
Auton Robot (2011) 31:155–181
DOI 10.1007/s10514-011-9235-2

Toward simple control for complex, autonomous robotic
applications: combining discrete and rhythmic motor primitives

Sarah Degallier · Ludovic Righetti · Sebastien Gay ·
Auke Ijspeert

Received: 18 July 2010 / Accepted: 4 May 2011 / Published online: 24 May 2011
© Springer Science+Business Media, LLC 2011

Abstract Vertebrates are able to quickly adapt to new en-
vironments in a very robust, seemingly effortless way. To
explain both this adaptivity and robustness, a very promis-
ing perspective in neurosciences is the modular approach
to movement generation: Movements results from combi-
nations of a finite set of stable motor primitives organized
at the spinal level. In this article we apply this concept of
modular generation of movements to the control of robots
with a high number of degrees of freedom, an issue that
is challenging notably because planning complex, multidi-
mensional trajectories in time-varying environments is a la-
borious and costly process. We thus propose to decrease the
complexity of the planning phase through the use of a com-
bination of discrete and rhythmic motor primitives, lead-
ing to the decoupling of the planning phase (i.e. the choice
of behavior) and the actual trajectory generation. Such im-
plementation eases the control of, and the switch between,

This work was supported by the European Commission’s Cognition
Unit, projects RobotCub and AMARSi. S.G. is funded by a IST-EPFL
grant.

Electronic supplementary material The online version of this article
(doi:10.1007/s10514-011-9235-2) contains supplementary material,
which is available to authorized users.

S. Degallier (�)
CNBI Laboratory, School of Engineering, EPFL Ecole
Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
e-mail: sarah.degallier@epfl.ch

S. Gay · A. Ijspeert
Biorobotics Laboratory, School of Engineering, EPFL Ecole
Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland

L. Righetti
Computational Learning and Motor Control Lab, Computer
Science, Neurosciences, & Biomedical Engineering, University
of Southern California, Los Angeles, CA 90089, USA

different behaviors by reducing the dimensionality of the
high-level commands. Moreover, since the motor primitives
are generated by dynamical systems, the trajectories can
be smoothly modulated, either by high-level commands to
change the current behavior or by sensory feedback infor-
mation to adapt to environmental constraints. In order to
show the generality of our approach, we apply the frame-
work to interactive drumming and infant crawling in a hu-
manoid robot. These experiments illustrate the simplicity of
the control architecture in terms of planning, the integration
of different types of feedback (vision and contact) and the
capacity of autonomously switching between different be-
haviors (crawling and simple reaching).

Keywords CPGs · Motor primitive · Adaptive behaviors ·
Dynamical systems · Humanoid robots · Bio-Inspiration ·
Drumming · Locomotion

1 Introduction

Controlling robots with multiple degrees of freedom (DOFs)
for autonomous tasks is still an open and challenging issue,
notably because planning complex, multidimensional trajec-
tories in time-varying environments is a laborious and costly
process. In previous work (Gay et al. 2010; Degallier et al.
2006, 2007, 2008; Righetti and Ijspeert 2006a, 2008), we
have presented a control framework where the planning and
the generation of movements are decoupled, i.e., the plan-
ning consists in defining the key characteristics of the de-
sired movement (e.g., the target position for reaching), the
actual trajectory generation relying on low-level attractor
dynamics. This approach drastically reduces the dimension-
ality of the planning problem, making it particularly appro-
priate for robots with multiple DOFs, and we have applied

http://dx.doi.org/10.1007/s10514-011-9235-2
mailto:sarah.degallier@epfl.ch

156 Auton Robot (2011) 31:155–181

it to the control of humanoid robots for diverse tasks such as
drumming, crawling and reaching. In the present contribu-
tion, we review this work and fill it out with a more detailed
presentation of the dynamical system on which the archi-
tecture is based, emphasizing the properties that make this
system particularly well-suited for robotic applications.

In order to design our architecture, we took inspiration
from the motor system of vertebrates, notably because an-
imals are capable not only of performing highly complex
tasks in a robust way but also of rapidly adapting to changes
or uncertainties in the environment. Interestingly, the plan-
ning of movements and the actual generation of trajecto-
ries are most likely decoupled in vertebrates (e.g., Grill-
ner 2006; Bizzi et al. 2008). The actual spatio-temporal se-
quence of activation of the muscles is produced at the spinal
level through neural networks called central pattern gener-
ators (CPGs).1 These CPGs are activated by simple, non-
patterned control signals from the brain and that are modu-
lated by sensory feedback. Thus, only the key parameters of
the movement seem to be needed from the brain for a task
to be completed.2 In terms of control of robots, the idea be-
hind the concept of CPGs is that movements are produced by
so-called pattern generators, that have open parameters (the
control signals) but whose dynamics are predefined, the out-
put of such a generator being called a motor primitive. For
instance, for reaching, the target of the movement is open,
but features such as, e.g., the velocity and the acceleration
profiles are encoded in the pattern generator and are thus
fixed. As a result, the planning phase for a reaching move-
ment consist only in specifying the final desired position, the
whole trajectory being then computed by the pattern genera-
tor. Consequently, a CPG-based approach to movement gen-
eration reduces the dimensionality of the planning problem:
instead of computing whole trajectories, only the key param-
eters of the movement need to be specified. In addition, the
trajectories generated by the pattern generators (the motor
primitives) can be modulated by sensory feedback in order
to adapt the trajectories to partially unknown environments.

To model these motor primitives, we used dynamical sys-
tems with appropriately chosen attractor properties. We de-
fine a pattern generator as the system of equations that gen-
erates the trajectories and a motor primitive as the solution of
this system. The dynamical system approach to understand
movement coordination has been initiated by scientists such
as Schoener, Kelso and Turvey (and others) (see, e.g. Tur-
vey 1990; Schoener 1990; Schoener and Kelso 1988). Ba-
sically, the idea is to bring to light collective variables that

1Note here that we follow definition of CPGs of Grillner (2006) that
includes both the generation of discrete and rhythmic movements.
2If the existence of CPGs in non-primate vertebrates is generally well
accepted nowadays, the generalization to humans is still an open de-
bate, indeed, influences from higher cortical areas and from sensory
pathways are difficult to isolate (e.g., Capaday 2002).

