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Abstract. Data for coherent photoproduction of π0 mesons from nuclei (12C, 40Ca, 93Nb, natPb), recently
measured with the TAPS detector at the Mainz MAMI accelerator, have been analyzed in view of the
mass form factors of the nuclei. The form factors have been extracted in plane-wave approximation of
the A(γ, π0)A reaction and corrected for final-state interaction effects with the help of distorted-wave
impulse approximations. Nuclear mass rms radii have been calculated from the slope of the form factors
for q2 → 0. Furthermore, the Helm model (hard-sphere form factor folded with Gaussian) was used to
extract diffraction radii from the zeroes of the form factor and skin thicknesses from the position and
height of its first maximum. The diffraction radii from the Helm model agree with the corresponding
charge radii obtained from electron scattering experiments within their uncertainties of a few per cent.
The rms radii from the slope of the form factors are systematically lower by up to 5% for PWIA and up to
10% for DWIA. Also the skin thicknesses extracted from the Helm model are systematically smaller than
their charge counterparts.

PACS. 13.60.Le Meson production – 25.20.Lj Photoproduction reactions – 21.10.Gv Mass and neutron
distributions

1 Introduction

Charge and matter densities are among the most funda-
mental properties of atomic nuclei. Nuclear charge dis-
tributions have been intensively studied with elastic elec-
tron scattering and via the spectroscopy of X-rays from
muonic atoms (see, e.g., [1–4]). These experiments profit
from the full understanding of the electromagnetic inter-
action. Analyses of the distributions in the frameworks of
different models have extracted characteristic parameters
like charge radii, skin thicknesses, or the central depression
of the charge density with high precision [5,6]. However,
all these properties are only related to the distribution of
the protons in the nucleus. The electromagnetic interac-
tion provides only very limited information on the neu-
tron. Therefore, the extraction of neutron distributions,
respectively nuclear matter distributions (i.e. the sum of
proton and neutron density) is much less straightforward.
Some results for specific single neutron orbits have been
obtained with elastic magnetic electron scattering, mak-
ing use of the magnetic form factor of the neutron [7,8].
However, most experimental methods use hadron-induced
reactions such as, for example, α, proton, pion or kaon
scattering from nuclei. The analysis of such reactions re-
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quires scattering theories for strongly interacting particles,
with all their uncertainties. An overview over the different
methods can be found in [9]. The situation is such that a
systematic analysis of the nuclear matter distributions is
still missing and in many cases the spread between the
results obtained with different probes is still larger than
the predicted differences in the proton and neutron distri-
butions, which are on the order of 0.05 fm–0.2 fm for the
rms radii of heavy nuclei [10].

The present paper summarizes the analysis of recent
experimental results for the coherent photoproduction of
π0 mesons [11] in view of nuclear matter distributions.
This reaction is particularly attractive as a complemen-
tary method for the study of nuclear matter distributions
of stable nuclei. As discussed below, in the energy re-
gion of interest, protons and neutrons contribute identi-
cally with the same amplitude. Furthermore, in contrast to
hadron-induced reactions it is not restricted to the nuclear
surface but probes the entire nuclear volume. In this sense
it is the ideal reaction to test the matter distribution in
the bulk of a nucleus. A first attempt to determine nuclear
mass radii with this method was made by Schrack, Leiss
and Penner in 1962 [12]. However, at that time the achiev-
able experimental precision was very limited and much in-
ferior to the results from hadron-induced reactions which
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profit from the large cross-sections characteristic for the
strong interaction. Subsequently, an attempt was made to
measure nuclear matter radii via the coherent photopro-
duction of ρ0 mesons [13]. However, due to the experi-
mental difficulties and the previously not well-developed
theoretical tools for the extraction of the form factors
from coherent photoproduction reactions, the method was
never systematically explored. On the experimental side
the progress made in accelerator and detector technology
during the last fifteen years has considerably enhanced
our possibilities for the study of photon-induced meson
production reactions. In particular, the new generation of
quasi continuous beam electron accelerators like CEBAF
in Newport News, ELSA in Bonn, ESRF in Grenoble,
MAMI in Mainz and SPring8 in Osaka are all equipped
with state-of-the-art tagged photon facilities and highly ef-
ficient detector systems, most of them with almost 4π solid
angle coverage. Profiting from this developments, recently
much more precise cross-section measurements for coher-
ent π0 photoproduction from carbon, calcium, niobium
and lead nuclei became available [11]. At the same time,
progress was also made in the theoretical understanding of
these reactions. Modern calculations treating the elemen-
tary process in the framework of unitary isobar models, in-
corporating final-state interaction (FSI) in distorted-wave
impulse approximation, and including in-medium effects
of the ∆-isobar with phenomenological self-energies have
become available [14]. The purpose of this paper is thus
to explore the currently achievable accuracy in the de-
termination of the nuclear mass distributions from coher-
ent π0 photoproduction. This is also done in view of the
possibility of further improvements in the data quality.
Although the data from [11], which are the basis of the
present analysis, are the most precise results for coher-
ent π0-photoproduction from heavy nuclei available so far,
they have been measured with an early stage of the TAPS
detector [15,16] covering only ≈ 20% of 4π. This resulted
in typical detection efficiencies for π0 mesons on the order
of only a few per cent and an imperfect suppression of inco-
herent contributions from excited nuclear states. With the
availability of 4π detector systems like the combined Crys-
tal Ball/TAPS setup, operating now at the MAMI acceler-
ator, more precise data will become available in the future.
In this paper, we will limit the discussion of the mass

distributions to the extraction of rms radii from the slope
of the form factors and to the extraction of diffraction
radii and surface extensions in the Helm model. How-
ever, the analysis of the full matter distributions in the
same model-independent way as for the charge distribu-
tions should become feasible for the next generation of
experiments.

