T. rosea and A. excelsum), tourists (on C. odorata) and detritivores (on T. rosea)

(Table 4).

In beetle assemblages on T. rosea, percentage as well as total individual number of

either herbivorous beetles and predators strongly differed among the individual planting

schemes (percentage: herbivores: F2,176 = 28.3, P \ 0.001; predators: F2,176 = 22.7,

P \ 0.001; total individual number: herbivores: F2,176 = 8.91, P \ 0.001; predators:

F2,176 = 4.7, P = 0.010). Percentage of herbivores was significantly lower in insecticide-

treated stands than in monocultures and in untreated mixed stands (for both comparisons

P \ 0.001). No differences were found for percentage of herbivores between monocultures

and untreated mixed stands (P [ 0.05) (Fig. 3). Total individual number of herbivorous

beetles was significantly higher in monocultures than in treated (P = 0.005) and in

untreated mixed stands (P = 0.013) (Table 4). No differences were found for total indi-

vidual number of herbivores between treated and untreated mixed stands (P [ 0.05).

In contrast to herbivorous beetles, percentage of predators was significantly higher in

treated stands than in monocultures and in untreated mixed stands (for both comparisons

P \ 0.001). No differences were found for percentage of predators between monocultures

and untreated mixed stands (P [ 0.05) (Fig. 3). Comparable to percentage values, total

individual number of predators was significantly higher in treated stands than in mono-

cultures (P \ 0.001) and in untreated mixed stands (P = 0.005). No differences were

found for total individual number of predators between monocultures and untreated mixed

stands (P [ 0.05) (Table 4).

In beetle assemblages on A. excelsum, percentage and total individual numbers of

herbivorous beetles and predators strongly differed among the individual planting schemes

(percentage: herbivores: F2,137 = 10.4, P \ 0.001; predators: F2,137 = 4.2, P = 0.017;

total individual number: herbivores: F2,137 = 4.7, P = 0.011; predators: F2,137 = 5.7,

P = 0.004) (Fig. 3). Percentage of herbivores was significantly higher in monocultures

than in untreated and treated mixed stands (for both comparisons P \ 0.001), whereas no

differences in percentage of herbivores were found between untreated and treated mixed

stands (P [ 0.05). Total individual number of herbivores was also significantly higher in

monocultures than in untreated (P = 0.008) and in treated mixed stands (P = 0.030).

Whereas no differences were found for percentage of predators between untreated and

treated mixed stands (P [ 0.05), predators contributed less to assemblages in monocultures

than in treated mixed stands (P = 0.008), but not in untreated mixed stands (P [ 0.05)

(Table 4). Comparable to percentage values, total individual number of predators was

lower in monocultures than in treated (P = 0.002) but not in untreated mixed stands

(P [ 0.05). No differences in total individual number of predators were found between

treated and untreated mixed stands (P [ 0.05).

In beetle assemblages on C. odorata, planting schemes affected the total individual

number (F2,93 = 12.01, P \ 0.001) but not the percentage (P [ 0.05) of herbivores in the

beetle assemblages (Fig. 2). Total individual numbers of herbivores were significantly
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lower in treated than in untreated mixed stands and monocultures (for both comparisons

P \ 0.001). No differences were found between monocultures and untreated mixed stands

(P [ 0.05). Planting schemes also affected the contribution of tourists to beetle assem-

blages (percentage: tourists: F2,93 = 5.5, P = 0.006; total individual number: herbivores:

F2,93 = 4.1, P = 0.020) (Fig. 3). Percentage of tourists was significantly lower in mono-

cultures than in treated (P = 0.02) and in untreated mixed stands (P = 0.016). No sig-

nificant differences in the contribution of tourists occurred between treated and untreated

mixed stands (P [ 0.05). In contrast to percentage values, total individual number of

tourists was significantly lower in monocultures than in treated (P = 0.017) but not in

untreated mixed stands (P [ 0.05).