Fig. 1 Motor primitives for control. (a) In the traditional approach, a
high-level planner computes the trajectories needed to achieve the task
according to the feedback information. In redundant systems, the de-
sired trajectory is usually found using optimization given a certain per-
formance criterion. When the environment changes, inducing a modi-
fication of the feedback signal, the control trajectories need to be com-
puted again. (b) A low-level planner based on CPGs. The generation
of the trajectories is now divided into two steps: the definition of the
control parameters of the motor primitives and the generation of the
motor primitives by the CPGs. Optimization has to be done on a small
set of trajectories. In addition to the main feedback loop, a local feed-
back loop can be added for rapid modulations of trajectories without
requiring replanning. This local loop allows for fast on-line adaptation
of trajectories

can describe coordination patterns, and the modeling of such
patterns by dynamical systems depending on such collective
variables (Schoener 1990). Schoener and Kelso (1988) have
shown the importance of notions such as stability and phase
transition in movement generation. The gaits observed dur-
ing provides a typical example of such phenomenon: only a
discrete number of stable states (the gaits) exists and a col-
lective variable (the frequency) induces transitions between
these states at critical points.

In terms of control, advantages of an approach based on
motor primitives over traditional control approaches can be
summarized as follows. In traditional approaches, there are
usually two different processes: a high-level planner that
computes the desired trajectories and a low-level controller
(e.g., a PID controller) that transforms the desired trajec-
tories into motor commands (see Fig. 1). The idea behind
the concept of motor primitives is to add a low-level plan-
ner to the system that is composed of a set of trajectories
with predefined dynamics. In terms of robotic control, the
motor primitives can thus be seen as template trajectories in
which a priori knowledge about the movements to be per-
formed are embedded and that can be modulated accord-
ing to feedback information. The advantage of using these
primitives is threefold. First, they ease the planning problem
by reducing the workspace of the robot to the control pa-
rameters of the motor primitives. Second, they provide the
system with fast, local feedback loops for on line trajectory
generation. It allows to rapidly correct desired trajectories
according to time-varying perturbations or environmental
changes without the need to replan the whole motor plan
explicitly. Finally, different degrees of freedom can be cou-
pled together to ensure inherent synchronization and coordi-
nated behaviors. In other terms, motor primitives provide an

Auton Robot (2011) 31:155–181 157

Fig. 2 Schema of the control architecture. A central pattern genera-
tor is seen here as a network of dynamical systems that allows for the
generation of complex output trajectories given simple, non patterned
inputs. The output of the system can be further modulated by sensory
information. In the dash line box: The discrete and the rhythmic sys-
tems are combined together to form a unit pattern generator (UPG) that
is responsible for the control of one degree of freedom (DOF). The
UPGs of each DOF are then coupled together in a network, the central
pattern generator (CPG, in green), in order to generate a coordinated
behavior between the DOFs. Note that while the (open-loop) dynamics
of the UPG is always the same, the CPG depends on the structure of
the robot and on the task to be accomplished

effective, dynamic way to embed a priori knowledge about
the task into the low-level planning system, as, for instance,
arm synchronization for bi-manual tasks or trajectories with
bell-shaped velocity profile for reaching movements. They
thus provide a fundamental tool to develop efficient, fast
architectures for the generation of movements, particularly
in the case of robots with many degrees of freedom and
meant to evolve in time-varying environments, such as hu-
manoids.

Discrete and rhythmic movements are commonly consid-
ered separately in motor control theory and, mathematically
speaking, different types of parameters are needed to char-
acterize the movements. Several authors have studied the in-
teraction of discrete and rhythmic movements, sometimes
reaching different conclusions, as we reviewed in Degallier
and Ijspeert (2010). In this article, we consider discrete and
rhythmic movements as two basic types of movements that
can be combined to generate hybrid trajectories. The general
control schema that we are proposing here is depicted on
Fig. 2: the CPGs generate trajectories according to the con-
trol parameters specified by the planning system, the whole
architecture being influenced by feedback information com-

ing from the robot. Note that this concept is not limited to
control in the joint space and can easily be extended to op-
erational space control for instance (see e.g. Khatib 1980).
In our CPG, we model all movements through the combi-
nation of a discrete and a rhythmic motor primitives, both
produced by a unique dynamical system, that we call a unit
pattern generator (UPG). More precisely, movements are
modeled as oscillatory movements around time-varying off-
set. Purely discrete movements can be obtained by setting
the amplitude of the oscillations to zero and purely rhyth-
mic ones by setting a constant offset.

The control of robotic devices using motor primitives
modeled by dynamical systems has often been addressed
in the literature, with applications to learning by demons-
tration—the so-called dynamical motor primitives (DMP)—
(e.g., Ijspeert et al. 2003; Gribovskaya and Billard 2008;
Pastor et al. 2009; Kober and Peters 2010), rehabilitation
(Ronsse et al. 2010), locomotion (e.g., Kimura et al. 2007;
Maufroy et al. 2008) and modular robotics (e.g., Cui et al.
2010; Sproewitz et al. 2010) for instance. Here our focus
is the generation of trajectories given simple, explicit high-
level commands, as for instance in Maufroy et al. (2008)
for locomotion and Bullock and Grossberg (1988) and Her-
sch and Billard (2008) for reaching. The novelty here is
that we address the generation of both discrete and rhyth-
mic movements through the same system, a subject that as
received little attention so far, as we reviewed in Degal-
lier and Ijspeert (2010). Indeed, to the best of our knowl-
edge, two main models for the simultaneous production
of both discrete and rhythmic movements have been pre-
sented before, namely the models by De Rugy and Sternad
(2003) and by Schaal et al. (2000), and they have never
been applied to robotic control. The model presented by
De Rugy and Sternad (2003), later extended to bi-manual
tasks by Ronsse et al. (2009), is aimed at reproducing
the key observations of the combination of discrete and
rhythmic movements. It is based on a Matsuoka oscilla-
tor (Matsuoka 1985) modeling the output of two coupled
neurons, this output being transformed into a desired tra-
jectory through the equation of the dynamics of the joint.
Schaal et al. (2000) proposed a rather complex system com-
posed of two different motor primitives with many param-
eters, that allows for the reproduction of signals recorded
in the brain, the drawback being that all these parameters
need to be tuned precisely. Here our main focus is robotics
(rather than the reproduction of observations made in hu-
mans) and our goal is thereby the design of a simple model
with few, explicit control parameters corresponding to main
characteristics of the movement (that is, the discrete tar-
get, the frequency and the amplitude). Note that Schoener
(1990) introduced a system for the control of discrete move-
ments, these movements being modeled as truncated rhyth-
mic movements. More precisely, in this model, the quali-

158 Auton Robot (2011) 31:155–181

tative solutions of a basic system are modulated by a su-
pervising system according to the task specifications: pos-
tures are modeled as fixed points and movements by a Hopf
oscillator. Discrete movements correspond to approxima-
tively half of the limit cycle and the timing of the bifurca-
tions (i.e., the qualitative change of the solutions to move-
ments to posture) is controlled by the supervising layer ac-
cording to the distance to the target. This system has been
applied to the autonomous control of robots in navigation
tasks several times (see, e.g., Steinhage and Bergener 1998;
Tuma et al. 2009) and to reaching tasks in Schoener and
Santos (2001). To the best of our knowledge, this system
has never been applied to the generation of both discrete and
rhythmic tasks for robotic applications, although the system
could be easily extended to generate sequences of discrete
and rhythmic movements. Here we take a different approach
where discrete and rhythmic movements are considered as
two separated types of movements that can be coupled to
produce hybrid movements.