2 Coherent π0 photoproduction from nuclei

Coherent photoproduction of π0-mesons from a nucleus
with mass number A is the reaction

γ +A(gs)→ A(gs) + π0 , (1)

where A(gs) is a nucleus in its ground state. It can be
experimentally separated from breakup processes, where
nucleons are removed from the nucleus, via its charac-
teristic two-body kinematics [11]. The theoretical treat-
ment is much more straightforward than for incoherent
pion production reactions, since for initial and final state
only ground-state properties of the nucleus are needed.
In general, the isospin structure of the elementary pro-

cess of π0 photoproduction from the nucleon is given by

A(γp→ π0p) = +

√

2

3
AV 3 +

√

1

3
(AIV −AIS) ,

(2)

A(γn→ π0n) = +

√

2

3
AV 3 +

√

1

3
(AIV +AIS) ,

where AIS , AIV , and AV 3 are the isoscalar, isovector, and
total isospin changing parts of the total amplitude. How-
ever, at incident photon energies in the range of interest
in this work (200–350 MeV) the reaction is completely
dominated by the photo excitation of the ∆(1232) reso-
nance (see, e.g., [17]). Since this is an isospin I = 3/2
state, only the isospin changing vector component AV 3

can contribute, so that for the ∆ excitation

A(γp→ π0p) = A(γn→ π0n) . (3)

Detailed investigations of coherent and breakup photo-
production of π0 mesons from the deuteron [17–19] have
confirmed that the elementary cross-sections for protons
and neutrons are equal. This means that apart from small
background contributions (nucleon Born terms) protons
and neutrons contribute with the same amplitude to co-
herent π0 photoproduction from nuclei, so that this re-
action is indeed sensitive to the distribution of nucleons
rather than to the distribution of charge in the nucleus.
In the simplest plane-wave impulse approximation

(PWIA) the coherent cross-section from spin-zero nuclei
can be written as [14,11]

dσPWIA

dΩ
(Eγ , Θπ) =

s

m2
N

A2 dσNS

dΩ?
(E?

γ , Θ
?
π)F

2(q) , (4)

dσNS

dΩ?
(E?

γ , Θ
?
π) =

1

2

q?π
k?
|F2(E

?
γ , Θ

?
π)|2 sin2(Θ?

π), (5)

where Eγ and Θπ are incident photon energy and pion
polar angle in the photon-nucleus cm-system, mN is the
nucleon mass, q(Eγ , θπ) the momentum transfer to the
nucleus, and F (q) the nuclear mass form factor. The to-
tal energy

√
s of the photon-nucleon pair, the photon en-

ergy and momentum E?
γ , k

?, and the pion angle and mo-
mentum Θ?

π, q
?
π in the photon-nucleon cm-system can be

evaluated from the average momentum pN of the nucleon
in the factorization approximation pN = q(A − 1)/2A.
The spin-independent elementary cross-section dσNS/dΩ
is calculated from the isospin average (for I 6= 0 nuclei
weighted with N , Z) of the standard Chew-Goldberger-
Low-Nambu (CGLN) amplitude F2 [20] taken from [21].
The extraction of the form factor F (q) from the differen-
tial cross-sections in this approximation is straightforward
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Fig. 1. Total cross-section for coherent π0 photoproduction
from carbon, calcium and lead [11] compared to the model
results from [14].

and used below for a first approximative determination of
the mass radii.

It is well known that final-state interaction effects
can have a significant impact on the pion production
cross-sections. The available model calculations have
been compared to the measured differential cross-sections
in [11]. The distorted-wave impulse approximation in mo-
mentum space with additional ∆ in-medium effects by
Drechsel et al. [14] gave the best agreement with the
data. The results from this model are therefore used in
the present work for the correction of FSI effects in the
extraction of the nuclear form factor. It should be em-
phasized that the model [14] was not adjusted to the nu-
clear data under discussion. The free parameters for the
∆-nucleus phenomenological self-energy were fitted to co-
herent π0 photoproduction from 4He and not modified
for the heavy nuclei. The typical agreement between data
and model results for the total cross-sections is shown in
fig. 1. It is quite good for carbon and calcium, but less
so for lead. However, also for lead important features for
this analysis, like the position of the diffraction minima,
are very well reproduced (see [11] for a detailed discus-
sion). For the present analysis of form factors only the
relative shifts of the position of the minima and cross-
section ratios between the PWIA calculation and the full
model from [14] are used. Such calculations are presently
not available for the nucleus 93Nb. However, the correc-
tions for the shift of the minima and the slope at small
q can be approximated from lead by normalizing the po-
sition of the first diffraction minimum. Strictly speaking,
also the above PWIA approximation for spin-zero nuclei
is not valid for this J = 9/2 odd-even nucleus. However,
since it was shown in [11] that the measured cross-sections
scale in the same way as for the spin-zero nuclei (the con-
tribution from the odd nucleon is not significant) we have
kept it in the analysis. The systematic uncertainty is of
course larger than for the other nuclei.