Discussion

Our study based on a sample size of nearly 6,000 beetle specimens belonging to more than

220 species showed that native timber trees planted on former pasture can host diverse

beetle assemblages already 1 year after tree establishment. Furthermore, this investigation

demonstrated that conventional pest control by insecticides can strongly reduce beetle

species richness as well as beetle diversity and may lead to changes in trophic guild

structure of tree-associated beetle assemblages. Interestingly, the predator guild occurred

in both higher percentages as well as higher total individual numbers in insecticide-treated

mixed stands of T. rosea and A. excelsum than in untreated monocultures (T. rosea and

A. excelsum) and untreated mixed stands (T. rosea). In contrast to insecticide treatments,

stand diversification (i.e. 3-species mixed stands) appeared to have relatively weak effects

on beetle abundance and species richness on individual young timber trees. As different

timber tree species hosted different species and groups of beetles, stand diversification

nevertheless contributed to overall-plantation beetle diversity.

Most studies addressing insect diversity and particularly beetle communities in the

tropics have focused on rainforest ecosystems, which represent a highly heterogeneous

environment with regard to vertical (i.e. stratification of vegetation layers) (Basset et al.

2003 and references therein; Stork et al. 1997) and horizontal (zones of closed forest, gaps,

buffer zones, etc.) gradients (Estrada et al. 1998; Grimbacher et al. 2007; Schulze et al.

2004). This heterogeneity is expected to lead to a higher diversity of resources and

environmental conditions compared to rather homogenous young forest systems or young

tropical afforestations (Hopp et al. 2010; Hartley 2002 and references therein). As studies

differ in the methods applied for arthropod sampling (e.g. beating, fogging, pitfall or light

traps), comparisons of beetle assemblage composition between studies may be more or less

difficult to achieve. Basset (1999) provided one of the first quantitative assessments of the

free-living insect herbivores foraging on seedlings in a tropical rainforest based on a

sample size of 9,000 specimens and 342 species out of 11 monthly insect surveys on

10,000 tagged seedlings of five common rainforest tree species in Guyana. New (1983)

recorded about 4,000 insect herbivores representing 78 species on seedlings of 21 species

of Acacia. Considering that both studies included several orders of insect herbivores and

were conducted on seedlings located in rainforests, the diversity of the beetle assemblages

detected in our study on native timber trees in a plantation appears to be comparably high

(221 species, 5,975 specimens on 415 tree individuals of three tree species). However,

mature secondary forests and older plantations will probably exhibit higher species rich-

ness compared to the young afforestation systems evaluated (Hopp et al. 2010; Gormley

et al. 2007; but see Barone 2000). Ødegaard (2004), for instance, found 227 beetle species
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on only 6 tree individuals of the tree species Brosium utile (Moraceae) growing in a

tropical wet forest in Panama (average of 84.3 beetle species per tree individual). Erwin

and Scott (1980) found even more than 940 species on 19 tree individuals of the neo-

tropical tree species Luehea seemannii (Malvaceae) growing in a seasonal forest in the

Canal Zone of Panama, which is located nearby our study site. Given that the aforemen-

tioned surveys focused on different tree species compared to the timber species selected for

the presented study, the differences in alpha-diversity may not only be attributed to a

higher heterogeneity of microhabitats in mature forest systems compared to young affor-

estation systems, but might also reflect an impact of tree species identity on the compo-

sition of insect communities (e.g. see Summerville et al. 2003; Vehviläinen et al. 2008).

Effects of tree species identity

Tree species identity appeared to be important for determining beetle species identity in

beetle assemblages in our study. Differences in beetle species identity among the tree

species indicate that host tree identity may contribute to beetle assemblage composition

and thus to local beetle diversity, supporting findings of former studies on assemblages of

beetles (Mody et al. 2003; Sobek et al. 2009b), caterpillars (Barbosa et al. 2000; Sum-

merville et al. 2003) or predatory arthropods (Vehviläinen et al. 2008). Furthermore, these

differences in beetle species identity among the tree species suggest that the beetle

assemblages on the trees were no random samples of beetles from the surrounding veg-

etation. However, in contrast to beetle species identity, the assemblage parameters beetle

abundance, observed and estimated (Chao1) species number, and diversity (Shannon

diversity) were not strongly differing among beetle assemblages on the three tree species.