In this article, we first present in details the modeling of
the CPGs (Sect. 2); we then illustrate the capacity of the
system to easily switch between behaviors on the fly and the
possibility of integrating different types of feedback through
two applications, drumming (Sect. 4) and crawling (Sect. 5).
The iCub robot, as well as the preexisting software that was
used, are briefly presented in Sect. 3.

2 Presentation of the architecture

We present here the precise implementation of the CPGs.
As illustrated on Fig. 2, all trajectories (for each joint) are
generated through a unique set of differential equations (the
UPG) and which is designed to produce complex move-
ments modeled as periodic movements around time-varying
offsets. Each UPG can be divided into two subsystems: the
discrete and the rhythmic one. The first subsystem is respon-
sible for the generation of short-term, goal directed features
of the movement and the second subsystem for periodic fea-
tures of the movements such as the amplitude and frequency
of the pattern. The dynamics of the different DOFs can then
be embedded in a larger network (the CPG) by coupling
them together to ensure coordinated and synchronized be-
haviors. We present the discrete and the rhythmic systems
separately in Sects. 2.1 and 2.2 respectively and we discuss
their combination in Sect. 2.3. We then present how to cou-
ple the different systems to create a CPG (Sect. 2.4).

2.1 Discrete system

To generate discrete movements, we use a set of differ-
ential equations based on the VITE (Vector Integration
To Endpoint) model originally developed by Bullock and

Grossberg (1988) to simulate planned and passive arm
movements. The target of the trajectory is encoded through
a difference vector that represents the difference between
the desired position of the DOF (γi) and its actual position
(yi). The speed of the movement is controlled by the so-
called activity v that is proportional the difference vector
(yi − γi). Such an implementation allows for a coordinated
control of several DOFs, as the time of convergence to the
target is independent of the length of the trajectory, that is all
DOFs will attain their target position simultaneously even if
the distances to be covered by the joints are different (see
Fig. 3(a)). We slightly modified the original system by Bul-
lock and Grossberg (1988) to ensure that the initial speed
of a movement is zero and that the velocity profile is bell-
shaped. More precisely, for each degree of freedom i, a goal
directed movement towards a target position γi can be gen-
erated through the following set of equations:

ḣi = 1 − hi, (1)

ẏi = vi, (2)

v̇i = −1

4
B2h2

i (yi − γi) − Bhivi (3)

where yi is the output of the system, vi and hi are auxiliary
variables and B is a constant that controls the time of conver-
gence of the system.3 The system is critically damped so that
the output yi of (2) and (3) converges asymptotically and
monotonically to the target γi with a speed of convergence
controlled by B . Equation (1), that we call the go command,
is used to ensure that the velocity profile is bell-shaped and,
in particular, that the initial speed is null (as illustrated on
Fig. 3(b)). hi is reset to zero at the onset of each movement
(a movement is considered to be new when the target is sig-
nificantly larger than the previous one (0.1 rad in our case)).
This system is relatively simple in the sense that the only
parameter to select is the rate of convergence B , and the tra-
jectory is fully determined by simply specifying one control
parameter: the target γi of the movement.

2.1.1 Stability and analytical solution

To ensure the stability of the system, we can analyze the
eigenvalues of its Jacobian, that is

JD =
⎛
⎝

−1 0 0
0 0 1

−0.5B2hi(yi − γi) −0.25B2h2
i −Bhi

⎞
⎠

Thus, for any point of the state space (hi, yi, vi), we have
det(JD −λI) = (−1−λ)(λ+0.5Bhi)

2, and hence λ0 = −1

3Throughout this article, Greek letters will denote control parameters,
lower-case Latin letters variables and capital Latin letters constant val-
ues.

Auton Robot (2011) 31:155–181 159

Fig. 3 Discrete system. See text for discussion. The system was inte-
grated using the Euler method with a time step of t = 0.001 s. Here the
gain in (3) is set to B = 10. (a) Top panel: Different trajectories con-
verging to same target position γi = 2 with different initial positions:
y = 1 (black, plain line), y = 3 (red, dash line) and y = −1 (blue,
dash dotted line). Bottom panel: Corresponding velocity profiles (same
color/line type). (b) Top panel: Two types of activation command hi :
in black, plain line a step response (hi = 1 at the time of activation
t = 0.5 s, 0 before) and in red, dotted line a monotonically increasing
activation (corresponding to the output of (1)). Bottom panel: Resulting
velocity profiles with the constant activation (black, plain thick line)
and with the increasing activation (red, dotted thick line) and the cor-
responding trajectories (same color/line type but thin lines) converging

to the target γi = 2. (c) Top panel: The normal trajectory (in red, dash
line) is modified (in black, plain line) due to a perturbation where the
DOF is kept in a constant position (y = cst, in-between the vertical
lines) from t = 0.5 to t = 1.5, but eventually converges to the target
γi = 5 (in blue). Bottom panel: In this case, the perturbation is simi-
lar to a “force” exerted on the DOF (dy

dt
= −1, in-between the vertical

lines) from t = 1.8 to t = 3.0 (same color code/line types as in the top
panel). (d) Top panel: The target position γi (in red, dash dotted line)
is changed from γi = −1 to γi = 1 before convergence. In black, plain
line is the resulting trajectory. Bottom panel: The time varying target
position γi(t) is here given by a sine signal (same color code as in the
top panel). Note that here B = 50 to illustrate the fast convergence to
the target

and λ1 = λ2 = −0.5Bhi . For the go command, we have:

h(t) = 1 − e−t+t0

where t0 is the time of initiation of the movement, as we
set h(t0) = 0 in our case. Hence 0 ≤ hi ≤ 1 and B > 0 and
thus, since all the eigenvalues are negative, the general sys-
tem is stable on the state space given by [0,1]× R × R. The
two eigenvalues of the system given by (2–3) are equal and
real and hence the system is critically damped. Thus, if we
consider hi = 1, the solution is given by

y(t) = γ + Cye
− B

2 t + Cvte
− B

2 t

where Cy and Cv are constant that depends on the initial
conditions y(0) and v(0).

2.1.2 Properties of the discrete system

We now present some features of the system—illustrated in
Fig. 3—that will be useful for the application to robotics.

Globally attractive fixed point
The fixed point γi is globally attractive, which means that
the trajectory will asymptotically converge to this point
for any initial condition, as illustrated in Fig. 3(a). More-
over, as mentioned above, for any initial condition, all
trajectories converge to the target γi at the same time, as
the speed is proportional to the remaining distance to be
covered, as can be observed on Fig. 3(a). Such a feature is
interesting because all the DOFs move in a synchronized
way, the drawback being that the speed of the movement
is not directly controlled (unless B is changed).