An example for the influence of FSI on the angular
distribution from lead1 for an incident photon energy of
290 MeV is shown in fig. 2, where the PWIA and DWIA

1 Note: differential cross-sections dσ/dΩ are given as a func-
tion of q throughout this paper, which for fixed Eγ is a unique
function of θπ. This has the advantage that the position of the
diffraction minima is approximately independent of Eγ .
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Fig. 2. PWIA and DWIA calculations for coherent π0 photo-
production from lead for an incident photon energy of Eγ =
290 MeV [14,11]. The shift of the diffraction minima due to
FSI is indicated.

calculations for the differential cross-section are plotted
versus the momentum transfer to the nucleus. The main
effects at these incident photon energies are a reduction
of the plane-wave cross-section and a shift of the position
of the diffraction minima due to the pion-nucleus poten-
tial. The latter is more pronounced for the higher-order
maxima.
For the interpretation of the form factor results it is

of interest if final-state interaction effects, in particular
pion absorption, are so strong that like in hadron-induced
reactions effectively only the nuclear surface is tested.
An indication for the strength of these effects can

be obtained from the scaling of the cross-sections with
mass number in a similar way as in [22,23] for inco-
herent meson production (π, η) from nuclei. The pro-
duction cross-sections without FSI for incoherent pro-
cesses scale with the number of nucleons A. The measured
cross-sections scale like A2/3, which implies strong FSI
corresponding to a small mean free path of the mesons
so that effectively only the nuclear surface contributes.
The cross-section for coherent π0 production in plane-
wave without FSI scales like A2, since the amplitude is
proportional to A. If only the surface contributed, one
would expect a scaling with A4/3. The observed scaling
for the total coherent cross-section does not even reach
A2/3 [24]. However, one must take into account the influ-
ence of the sin2(Θ)F 2(q) term in the PWIA cross-section,
which contributes to the A-dependence of the total cross-
section (see eq. (5)). The nuclear form factor at q nor-
malized to the position of the first diffraction minimum,
q = q1(A), is almost independent of A in the region before
the first diffraction minimum (see fig. 5). Consequently,
the mass number scaling of the coherent cross-sections can
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be obtained by fitting the ratio RPWIA (see eq. (7)) at a
constant value of q/q1 < 1 with the ansatz

RPWIA(A) ∝ Aα−2 . (6)

The result for q = q1(A)/2 (i.e. approximately in the 0th
maximum2 of the differential cross-section) is shown in
fig. 3. At the lowest investigated incident photon energies
around 200 MeV the scaling is very close to A2, indicat-
ing almost negligible pion absorption. At higher incident
photon energies FSI effects become more important.

3 Extraction of mass radii

3.1 rms radii

The determination of the root-mean-square (rms) radii
requires the extraction of the nuclear form factor F (q2)
from the angular distributions. This is done in three steps
as demonstrated in fig. 4 for 40Ca for one range of incident

2 Note: the maxima of the differential cross-section are la-
beled 0, 1, 2, . . . , the maxima of the form factor 1, 2, 3, . . . . In
both cases maximum 1 follows the first diffraction minimum.
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Fig. 4. Extraction of the nuclear form factor for 40Ca. Trian-
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right-hand side). Open circles: PWIA approximation of form
factor from eqs. (4), (5). Filled circles: PWIA approximation
after correction of angular resolution effects. Filled squares:
after correction of FSI effects (DWIA approximation).

photon energy. In the first step the form factor is extracted
from the data in plane-wave approximation, i.e. all FSI
effects are neglected. This is done in the same way as
in [11]3 using

F 2(q)
∣

∣

PWIA
= RPWIA =

(

dσexp
dΩ

)

/

[

s

m2
N

A2

(

dσNS

dΩ?

)]

(7)
with dσNS/dΩ

? from eq. (5).
In the next step a correction is applied for the finite

angular resolution of the experiment. It was determined
with Monte Carlo simulations that the detector response
for π0 mesons in the kinematical regime of interest corre-
sponds to a Gaussian with a FWHM of 4◦ for the pion cm
angles. The DWIA model calculation was folded with this
response function and the data were corrected with the
ratio of folded and unfolded calculation. This correction
is only significant for niobium and lead.
In the final step the ratio of PWIA and DWIA

cross-sections obtained from the model calculations is
used to correct the form factor for FSI effects. The
q-dependence (not the absolute values) of the PWIA and
DWIA calculations is in most cases similar for small

3 Note: eq. (7) is applied to the data in the finest possible
binning of incident photon energies, defined by the resolution of
the tagging spectrometer (roughly 2 MeV). The corresponding
form factor results are then averaged over larger energy regions
for statistical reasons.
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q, nevertheless this correction introduces an additional
model dependence into the analysis. We have therefore
extracted the mass radii from the form factors with and
without this correction in order to get an estimate for the
systematic uncertainties.
Once the form factor has been determined, the rms ra-

dius can be extracted without further model assumptions
from the slope of the form factor for q2 → 0 via