These results signify that the three tree species studied hosted beetle assemblages of

comparable diversity during their establishment phase. Nevertheless, though tree species

identity had only minor impact on beetle alpha diversity, strong planting-scheme 9 tree

species interactions suggest that the effects of stand diversification and insecticide treat-

ment on beetle assemblage composition may strongly depend on the tree species selected

for forestry activities.

Effects of stand diversification

Stand diversification increased beetle diversity on one timber species, T. rosea, whereas it

had no effects on assemblage parameters assessed for beetle assemblages on A. excelsum
and C. odorata. Observations during our census revealed that the effect of stand diversi-

fication on Shannon diversity of beetles on T. rosea is strongly attributed to a single

chrysomelid species, Walterianella inscripta Jacoby. This species was found to be the

dominant herbivore beetle on T. rosea, and it was significantly more abundant in high-

density monocultures of T. rosea than (a) in mixed-species stands (Plath et al. 2012) or

(b) in a silvopastoral system characterized by low densities of T. rosea (Riedel et al. 2012).

In A. excelsum and C. odorata, stand diversification was found to have no effect on alpha-

diversity of beetles. As the distribution of insect herbivores may be determined by different

factors including host plant traits (bottom-up mechanisms) as well as effects of antagonists

(top–down mechanisms) (Evans 2001), the missing effect of stand diversification on beetle

assemblages in our study is most likely attributed to varying influences of top–down and/or

bottom–up mechanisms on the interactions of the individual beetle species with the

selected tree species (Koricheva et al. 2006; Ødegaard 2006).
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Concerning top–down mechanisms, the natural enemy hypothesis, developed for

arthropod assemblages on terrestrial plants, argues that increasing tree stand diversity leads

to greater abundances and diversity of natural enemies and an increased effectiveness to

reduce herbivore populations (Root 1973). Coleopteran predators, however, showed no

differences in their contribution to beetle assemblage composition between monocultures

and untreated mixed stands in the present study, indicating that these predators in low-

diversity afforestations are not benefiting from a more diverse prey supply through stand

diversification. This finding contradicts the natural enemy hypothesis and may add further

evidence to recent findings indicating that other factors such as tree species composition

rather than tree species diversity affect natural enemies in natural forest systems (Finch

2005; Koricheva et al. 2006; Riihimäki et al. 2005).

Concerning bottom–up mechanisms, increasing plant species richness may increase the

number of associated specialized herbivore species (‘‘resource specialization hypothesis’’;

see Crutsinger et al. (2006) and references therein), which may be reflected in higher

overall-plantation species richness. Likewise, if increasing plant species richness may

provide more resources and more trophic levels due to higher aboveground net primary

productivity, then more herbivore individuals and species will be promoted by increases in

accessible energy in more diverse plant stands (‘‘more individuals’’ hypothesis by Sri-

vastava and Lawton 1998; ‘‘species-energy’’ hypothesis by Wright 1983; ‘‘resource

diversity’’ hypothesis by Lawton 1983). Indeed, turn-over rates (as expressed by Chao-

Sørensen similarities) of beetle species on T. rosea appeared to be higher in mixed stands

than in monocultures, which may indicate a higher diversity of resources in the mixed

stands due to a comparably more heterogeneous vegetation structure. On the other hand,

stand diversification had no significant impact on beetle abundance and species richness in

each tree species, contradicting the abovementioned hypothesized bottom-up mechanisms.

The finding of a reduced contribution of herbivores to assemblages on A. excelsum in the

diversified stands compared to monocultures may be explained by a lower attractiveness or

suitability to herbivores of A. excelsum, which might be more strongly defended than

T. rosea or C. odorata due to relatively high amounts of phenols and tannins (Coley et al.

2002; Dominy et al. 2003). Specialist herbivores may easier overcome strongly expressed

defense traits of a plant than generalist herbivores and are therefore assumed to profit from

monocultures rather than from mixed plantings (Barbosa et al. 2009; Coley and Barone

1996). Hence the overall percentage of herbivores might be particularly reduced on

strongly defended trees growing in tree mixtures as found for A. excelsum and associated

herbivorous beetle assemblages.