Bell-shaped velocity profile
The auxiliary variable hi modifies the velocity profile of
the system to make it bell-shaped. More specifically, it
is used to ensure that the velocity is null at the onset of
the movement to avoid high peaks of accelerations. The
effect of the chosen activation compared to a simple step
response (as in the original VITE model) is illustrated on
Fig. 3(b). Note that the auxiliary variable hi must be reset
to zero at each onset of a new movement.

160 Auton Robot (2011) 31:155–181

Resistance against perturbations
Thanks to the global attractiveness of the fixed point,
even if a perturbation occurs during or after the
transient—as illustrated on Fig. 3(c)—the trajectory will
eventually converge to the target position. Note that the
duration of the perturbation does not influence the trajec-
tory after since the system is autonomous. This feature
is interesting because it can be used to modify the tra-
jectory according to sensory information: for instance, if
the DOF is stuck in a given position due to a obstacle for
instance, the dynamics of the system can be temporarily
modified so that the desired trajectory matches the actual
environmental condition by using a perturbation similar
to the one shown in Fig. 3(c) (top panel). Similarly, a
repulsive force can be applied to avoid contact with a
obstacle (Fig. 3(c), bottom panel).

Adaptivity to changing environment
Figure 3(d) illustrates the ability of the system to
smoothly adapt to changes of the target position γi . In
the top panel, it is shown that if the target position is
suddenly changed (if for instance the object that has to
be reached is suddenly moved, or if the target object
changes), the trajectory is smoothly modulated to con-
verge to the new target position. The bottom panel of
Fig. 3(d) depicts the case where the target position γi is
constantly changed. In this case the system is constantly
updated so that it reproduces the trajectory of the moving
target with a time delay that depends on the gain B . In
order to deal with a constantly changing target position,
the activity command hi is reset only when the differ-
ence between the new target and the previous one is big
enough (the threshold was set to 0.1 rad in our case). For
instance, in the drumming application (see Sect. 4), a vi-
sual feedback loop constantly updates the target angles of
the limb according to the actual position of the (possibly
moving) drum pads.

2.1.3 Some additional remarks

Although we set B to a constant value here, it can also be
used as a control parameter: as mentioned earlier, the value
of B defines the duration of the discrete movement (inde-
pendently of the distance to be covered), as illustrated on
Fig. 3(a), upper panel. For instance, B can be tuned to re-
flect the so-called Fitts Law (Fitts 1954): the duration of sim-
ple reaching movement depends on the difficulty of the task,
this difficulty being measured as the ratio between the dis-
tance to the target and the width of the target. B can thus be
defined to be inversely proportional to the relationship de-
fined by Fitts (smaller values of B leading to longer move-
ments in time). In addition, since it has been shown by Kelso
et al. (1979) that, in bimanual tasks, movements of different
difficulties tend to have the same duration (that is, the du-
ration of the more difficult movement), it can be postulated

that the control command B is shared by the two arms. The
benefit of using a common B is twofold: it reduces the num-
ber of control parameters needed and coordination between
the two arms is inherent to the system.

It is important to note that, if a perturbation occurs,
the trajectory will eventually converge to the desired target
(thanks to the global attractiveness of the target). Now, evi-
dence exist in motor control that animals tend to resume to
the initial plan after perturbations (e.g., Bizzi et al. 1984;
Won and Hogan 1995). A system where the trajectory is a
sort of moving fixed point could be implemented and, in this
case, if a perturbation occurs, the trajectory will converge to
the position where it should be at a given time according to
the initial plan. However, an attractive trajectory may cause
dangerous behavior of the robot due to the (explicit or im-
plicit) reference to time. Indeed, if a long term perturbation
occurs, the system will converge back to the position ini-
tially planned with an uncontrolled speed. In our case, the
trajectory after the perturbation is not affected by the dura-
tion of the perturbation, which motivates our choice since
we focus on robotics application rather than on motor con-
trol modeling.

2.2 Rhythmic system

For the rhythmic system, we use a modified Hopf oscillator.
Indeed, such an oscillator has many interesting properties,
among which: (i) it has a unique periodic solution that is
globally stable, (ii) this solution can be found analytically
and is a perfect sine, and (iii) the frequency and the am-
plitude are explicit parameters. The system can be written
as:

ṁi = C (μi − mi) , (4)

ẋi = A

|μi | (mi − r2
i)xi − ωizi + n, (5)

żi = A

|μi | (mi − r2
i)zi + ωixi + n (6)

where xi is the output of the system, zi and mi auxiliary

variables, ri =
√

x2
i + z2

i , A and C are constant controlling
the rate of convergence and n is a noise signal distributed
normally (n~N (0,1)) added to avoid unstable solutions.
The first term of the right-hand side of (5) and (6) ensures a
constant amplitude while the second term induces the oscil-
latory behavior. When μi > 0, (5) and (6) describe an Hopf
oscillator whose solution xi is a sine of amplitude

√
μi and

frequency ωi . A Hopf bifurcation occurs when μi < 0 lead-
ing to a system with a globally attractive fixed point at (0, 0).
Note that (4) was added to the canonical system to ensure
that the output trajectory is smooth even when bifurcations
occur.

Auton Robot (2011) 31:155–181 161

Fig. 4 Rhythmic system. See text for discussion. The system was in-
tegrated using Euler method with a time step of t = 0.001 s. The gain
in (5) and (6) is set to A = 5, and the gain in (4)is set to C = 20. The
noise ε is distributed normally with mean 0 and standard deviation 1.
(a) Top panel: Different trajectories converging to same limit cycle of
amplitude

√
2. with different initial positions: x = 0, z = 0 (black),

x = 2, z = 2 (red) and x = −2, z = 0 (blue). Bottom panel: The same
trajectories in the phase plane-xz (same color). (b) Top panel: The nor-
mal trajectory (black) is modified (red) due to a perturbation where the
DOF is kept in a constant position (x = cst) from t = 0.5 to t = 1.5
and from t = 1.8 to t = 3. Bottom panel: The same trajectories in
the phase plane-xz (same color). (c) Top panel: The initial trajectory

(black) is modulated through the parameter m (in blue ±√
m) result-

ing in changes in amplitude (red). At t = 1, m is set to a negative
value (−5), leading to a Hopf bifurcation: the limit cycle becomes a
fixed point system. At t = 2, m is set to 4 and the reverse bifurca-
tion occurs. Bottom panel: The same trajectories in the phase plane-xz