F (q2) = 1− q2

6
r2
rms +O(q4), (8)

which is done in the usual way by fitting a polynomial,

F (q2) =

N
∑

n=0

(−1)nanq2n , (9)

to the data. The rms radius is then given by

rrms =
√

6a1/a0, (10)

where for a correctly determined form factor a0 should
be unity. This is of course not true for the form factors
extracted in PWIA approximation without correction for
FSI effects. However, also the form factors extracted in
DWIA approximation differ in most cases somewhat from
F (q2) → 1 for q2 → 0 (see figs. 6, 7). This can be due
to systematic uncertainties in the absolute normalization
of the measured cross-sections (up to 10% overall, up to
3% relative between different nuclei, see ref. [11]) or due
to an imperfect correction of the FSI effects (systematic
uncertainties in the models). Therefore a0 is kept free in
all fits to account for these effects.
A final remark must be made to the comparison of the

mass form factors, extracted in this way, to the nuclear
charge form factors. In the latter case the charge distribu-
tion of the nuclei is tested. Due to the charge form factor
of the proton the distribution of (point-like) protons Fpc
in the nucleus is given by

Fpc(q) =
F ch(q)

F ch
p (q)

, (11)

where F ch is the nuclear charge form factor and F ch
p is

the charge form factor of the proton for which we take the
dipole form factor

F ch
p =

(

1 +
q2

18.234 fm−2

)

−2

. (12)

On the other hand, coherent pion production, which pro-
ceeds through the excitation of the nucleon to the ∆ res-
onance, is testing the distribution of point-like nucleons
in the nucleus. Therefore, for the comparison of the mass
and charge radii the rms charge radius rprms = 0.862 fm of
the proton was subtracted in quadrature from the nuclear
charge rms radii rchrms to give the rms radius r

pc
rms for the

distribution of point-like protons,

rpcrms =
√

(rchrms)
2 − (rprms)2 . (13)

For the comparison of skin thicknesses the charge form
factors were divided by the proton charge form factor.

3.2 Form factors in the Helm model

The extraction of the rms radii from the slope of the form
factor has the advantage that no model of the form fac-
tor itself is needed. However, models of the form factor
which relate, for example, the radii to the position of the
diffraction minima allow a much better control of system-
atic effects like the DWIA corrections. Furthermore, addi-
tional information can be gained from such models. The
rms radius alone has, for example, no information about
the extension of the surface zone of the nuclei. A good ex-
ample are the charge rms radii of 40Ca and 48Ca, which are
almost identical. However, the actual charge distributions
are by no means identical. The nucleus 48Ca has a larger
core region of almost constant density but a smaller sur-
face region, where the density drops from 90% to 10% [5].
For the model-dependent analysis it is convenient to use
Helm’s model, which is known from the analysis of elec-
tron scattering data (see [5,6]) and allows to extract nu-
clear extension parameters in a transparent way. In this
model the nuclear density is parameterized [5] by the con-
volution of a hard-sphere distribution with a Gaussian.
The form factor FH is then simply given by the product
of the form factor of the hard sphere, Fhs, with that of
the Gaussian, which, again is a Gaussian, FG:

FH = FG · Fhs , (14)

FG = exp(−(qσ)2/2) , (15)

Fhs =
3

(qRd)2

(

sin(qRd)

qRd
− cos(qRd)

)

=
3

qRd
j1(qRd) .

(16)
Here, q is the momentum transfer and j1 the first-order
spherical Bessel function. Rd is the so-called “diffraction
minimum sharp radius” (dms radius) and the width of the
Gaussian σ is approximately related to the 10%-to-90%
surface width tH via

tH = 2.54σ . (17)

In this model, the zeroes of the form factor are deter-
mined by the zeroes of the Bessel function, which implies
a straightforward relation between the dms radius and the
momentum transfers qi, i = 1, 2, 3, . . . in the i-th mini-
mum of the form factor. The rms radius, which integrates
over the core region and the surface zone, is then related
to the dms radius and the σ of the distribution by

rrms =

√

3

5
Rd

(

1 + 5

(

σ

Rd

)2
)1/2

. (18)

The σ of the Gaussian can be extracted, e.g., from the
position qm of the first maximum (i.e. the maximum after
the first minimum) of the form factor and its magnitude
F (qm) via [5]

σ2 =
2

q2
m

ln
3j1(qmRd)

qmRdF (qm)
. (19)

The comparison of the dms mass radii to the dms
charge radii from electron scattering requires no correc-
tion for the proton charge radius since multiplication of
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the form factor eq. (14) with the proton dipole form fac-
tor has no influence on the position of the zeroes, which
are still determined by the Bessel function. This is not
the case for the width of the Gaussian which is expected
to be larger in case of the charge form factor due to the
contribution of the proton charge form factor.

4 Results

In the following we will discuss the form factors extracted
for 12C, 40Ca, 93Nb and natPb4 from the pion production
data. We will first discuss the overall features of the mass
form factors (without DWIA corrections). In the second
subsection we discuss the extraction of root-mean-square
radii from the slope of the form factors and in the final
subsection the interpretation of the form factors in the
framework of the Helm model.