Effects of insecticide treatment

Insecticide application significantly reduced beetle abundance and species richness for

each studied tree species. Similarly, it reduced Chao1 and Shannon diversity for beetle

assemblages on T. rosea and C. odorata, emphasizing the detrimental effects of conven-

tional pest control in tropical timber tree plantations on diversity of native insects. Dis-

ruptive effects of insecticides on beetle assemblage composition were also suggested by

much lower Chao-Sørensen similarities within the insecticide-treated stands compared to

untreated stands for all three tree species, indicating a rather unordered re-colonization of

treated plots by beetles from adjacent untreated areas. Insecticide application likewise

significantly affected beetle guild structure for each focal tree species reducing the per-

centage of herbivores in treated compared to untreated stands for T. rosea and A. excelsum.

Interestingly, both absolute abundances and percentage of predators (particularly cantharid
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beetles) were higher in insecticide-treated stands compared to untreated monocultures in

A. excelsum or even compared to both monocultures and untreated mixed stands in

T. rosea. These findings suggest that overall effects of the insecticides used were low on

certain predator species, which beyond might experience additional advantage due to

insecticide effects on some other species, possibly resulting in decreased interspecific

(intra-guild) competition (Szentkirályi and Kozár 1991) and ‘interspecific competitor free

space’ (Plath et al. 2012).

Conclusions

Our study demonstrated that native timber trees in young tropical pasture-afforestations

can host comparably speciose beetle assemblages, which may contribute to biodiversity-

mediated ecosystem functions in newly established forestry systems. Tree species-specific

traits and interactions of the tree species with herbivorous beetles as dominating trophic

guild appeared to be important determinants of overall beetle assemblage composition in

terms of trophic guild structure and species diversity. By revealing strong negative effects

of insecticide treatments on beetle diversity in tropical afforestation systems, our findings

emphasize that the development of adequate management strategies for tropical affores-

tations may contribute to the rehabilitation of local biodiversity. Hence, to enhance the

prospects of tropical forest biodiversity, future conservation research should consider

tropical afforestation systems allowing a holistic understanding of the relative importance

of individual drivers and mechanisms of biodiversity change in a rapidly changing,

anthropogenically-modified landscape.
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Vehviläinen H, Koricheva J, Ruohomaki K (2008) Effects of stand tree species composition and diversity on

abundance of predatory arthropods. Oikos 117:935–943
Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New York
Verhoeven KJF, Simonsen KL, McIntyre LM (2005) Implementing false discovery rate control: increasing

your power. Oikos 108:643–647
Wagner T (2000) Influence of forest type and tree species on canopy-dwelling beetles in Budongo Forest,

Uganda. Biotropica 32:502–514
Wishnie MH, Dent DH, Mariscal E, Deago J, Cedeno N, Ibarra D, Condit R, Ashton PMS (2007) Initial

performance and reforestation potential of 24 tropical tree species planted across a precipitation
gradient in the Republic of Panama. For Ecol Manage 243:39–49

Wright DH (1983) Species–energy theory: an extension of species–area theory. Oikos 41:496–506
Zahawi RA (2005) Establishment and growth of living fence species: an overlooked tool for the restoration

of degraded areas in the tropics. Restor Ecol 13:92–102

3444 Biodivers Conserv (2012) 21:3423–3444

123

http://dx.doi.org/10.1007/s13595-012-0239-7

	Diversity and composition of arboreal beetle assemblages in tropical pasture afforestations: effects of planting schemes and tree species identity
	Abstract
	Introduction
	Materials and methods
	Study site and planting design
	Insect survey
	Trophic guilds
	Data analysis

	Results
	Composition of beetle assemblages and related trophic guilds
	Effects of planting schemes and tree species identity on beetle assemblage composition
	Similarity of beetle assemblages among tree species and planting schemes
	Effects of tree species identity and planting schemes on trophic guild structure

	Discussion
	Effects of tree species identity
	Effects of stand diversification
	Effects of insecticide treatment

	Conclusions
	Acknowledgments
	References