(same color). (d) Top panel: Modulation of the parameter ωi : at t = 0 s,
ωi = 2π , at t = 2 s, ωi = 3π , at t = 4 s, ωi = 2π , at t = 6 s, ωi = π

and at t = 8 s, ωi = 2π (the black vertical lines denote times where
ωi is changed). Bottom panel: The original signal (red, plain line) is
entrained by a signal F(t) = sin(4π) (black, dotted line) with a gain
equals to 10, i.e. ẋ = · · · + 10F , from t = 2.5 s to t = 8 s

2.2.1 Stability and analytical solution

To analyze the system, we rewrite the oscillator in polar co-
ordinates (r, θ)4 for x and z:

ṁ = C(μ − m), (7)

ṙ = A

|μ| (m − r2)r, (8)

θ̇ = ω (9)

with r ∈ R
+ and θ ∈ R. In this way the radius and the phase

dynamics are decoupled. The solutions of (7) and (9) are
straightforward:

m(t) = μ − (μ − M0)e
−Ct , (10)

θ(t) = ωt + �0 (11)

4We do not follow here the convention stated before (see Footnote 3)
according to which Greek letters denotes control parameters, since the
Greek letter θ is commonly used to denote the variable corresponding
to the phase.

where M0 = m(0) and �0 = θ(0). It can easily be seen that
μ is a stable fixed point. The phase θ is increasing at a con-
stant rate. It is said to be neutrally stable, i.e., perturbations
will not be forgotten, but will also not increase. Equation (8)
bifurcates depending on the value of μ (as m will eventually
converge to μ), indeed for μ ≤ 0 the system has a unique
solution r = 0, while for m > 0, it has two solutions, r = 0
and r = μ, as illustrated on Fig. 5.

If we consider that m(t) = μ > 0, we can solve the sys-
tem for the non-zero solution by using the fact that (8) is a
Bernoulli equation. We obtain:

r(t) =
√

μ

1 + μCre
− 2A

|μ| (μt)
(12)

where Cr is a constant depending on the initial conditions.

2.2.2 Properties of the rhythmic system

We now present some features of the system—illustrated in
Fig. 4—that will be useful for the application to robotics.

162 Auton Robot (2011) 31:155–181

Fig. 5 Hopf bifurcation. Depending on the value of μ, the solutions of
system change qualitatively. If μ > 0 (in blue in the figure), the system
has two solutions r = 0 and r = √

μ. In this case, and as indicated by
the arrows that shows the direction of trajectories, r = 0 is a “repeller”
and r = √

μ an attractor. However, for μ = 0 (in red) and μ < 0 there
is only one solution left (r = 0) and it is attractive

Attractive limit cycle
As illustrated on Fig. 4(a), all trajectories will eventually
converge to the limit cycle for any initial conditions. In-
deed, the system has two solutions, a stable limit cycle (a
circle centered at the origin and of radius

√
μi) and an

unstable fixed point at (0,0). Thus, thanks to the noise
(n) added in the equation, the system will eventually con-
verge to the oscillatory solution even if initially at the
unstable fixed point. However, as illustrated in Fig. 4(a),
the convergence might be slower in that case (black, plain
line) than for any other initial condition (blue, dashed and
red, dotted-dashed lines). Note that the noise averages out
over the duration of the movement, since it randomly af-
fects velocity at each time step of integration.

Resistance against perturbations
Thanks to the attraction of the limit cycle, even if a short-
time perturbation occurs, the system will resume to the
limit cycle afterwards, as depicted on Fig. 4(b). Similarly
to the discrete case, this feature can be used to modulate
the dynamics of the system according to feedback infor-
mation.

Modulation of amplitude and Hopf bifurcation
The amplitude of the oscillation is directly controlled by
the parameter μi , more precisely, the amplitude is equal
to

√
μi (when μi > 0). Such feature allows us to very

easily, and smoothly, modulate the system behavior ac-
cording to the desired trajectory output, as illustrated in
Fig. 4(c). As mentioned before, different types of solu-
tions exist depending on the value of μi . In Fig. 4(c),
Hopf bifurcations occur at t = 1 and t = 2. Thanks to
the addition of (4), both transition are smooth. Note that
without the addition of noise, the transition from the fixed
point solution to the limit cycle can be very slow, as the
fixed point remains a solution (even if unstable) after the
bifurcation.

Modulation of frequency
Similarly to the amplitude, the frequency can be modu-
lated directly through parameter ωi , as shown in Fig. 4(d),

top panel. Note that a periodic perturbation, if strong
enough, can induce entrainment, i.e. the overall fre-
quency of the oscillator will synchronize to the one of
the external signal, as can be seen on Fig. 4(d), bottom
panel. We will see in Sect. 2.4 that entrainment between
oscillators can be used to couple them together.
In certain application, as for instance locomotion, it is
desirable to have a independent control of the duration of
the ascending phase (stance) and the descending phase
(swing). Indeed, it is well known that in animal locomo-
tion change of the overall speed are achieved by chang-
ing the duration of the stance phase, the duration of
the swing phase being almost constant. In Righetti and
Ijspeert (2006a), the term for frequency ωi was modified
to reflect this behavior, more precisely,

ωi = ωswing

e−Dzi + 1
+ ωstance

eDzi + 1
(13)

where D is a constant parameter controlling the duration
of the switch between the two phases. The frequency is
now a function of two variables, ωswing and ωstance, that
explicitly and independently control the swing and stance
durations. Note that when ωswing = ωstance, we obtain the
same output as before. Figure 6 illustrates the modula-
tion of the original sine (in red) with a four times longer
or four times shorter stance (in blue and in black respec-
tively). The overall frequency of the system (and thus the
speed of the robot) can be modulated by changing the
duration of the stance only.

2.2.3 Some additional remarks

Note that in this system the phase is neutrally stable (pertur-
bations neither decay nor grow), which means that pertur-
bations may cause permanent phase shifts of the signal. In
particular, the phase of a signal before and after a Hopf bi-
furcation can be different. The neutral stability of the phase
avoids backwards movements on the limit cycle after pertur-
bations, while ensuring that it will not diverge. In addition,
as will be seen in Sect. 2.4, the phase difference between two
signals can be controlled by coupling them if needed (as, for
instance, to control the gaits in locomotion).