4.1 Form factors in PWIA

The form factors have been extracted in PWIA approx-
imation from the cross-section data for incident photon
energies from 240–300 MeV with eqs. (4), (5), (7). At
this stage only the overall normalization was corrected
for DWIA effects. For this purpose the form factors were
fitted at low momenta with the Taylor series eq. (9) and
the data were divided by the fitted a0 coefficient. The re-
sults are summarized in fig. 5, where the form factors are
plotted versus qRd which is calculated as

qRd(A) = q ·X1/q1(A) , (20)

where q1(A) is the momentum transfer in the first diffrac-
tion minimum andX1 = 4.495 is the first zero of the Bessel
function. In this plot the positions of all diffraction minima
fall on top, as one would expect as long as the Helm model
is valid, and even more the form factors for Ca, Nb and Pb
are almost identical and agree up to the first diffraction
minimum with the form factor of a hard sphere. Only the
carbon form factor shows the effect of a finite surface re-
gion in the range before the first minimum. The positions
of the higher-order minima and maxima do, however, not
agree with the form factor of a hard sphere (grey curve),
since the shift caused by the FSI effects is not the same for
the different minima (in case of lead roughly 3% for the
first minimum and 20% for the 5th minimum). However,
if the zeroes of the hard-sphere form factor are adjusted to
these shifts (full curve) the data are quite well described
by the hard-sphere form factor. This is surprising since
due to the effects from the finite surface region the Helm
model predicts a significant faster fall-off of the form fac-
tors in the region beyond the first diffraction minimum. To

4 Note: in all cases targets with natural isotope composition
have been used in the experiments [11]. However, natural nio-
bium is mono-isotopic, and in case of carbon and calcium the
admixture of other isotopes than 12C and 40Ca is negligible at
the current level of precision.
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Fig. 5. Mass form factors extracted in PWIA approximation
(see text). Grey curve: hard-sphere form factor (eq. (16)); solid
curve: hard-sphere form factor with zeroes adjusted for DWIA
effects; dotted: hard-sphere (Rd of Ca) and Gaussian with σ =
0.75 fm; dashed: hard-sphere (Rd of C) and Gaussian with
σ = 0.75 fm. Insert: region before first minimum in linear scale.

demonstrate this effect the form factors of a hard sphere
convoluted with a Gaussian with σ = 0.75 fm and the Rd

radii of Ca (dotted) and C (dashed) are also shown in the
figure. The predicted magnitude of the form factor in the
first maximum decreases strongly with decreasing mass
number, but the experimental results are practically iden-
tical for all nuclei. It will be discussed in subsect. 4.3 that
the effect of the surface thickness is canceled to a large
extent by DWIA effects, so that the extraction of surface
parameters requires a careful correction of the pion dis-
tortion effects.

4.2 rms radii

For the form factor model-independent extraction of the
rms radii the results with and without correction of FSI ef-
fects (DWIA, PWIA approximation, see fig. 4) were used.
The DWIA approximation is of course expected to give
more realistic results. However, also in this approxima-
tion the form factors do not exactly approach unity for
q → 0.
The size of these effects is summarized in table 1, where

the overall normalization constant a0 (see eq. (9)) is listed
for the PWIA and DWIA approximations for two different
regions of incident photon energy. In all cases averages for
fits with polynomials of degree N = 2, 4 are given; how-
ever the N = 2, 4 results differ only by a few percent.
The DWIA approximation brings the overall normaliza-
tion closer to unity, in particular for the higher incident
photon energies.
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Table 1. Normalization constants of the form factor data.
Listed is the a0 coefficient of the fitted Taylor series (see
eq. (9)). The values are the average for fits with polynomials
of degree N = 2, 4.

200–245 MeV 245–290 MeV
Nucleus PWIA DWIA PWIA DWIA

12C 0.95 1.20 0.70 1.10
40Ca 0.83 1.11 0.55 0.95
93Nb 0.75 1.07 0.45 0.92
natPb 0.72 0.99 0.42 0.83

Since the rms radii depend only on the slope of the
form factor but not on the absolute normalization (as long
as a0 is kept a free parameter, see eqs. (8)-(10)), it is a
priori not clear how large the influence of the FSI cor-
rections is. In order to get some estimate, results from
the PWIA and DWIA approximation are compared. Typ-
ical fits of the data are shown in figs. 6, 7. The results of
the fits for the rms radii calculated from eqs. (8)-(10) are
summarized in fig. 8. They are plotted as a function of

10
-1

1

0 0.2 0.4 0.6 0.8 1

F(
q2 )

PWIA

C

Ca
NbPb

Eγ=245 - 290 MeV

10
-1

1

0 0.2 0.4 0.6 0.8 1

DWIA

C

Ca

Nb
Pb

q2[fm-2]
Fig. 7. Same as fig. 6 for photon energies between 245 MeV
and 290 MeV.

the upper limit of the fit range, which allows to judge the
stability of the fits. Fits have been done with polynomi-
als of degree N = 2, 4. The fits with N = 4 become only
stable when rather large ranges of q are fitted; however,
in that limit they approach the N = 2 results. The re-
sults from PWIA and DWIA agree in most cases better
than within 10%. However, the radii extracted in DWIA
approximation are in all cases systematically smaller than
those from the PWIA analysis; this effect increases with
nuclear mass. This is expected, since the FSI effects tend
to increase the slope of the form factor (they shift the first
minimum to smaller q values, see fig. 2), which leads to
an overestimate of the radii in PWIA approximation. The
adopted values of the radii are compared in fig. 8 and in
table 2 to the nuclear charge radii extracted from electron
scattering experiments. The uncertainties have been esti-
mated from the variation of the results with the fit range
and the agreement between the N = 2 and N = 4 results.