2.3 Unit pattern generator

In order to develop a low-level planner that can generate
both discrete and rhythmic movements, we superimpose the
dynamics of the two systems presented before in order to
obtain a limit cycle that can be moved in the x-direction (as
depicted of Fig. 7(b), bottom panel), i.e., the discrete move-
ment is applied as a translation of the rhythmic one. This is
obtained by embedding the discrete movement output yi as

Auton Robot (2011) 31:155–181 163

Fig. 6 Modulation of stance duration. In all the trajectories, the gen-
eral frequency is fixed to ω = 4π and we modulate the duty factor of
the walking cycle, defined as d = Tstance/(Tstance +Tswing) if Ti = 1/ωi

for i = swing, stance. The swing period is then computed according to
the stance period and the overall period (i.e. Tswing = 2T − Tstance).
For the red trajectory, ωswing = ωstance and the resulting trajectory is a
symmetric sine (duty factor d = 0.5), for the blue curve, ωstance = 2.5π

and d = 0.8, i.e. the stance lasts four times longer than the swing, and
for the black curve ωstance = 10π and d = 0.2, i.e. the stance last four
times shorter than the swing. Here f = 100, b = 10, a = 5, ωi = 4π

and the matlab function randn to generate the noise, the time step of
integration being set to 0.001. The behavioral results of the change of
the stance duration is illustrated by the Online Resource Movie 7

an offset of the rhythmic output xi , that is

ḣi = 1 − hi, (14)

ẏi = vi, (15)

v̇i = −1

4
B2h2

i (yi − γi) − Bhivi, (16)

ṁi = C (μi − mi) , (17)

ẋi = A

|μi | (mi − r2
i) (xi − yi) − ωizi + n, (18)

żi = A

|μi | (mi − r2
i)zi + ωi (xi − yi) + n (19)

where xi is the output of the system and now ri =√
(xi − yi)2 + z2

i . When μi > 0, (5) and (6) describe a Hopf
oscillator whose solution xi is a periodic signal of amplitude√

μi and frequency ωi with an offset given by γi . A Hopf
bifurcation occurs when μi < 0 leading to a system with a
globally attractive fixed point at (γi ,0). The set of equations
(15–19) is a unit pattern generator, that is the minimal set of
equations controlling one degree of freedom, while (14) can
be shared by several DOFs to ensure synchronized discrete
movements.

Figure 7(a) (black line) depicts the qualitative behavior of
the system depending on parameters μi and γi : the system
can switch between purely discrete movements (from t ≈ 1 s
to t ≈ 2 s), purely rhythmic movements (from t ≈ 2 s to t ≈
5 s), and combinations of both (from t ≈ 6 s to t ≈ 7 s), the

Fig. 7 Unit pattern generator. See text for discussion. We used B =
10, A = 5, C = 20, ωi = 4π and Euler integration (time step t =
0.001). (a) Top panel: The control parameters: in red, dash line, the
amplitude, in blue, dash-dotted line, the target of the movement. Bot-
tom panel: In black, plain line is the trajectory corresponding to the
control commands of the top panel, in red, dash line, the move-

ments resulting when no discrete movement is elicited (γi = 0) and
in blue, dash-dotted line, when the rhythmic movement is switched off
(μi = −5). (b) Top panel A purely discrete movement in blue, dash-
dotted line, a purely rhythmic one in red, dash line, and the combi-
nation of both in black, plain line. Bottom panel: The corresponding
trajectories in the phase plan (same color/line code)

http://dx.doi.org/10.1007/s10514-011-9235-2

164 Auton Robot (2011) 31:155–181

Table 1 Types of movements. This table summarizes the influence of
the control parameters on the type of the movement. Here D = purely
discrete, R = purely rhythmic, D+R = a combination of rhythmic and
discrete movements

γi μi ωi

D non constant negative any

R constant positive non zero

D+R non constant positive non zero

control parameters being extremely simple as it can be seen
from the top panel. Discrete movements are simply elicited
by specifying the target position γi (blue, dash-dotted line),
while rhythmic movements are controlled through the spec-
ification of the parameter μi (red, dash line), which is the
square of the amplitude of the output movements. Table 1
summarizes the control parameters and the induced types of
behaviors.

The control of each degree of freedom is thus defined by a
set of 6 equations (one of which—(14)—can be make com-
mon to all the DOFs to ensure a synchronized onset for the
discrete movements), 3 internal constant parameters (A, B

and C) and 3 control parameters (γi , μi and ωi). This imple-
mentation is thus extremely economic, as the target γi (the
amplitude μi and the frequency ωi) are the minimal infor-
mation needed to characterize a discrete (rhythmic) move-
ment. Note that, as mentioned above, the parameter B can
be used as a control parameter to modulate the speed of the
discrete component of the movement, but is kept constant in
all the applications presented here.

2.3.1 Some examples of feedback loops

We present here two possible ways of integrating feedback
into the system that will be later used in the applications to
drumming and crawling. Feedback loops can be designed as
control policies in case of specific perturbations of the sys-
tem. For instance, if a collision occurs, the system should
react in a compliant way to absorb the shock, but also a strat-
egy should be implemented to define a new trajectory that is
consistent with the task to be performed. An implementation
of such behavior is shown in the first example. The second
example illustrates how a parameter can be controlled ac-
cording to the feedback information. More precisely, we use
the load information to control the phase of locomotion ac-
cording to a simple rule: when a limb supports weight, it
means that it should be in the stance phase, and in the swing
phase otherwise.

Contact feedback
First, we present a feedback loop designed so that the
robot stops its movement in the current position when the

Fig. 8 Contact feedback. In blue, dash-dotted line is the obstacle (or
joint limit), in red, dotted line the trajectory defined by control pa-
rameters (high-level feedback planner) and in black, plain line CPGs
trajectory modulated by the feedback. Upper panel: A constant obsta-
cle located at −2 rad prevents the DOF to follow the desired trajectory,
creating a difference between the actual and the desired position. The
fixed

discrepancy between the desired and the actual position
increases [see Ijspeert et al. (2002) for a first implemen-
tation]. The system of equations for the UPGs is simply
modified in the following way: an attractor with a high
gain (Ex = 1000 in our case) is added to the system to
stop the movement in its current position x̂i (in (20)) if
the difference between the actual position x̂i and the de-
sired position xi is large, i.e. we have

ẋ = A

|μi | (mi − r2
i)(xi − yi) − ωzi + Ex(x̂i − xi); (20)

where x̂i is the current position of joint i when the feed-
back is received and Ex is a constant controlling the gain
of the feedback. Note that when xi = x̂i the feedback
term vanishes and the system is equivalent to the open
loop one. In application, as small differences may occur,
e.g., due to time delay, a error threshold ε can be defined
to avoid the activation of the signal in undesired cases
(e.g., by using an expression such as max(0, |x̂i −xi |−ε)

instead of the raw error).
Such a feedback term can be useful in different situations,
as illustrated on Fig. 8. The top panel simulates a situ-
ation where an obstacle (denoted by the blue line) pre-
vents the DOF to follow the initially planned trajectory
(red, dotted line). In this case, the trajectory is modulated
by the feedback to adapt to this constraint (black, plain
line). In other words, the trajectory defined by the high-
level planner (red, dotted line) is modified at the CPGs
level (black, plain line) to adapt to the environmental con-

Auton Robot (2011) 31:155–181 165

straints (blue, dash-dotted line). Note that reaching a joint
limit will induce a similar behavior. The bottom panel il-
lustrates a similar situation with a moving obstacle, or
several obstacles located in different positions. This lat-
ter situation is the one that we will encounter in the drum-
ming application.