In all cases the mass radii are somewhat smaller than
the corresponding charge radii and this effect becomes
larger for increasing mass. The effect lies between 2–6%
for the PWIA approximation and between 3–10% for the
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Fig. 8. Fit results for the rms radii extracted from
eqs. (8)-(10). They are plotted as a function of the upper limit
of the fitted q-range for the PWIA and DWIA analyses and for
fits with polynomials of degree N = 2, 4. They have been aver-
aged over the two ranges of incident photon energies. The trian-
gles represent the adopted values, the stars the corresponding
rms charge radii from ref. [1].

Table 2. Mass rms radii (rrms) extracted in PWIA and DWIA
compared to charge rms radii (rpcrms) [1]. The charge radii have
been corrected for the proton charge form factor by subtracting
in quadrature the proton rms radius (rp = 0.862 fm).

Nucl. rrms [fm] rpcrms rrms/r
pc
rms

PWIA DWIA [fm] PWIA DWIA

12C 2.28±0.10 2.26±0.10 2.32 0.98 0.97
40Ca 3.22±0.10 3.15±0.10 3.35 0.96 0.94
93Nb 3.96±0.10 3.76±0.10 4.22 0.94 0.89
natPb 5.20±0.15 4.90±0.15 5.42 0.96 0.90

DWIA results (note that since the DWIA correction for
93Nb was approximated from Pb it has a larger system-
atic uncertainty). This result is in particular unexpected
for lead, where nuclear models (see, e.g., [10]) in general
predict somewhat larger rms radii for the neutron dis-
tribution than for the protons, so that one would to the
contrary expect slightly larger mass rms radii. Possible ex-
planations include still uncontrolled effects from the cor-
rection of the FSI in DWIA and small contaminations of
the coherent cross-section with incoherent reaction pro-
cesses (see sect. 5).

4.3 Results from the Helm model

The most sensitive analysis of the form factor in the frame-
work of the Helm model would be a fit of the data over
the full measured q range. However, it is not straightfor-
ward to apply the FSI corrections, which include shifts of
the position of the minima and modifications (reductions
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Fig. 9. Fit of the Helm model (eq. (14)) to the form factors
in DWIA approximation for two different ranges of incident
photon energies.

for most incident photon energies) of the magnitude, con-
sistently over the full q range. Therefore, the direct de-
termination of Rd from the position of the minima and
the determination of σ from eq. (19) has the advantage
that only specific features (shift of minima and modifica-
tion of first maximum) of the DWIA corrections of the
cross-sections must be known. At this stage we do not at-
tempt to fit the form factors beyond the first minimum,
where the DWIA effects can be corrected in the way dis-
cussed in subsect. 3.1. However, more refined treatments
of the DWIA corrections are certainly possible and will
be worthwhile when more precise data become available.
Here the analysis is done in two different ways.

In the first analysis the form factors in the region be-
fore the first diffraction minimum extracted in the DWIA
approximation as discussed in subsect. 3.1 have been fit-
ted with eq. (14) multiplied with an overall normalization
constant. The fits are shown in fig. 9 for two ranges of in-
cident photon energies. The results for the fit parameters
are summarized in table 3. For the dms radii quite good
agreement is found with the charge radii extracted from
electron scattering experiments. Since the fitted q-range is
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Table 3. Diffraction mass radii (Rd) and width of the Gaus-
sian (σ) determined from the fit of eq. (14) to the data. The
parameters are averages over the two regions of incident pho-
ton energies (200–245, 245–290 MeV). The uncertainties have
been estimated from fit errors and the agreement between the
two energy ranges. For comparison the parameters from charge
distributions Rc

d, σc are also listed. They represent the aver-
ages of the results given in [5] (since 93Nb is not analyzed in [5]
instead the average for the isotopes 92,94Zr is given in brackets).

Nucleus Rd [fm] σ [fm] Rc
d [fm] σc [fm]

12C 2.30±0.10 0.7–1.2 2.44 0.8
40Ca 3.65±0.30 0.6–1.2 3.79±0.04 0.92
93Nb 5.10±0.10 0.–1. (5.04±0.04) (0.98)
natPb 6.65±0.05 0.–1. 6.66±0.04 0.93
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Fig. 10. Main plot: position of the diffraction minima for 40Ca.
Insert: extracted dms radii. Open squares: raw values; filled
circles: after correction for FSI; triangles: charge dms radii from
electron scattering [5].

small for the heavy nuclei, the fits are not sensitive to the
width of the Gaussian; therefore, in case of Nb and Pb,
values between zero and unity result in similar fit qualities.

A more precise determination of the radii uses the po-
sition of all observed diffraction minima. The results for
Ca and Pb are shown in figs. 10, 11. For the first min-
imum of Ca and the first and second minima of Pb the
positions were individually determined in bins of 20 MeV
incident photon energy. Since no systematic trends were
observed, only the average over all bins is shown in the fig-
ures. Due to the limited statistics the higher minima were
only determined for the full energy range of 245–365 MeV
without considering possible energy-dependent shifts. Al-
though we have assigned rather conservative uncertainties
to the positions of the higher minima, their large lever arm
leads to fairly precise values of the corresponding values
of the radii.
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Fig. 11. Same as fig. 10 for Pb.
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Fig. 12. Extracted values of the dms radii. Open squares: raw
values; filled circles: after correction for FSI; triangles: charge
dms radii from electron scattering [5]. In case of Nb the open
triangles correspond to the average of the charge dms radii for
92,94Zr (values for 93Nb are not available). The full and dotted
lines indicate average and uncertainty of the radius for each
nucleus.

The radii have been calculated from the position of the
minima via (see eq. (16))

R
(i)
d = Xi/qi (21)

where qi is the position of the i-th minimum, Xi the i-th

zero of the Bessel function and R
(i)
d the corresponding

value of the dms radius. The results are shown in the in-
serts of the figures and summarized in fig. 12.
The values extracted from the raw data with eq. (21)

(open squares in the figures) show a systematic trend as a
function of the number of the minima. However, this trend
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is completely eliminated and almost perfect agreement
with the corresponding charge radii is obtained after cor-
rection of the FSI effects (filled circles in the figures). The
shift of the position of the minima due to FSI effects was
determined from a comparison of the position of the min-
ima in the PWIA and DWIA calculations as discussed in
sect. 2 (see fig. 2). The good agreement between the values
extracted from the different minima after correction nicely
demonstrates that the FSI effects are well under control
at least as far as the position of the minima is concerned.

For the charge distributions a systematic deviation of
the dms radii extracted from the first and second diffrac-
tion minium has been found [5,6], which was related to the
depression of the central density of the charge distribution
in nuclei. It would be therefore very interesting to investi-
gate if such a central density suppression survives also into
the mass density. However, the precision achieved so far,
does not yet allow to answer this question. The extracted

(R
(1)
d −R(2)

d ) differences are 0.10±0.12 fm, 0.16±0.13 fm,
and 0.00 ± 0.15 fm for 40Ca, 93Nb and Pb. This means
that they are consistent with zero but also with the small
differences observed for the charge radii (on the order of
0.1 fm for lead).

Finally, the first maximum of the form factors was used
for a more precise extraction of the width of the Gaussian
with eq. (19). This requires not only the determination
of the position qm of the maximum but also the absolute
value of the form factor F (qm), which is strongly influ-
enced by the FSI effects. In order to minimize the model
dependency, the correction was done in the following way.
As in subsect. 4.1 the form factors were fitted with Taylor
series and the absolute normalization was obtained from
the condition a0 = 1. The results are shown in fig. 13,
left-hand side. Position qm and magnitude F (qm) of the
first maximum were determined from these data. The FSI
correction for the position was obtained in the same way
as for the position of the minima. The correction of the
magnitude was also obtained from a comparison of the
differential cross-sections calculated in PWIA and DWIA.
This is shown on the right-hand side of fig. 13. In the pic-
ture, the position of the first minimum and the magnitude
before the first minimum are normalized for the DWIA
calculation so that the cross-sections agree in the q range
before the first minimum. The additional FSI correction
for the magnitude of the first form factor maximum is then
obtained from the square root of the ratio of the two cal-
culations at this q value. In this way, again only ratios of
the model results enter into the correction factors. In the
absence of a good DWIA calculation for Nb no analysis of
the Gaussian width was attempted for this nucleus. The
parameters of the first maximum and the deduced values
for the Gaussian width σ are summarized in table 4.

It is obvious from fig. 13 and table 4 that the relative
FSI corrections (i.e. the difference of the FSI effects be-
tween the q range before the first minimum and in the
first maximum) increase with decreasing mass number,
they are almost negligible for lead but very significant for
carbon (note that the absolute FSI effects are of course
much larger for lead than for carbon). Their effect is that
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Fig. 13. Left-hand side: position and height of the first
maximum of the form factors for carbon, calcium and lead.
Right-hand side: PWIA (dashed curves) and DWIA (full
curves) calculations for the differential cross-sections for the
same range of incident photon energies as taken into account in
the data analysis (200–260 MeV for Ca and Pb, 255–330 MeV
for C). Position of the first minimum and the absolute values
before the first minimum of the DWIA calculation are normal-
ized to the PWIA calculation.

Table 4. Determination of σ from the first maximum of the
form factor (see eq. (19)). qm and F (qm) are position and mag-
nitude of the first maximum, qcorm and F cor(qm) the same after
correction for FSI effects (q in [fm−1], σ in [fm]).

Nucl. qm qcorm F (qm) F cor(qm) qcorm Rd σ

12C 1.95 2.15 0.079 0.043 5.18 0.46
40Ca 1.30 1.41 0.076 0.058 5.33 0.53
natPb 0.78 0.825 0.0776 0.071 5.49 0.67

for the form factors normalized to unity for q → 0 the
magnitude of the first maximum is overestimated for the
light nuclei in the PWIA analysis. And this effect cancels
the influence of the finite Gaussian width on the magni-
tude in the first maximum.

The results for the dms radii and the Gaussian width
σ are summarized in table 5 and compared to the corre-
sponding values for the charge distributions. The mass
dms radii are in excellent agreement with their charge
counterparts, though the almost exact agreement for Ca
and Pb is certainly by chance, given the associated un-
certainties. Thus, also for the diffraction radii there is no
indication that the mass radii would be larger than the
charge radii.