Phase-dependent feedback
The second feedback loop that we present here has been
developed by Righetti and Ijspeert (2008): it consists in
a phase-dependent sensory feedback that is used to in-
crease locomotion stability on uneven terrains. It is in-
spired from mammalian locomotion where local sensory
information such as load sensing on the extremities of a
limb has an important role in the modulation of the on-
set of swing and stance phases (see Frigon and Rossignol
2006 for a review). The dynamics of the oscillator and
thus the policy generation is modified on line according
to load sensing on the end effectors (hands and knees of
the robot), more precisely, a feedback term is added to
(6) to modulate the transitions as follows

żi = · · · +

⎧⎪⎨
⎪⎩

−sign(zi)F fast transitions

−ω(xi − yi)(+couplings) stop transition

0 normal

(21)

where F (= 10 in our case) controls the speed of the tran-
sition. Figure 9 shows the activation of the feedback de-
pending on the phase of the limb and the resulting modi-
fication of the phase space of the oscillator. As long as a
limb supports the body weight the transition from stance
to swing phase for this limb is delayed. A faster transition
occurs in the case of early limb unloading. In the case of
swing to stance transition, a analogous behavior is im-
plemented: transition is delayed as long as the limb does
not touch the ground and is triggered in case of an early
contact with the ground.

These feedback loops use only local information to
change the control policies locally and as such is a first
layer of adaptation in unpredicted environments. In other
words, it provides a way to act locally on the trajectories
for fast adaptation under environmental constraints without
requiring a modulation of the motor plan. Such feedback
pathways serve as an example to show the flexibility and
versatility of the proposed architecture for on line trajectory
generation.

2.3.2 Some additional remarks

Concerning the interaction between the two subsystems, the
key parameters of the trajectory—the target, the frequency

Fig. 9 Feedback strategy for the independent control of the swing and
stance duration. (a) Modulation of the phase plan by the feedback Left
panel: normal phase plan of the Hopf oscillator. Middle panel: Strategy
for accelerating the transitions. The speed is increased by F (= 10 in
our case). Right panel: Strategy for slowing down transitions. The sys-
tem is stopped by canceling the oscillatory terms. (b) Corresponding
trajectories. Top panel: Trajectories in the phase plan corresponding
the strategies in (a): normal (black), fast transition (red), stop transi-
tion (blue). Middle panel: Stop transition. Decelerated trajectory (blue,
dash dotted line) compared to unperturbed trajectory (black, plain line)
in time domain. Bottom panel: Fast transition. Accelerated trajectory
(red, dash line) compared to unperturbed trajectory (black, plain line)
in time domain

and the amplitude—are not affected in a permanent way (al-
though very small transient perturbations may occur) but
the phase of the rhythmic movement can be perturbed (as
it is neutrally stable). Systematic tests show that for most
choices of parameters B and ω, the phase of the rhythmic
signal will change after a discrete movement. This differ-
ence depends on the phase of the signal at the onset of the
discrete movement as shown on Fig. 10. Similarly, the time
of onset of a rhythmic movement during a discrete one will
have an influence on the phase (in the same way as differ-
ent initial conditions influence the phase), as illustrated on
Fig. 11. As mentioned earlier, this phenomenon can be over-
come by coupling the system to a reference signal whenever
it is needed in practical applications, as will be discussed in
the next section.

166 Auton Robot (2011) 31:155–181

Fig. 10 Effects on the onset of a discrete movement on the phase of
an ongoing rhythmic movement. This figure shows the impact of the
discrete movement on the rhythmic one depending on the time of onset
of the former relatively to the phase of the latter. The effect is shown
for two extreme value of the set of parameters (B , ω). It can be seen
from the figure that the discrete movement affects the rhythmic one
in any cases, even if for the case (10, 3 Hz) the influence is restricted
to a small interval of values. Top panels: In green is the unperturbed
rhythmic signal that is used as a reference to compute the phase shift.
We show 11 trajectories corresponding to 11 different discrete onsets
equally spaced over one period of the rhythmic movement. Trajec-

tories in blue indicates when the two dynamics are cooperating (i.e.,
same directions of velocity), the reverse being indicated by red lines
(i.e. opposite directions of velocity). The black line indicate the border
case (null velocity for the rhythmic movement). Vertical lines show the
time of onset of the movements. Bottom panels: Histograms showing
the distribution of the phase shifts for 100 trajectories with their onset
being equally distributed during the phase of the movement. A phase
shift of zero meaning no perturbation. Again, it can be seen that, while
in the left case, there is no influence for more than 70% of the trajecto-
ries, in the right case there is an influence for more than 80% of them

2.4 Central pattern generator

In order to obtain a coordinated behavior between several
DOFs, their UPGs can be coupled in a network to obtain
coordinated behaviors. Such networks, that we call central
pattern generators (CPGs), ensure fixed time relationships
between the different rhythmic outputs (i.e. phase-locking),
a feature which is particularly convenient for generating dif-
ferent gaits for locomotion for instance, as illustrated on
Fig. 12.

The coupling of a DOF i with other DOFs (j ’s) is done
by extending (18) and (19) in the following way

ẋi = · · · +
j �=iK
x
ij (cos(θij)(xj − yj) − sin(θij)zj), (22)

żi = · · · +
j �=iK
z
ij (sin(θij)(xj − yj) + cos(θij)zj) (23)

where the θij s control the phase difference between DOF i

and j and the K
x/z
ij ’s are the constant gains of the coupling,

i.e. the rate of convergence to a stable solution.

CPGs design
Thanks to the couplings, a network with fixed relation-
ships between the different elements can be designed.
Figure 12 depicts CPGs corresponding to the following
gaits: trot, pace, (asymmetric) bound and walk, and the
corresponding trajectories. As shown by Table 2, the ma-
trix of θij ’s is skew-symmetric with a null diagonal. Note
that, to ensure convergence to the desired phase shifts,
the CPG network should be designed in a coherent way,
in the sense that the sum of every phase differences along
a closed path must be a multiple of 2π (for the obvious
reason that a cell should be in phase with itself).

Smooth on line modulation
In addition, the phase relationships between the different
elements of the CPG can be modified on line as illustrated
on Fig. 13. Note that the time required to converge to
the new solution depends on the parameters Kx

ij and Kz
ij .

Similarly, if a short-term perturbation occurs, the system
will resume to the desired phase-shift relationship after-
wards.