For the comparison of the width σ with the cor-
responding width σc of the charge distributions one
must take into account that the values for the charge
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Table 5. Parameters of the Helm model from the positions
of the diffraction minima and position and magnitude of the
first maximum. The values for Rd are the average values from
fig. 12. The results for σ are from table 4. Rc

d and σc are the
respective values for the nuclear charge distributions taken
from [5] (the latter corrected for the finite extension of the
proton charge distribution).

Nucl. Rd [fm] σ [fm] Rc
d [fm] σc [fm]

12C 2.41± 0.09 0.46 2.44 0.67
40Ca 3.78± 0.05 0.53 3.79± 0.04 0.80
93Nb 5.09± 0.05 – 5.04± 0.04 –
natPb 6.66± 0.07 0.67 6.66± 0.04 0.81

distributions include the effect of the finite extension of
the proton, while the values extracted from pion photo-
production refer to point-like nucleons. Therefore, σc has
been corrected for this effect with the dipole form factor of
the proton. However, even after this correction, the values
extracted for the mass distributions remain systematically
smaller, in particular for the light nuclei (see table 5).

5 Summary and conclusions

Recent data for coherent photoproduction of π0 mesons
have been analyzed in view of nuclear mass distributions.
The Helm model was used to extract diffraction minimum
sharp radii from the positions of the diffraction minima
and skin thicknesses from the magnitude and position of
the first maximum of the form factors. After corrections
for FSI effects, the mass dms radii are in excellent agree-
ment with the dms radii of the charge distributions of
the nuclei. A stringent control of systematic effects (e.g.
the FSI corrections) on the dms radii is possible via the
comparison of the results for different order minima of
the same nucleus. No systematic trends have been ob-
served. The uncertainties of the dms radii (3.7% for 12C
and ≈ 1% for all other nuclei) have reached a similar level
of precision as the corresponding charge radii. However,
the achieved precision is just not sufficient to exclude or
establish a central depression of the mass distributions
from the comparison of the positions of first and second
diffraction minimum.
Root-mean-square radii of the mass distributions have

been extracted in two different ways. In the first, the slope
of the form factors for q → 0 was fitted with polynomials.
A very conservative estimate of the typical uncertainty
due to FSI corrections of the shape of the form factors
follows from the difference between the results obtained
in PWIA and DWIA, which is the more important the
heavier the nucleus. In a second approach, they have been
extracted in the framework of the Helm model via eq. (18)
from the dms radii and surface thicknesses. The results are
summarized in table 6. The largest discrepancies between
the different analysis are in the range of 10%.
An unexpected finding is that all results for the rms

mass radii are slightly smaller than the corresponding rms
charge radii, even after the latter have been corrected for

Table 6. Comparison of the extracted rms mass radii with
charge rms radii (all values are in [fm]). Rd: mass dms radii
(see table 5); σ: Gaussian width of the mass distributions (see
table 5) (value in brackets for Nb interpolated from other nu-
clei); rHelmrms : rms mass radii calculated with eq. (18) from Rd

and σ, rPWrms, r
DW
rms : rms radii extracted from the slope of the

form factors in PWIA and DWIA approximation (see table 2);
rcrms: charge rms radii with the proton charge radius subtracted
in quadrature.

Nucl. Rd σ rHelmrms rPWrms rDWrms rcrms

12C 2.41 0.46 2.03 2.28 2.26 2.32
40Ca 3.78 0.53 3.07 3.22 3.15 3.35
93Nb 5.09 (0.60) 4.08 3.96 3.76 4.22
natPb 6.66 0.67 5.29 5.20 4.90 5.42

the proton charge radius. Since at least for nuclei like
208Pb models predict slightly larger rms radii for the neu-
tron distributions than for the proton distributions one
would have expected the opposite. At the same time the
skin thicknesses extracted from the Helm model are also
systematically smaller than their charge counterparts. In
a sense, these two effects are consistent since smaller skin
thicknesses combined with identical diffraction radii will
lead to smaller rms radii. However, as yet it is not clear
if these effects are real or if they can be explained by so
far not understood systematic effects in the data or in
the model calculations used for the DWIA corrections. A
possible explanation could be a small remaining incoher-
ent background component in the cross-section data. The
angular distributions of incoherent π0 photoproduction in-
volving excited nuclear states peak at larger angles than
the coherent reaction. Therefore, such background, which
so far is only suppressed by kinematical cuts, would tend
to decrease the slope of the form factor at small q, it would
enhance the magnitude of the first diffraction maximum,
but it would not change the position of the diffraction
minima. In such a scenario, rms radii and skin thicknesses
would be underestimated, but the dms radii would not be
effected. Clearly, further improvements on the experimen-
tal side and for the model calculations are necessary and
possible. On the experimental side, large improvements in
the statistical quality of the data are possible with the
now available 4π electromagnetic calorimeters. Further-
more, improvements in the energy and angular resolution
for the detection of the π0 decay photons will allow an
even more stringent suppression of incoherent pion pro-
duction reactions than achieved in [11]. The background
situation will furthermore very significantly improve since
with the large solid-angle coverage the detection of de-
cay photons from excited nuclear states will not only al-
low to veto such events much more efficiently than previ-
ously, it will actually allow a detailed investigation of the
incoherent processes (which are very interesting in their
own right) so that any remaining background can be sub-
tracted. Furthermore, a more systematic investigation of
coherent pion photoproduction from many nuclei in the
framework of models is clearly desirable.
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