Auton Robot (2011) 31:155–181 167

The system that we have developed is general enough to
be applied to various tasks, as will be presented in Sects. 4
and 5. First, we briefly present the hardware and software
setup that we used as well as the physics simulator.

Fig. 11 Effects on the onset of a rhythmic movement during a dis-
crete one on the phase. Depending on the time of onset of the rhyth-
mic movement during a discrete movement (denoted by the vertical
red lines), the phase shift between the purely rhythmic movement (in
black) and the hybrid one (in blue) are different. This can be explained
by the fact that the initial conditions at the time of onset of the rhythmic
movement (that define the phase) will be different

3 Hardware and software

Before presenting the actual application of the architecture,
we briefly present here the RobotCub project and the iCub
robot, as well as the main software tools that were used in
our implementation of drumming and crawling.

3.1 RobotCub

RobotCub is a 5 year-long EU-funded project that ended in
January 2010. Its goals were twofold: first, to develop a hu-
manoid robot—the iCub—of the size of a 3.5 years old in-
fant, and second, to use this platform to study cognition and
its development (see Tsagarakis et al. 2007 for instance).
All the software developed during this project for the iCub
robot, and notably the code for crawling and drumming that
will be presented below, is open source. The software is
based on the open source library YARP developed by Fitz-
patrick et al. (2008) to support software development and
integration in robotics.

3.1.1 Hardware

The robot has 53 degrees of freedom (DOFs): 6 for each
leg, 16 for each arm (among which 9 for each hand), 3 for
the torso and 6 for the head. Most of the DOFs axes and their
names are depicted on Fig. 14. From now on, we will refer
to the joints by their names as they appear on this figure.

Fig. 12 CPGs applied to Gait Generation. See text for discussion.
LF = left forelimb, RF = right forelimb, LH = left hind-limb and
RH = right hind-limb. Here K

x/z
ij = 8, ∀i, j and we used B = 10,

A = 5, ωi = 4π . The system was integrated using Euler method with a
time step of t = 0.001 s. (a–d) Schemes of the phase shifts for the dif-
ferent gaits (left) and the corresponding trajectories (with same color)

(right). Cells/trajectories of the same color/line type means that they
are in phase. Note that for each arrow, the angle θ attached is the angle
corresponding to the full, black arrow, whereas the angle correspond-
ing to the white arrow should be taken as the opposite (−θ) to ensure
coherence. For a more explicit specification of the angles, please refer
to Table 2

168 Auton Robot (2011) 31:155–181

Table 2 Angles needed for different gaits. These tables summarize the
angles required to generated the different gaits presented on Fig. 12.
See text for discussion. LF = left forelimb, RF = right forelimb,

LH = left hind-limb and RH = right hind-limb. ε is an open parameter
that controls the phase shift between the two hind legs in the bound gait

Trot LF RF LH RH Pace LF RF LH RH Bound LF RF LH RH Walk LF RF LH RH

LF 0 π π 0 LF 0 π 0 π LF 0 0 π − ε π + ε LF 0 π −π/2 π/2

RF −π 0 0 π RF −π 0 −π 0 RF 0 0 π − ε π + ε RF −π 0 π/2 π/2

LH −π 0 0 0 LH 0 π 0 π LH −π + ε −π + ε 0 −2ε LH π/2 −π/2 0 π

RH 0 −π 0 0 RH −π 0 −π 0 RH −π − ε −π − ε 2ε 0 RH −π/2 −π/2 −π 0

Fig. 13 Transition between different couplings. See text for discus-
sion. Here K

x/y
ij = 5, ∀i, j and we used B = 10, A = 5, ωi = 4π .

The system was integrated using Euler method with a time step of
t = 0.001. (a) Scheme of the different CPGs configurations and (b) the
corresponding trajectories. The modification happen at t = 2.15 s and
t = 4.25 s and are denoted by vertical black lines

3.1.2 iCub Software

The iCub software architecture is based on YARP, an inter-
process communication layer, which enables complete ab-
straction of the communication protocol between differ-
ent software modules. Each module streams its output data
through YARP ports, and these building blocks can be inter-
connected regardless of their physical location on the net-
work (same computer, Ethernet network, etc.). iCub capa-
bilities are thus implemented as a set of modules that can be
easily connected together through YARP ports.

The software for the iCub comes with a set of kinemat-
ics libraries called iKin, developed by U. Pattacini. It allows
forward and inverse kinematics computations on any sub-
chain of the iCub degrees of freedom. The forward kinemat-
ics library uses standard Denavit-Hartenberg convention to
enable the projection of a position to the reference frame of
any part of the robot. It can be used for instance to project
the position of an object in the camera reference frame to
the root reference frame of the robot, or to check for internal
collisions. The inverse kinematics library uses the IPOPT
library (Wächter and Biegler 2006) to solve the non-linear
inverse kinematics problem with N DOFs under the set of
constraints defined by the limits of each joint. A maximum
error as well as a maximum number of iterations of the op-
timization algorithm can be set for a compromise between
precision and computational complexity.

3.2 Webots

WebotsTM (Michel 2004) is a simulator based on the Open
Dynamics Engine (ODE) library for simulating rigid body
dynamics. A model of the iCub was developed according
to the Denavit-Hartenberg parameters of the real iCub as
well as the joints limits and maximum torque of the mo-
tors. A YARP interface similar to the iCub robot interface
was also developed, so that the same YARP modules can be
used on the simulator and on the real robot without any mod-
ification. This interface is freely available on the RobotCub
website.

3.3 ARToolKitPlus

ARToolKitPlus (Wagner and Schmalstieg 2007) is a marker-
based 3D vision tracker. It allows for detection and tracking
of specific black and white markers and computes the full
transformation matrix of the marker in the camera frame.
This tracker uses only one camera and is widely used for
its robustness to changes of lightning. We use this tracker
together with the iKin library to compute the 3D position
of markers and project it to the root reference frame of the
robot. The capability of the tracker to compute the orienta-
tion of the markers can be used to set an offset in 3D be-
tween the position of the marker and the actual position of

Auton Robot (2011) 31:155–181 169

Fig. 14 Structure of the iCub. Schematic of the dofs of the iCub (excluding the dofs of the hands and eyes)

the object. In the drumming application for instance, the ac-
tual position of the center of each drum is then computed
according to a predefined 3D offset between the marker and
the drum. The position of each drum is then projected to
the root reference frame of the robot, the default frame of
reference for all kinematics computations. For each drum,
the corresponding target positions for each DOFs (γi) of the
closest arm of the robot are computed using and extended
version of the default inverse kinematics solver provided by
iKin. We modified the solver to include the drumming stick
as an additional link in the iCub arm chain so that the tip
of the stick reaches the center of the drum. Note that since
we are using an optimization algorithm we are not sure to
converge to a solution and thus the maximal error was set
to 5 cm to ensure that suitable angles could be find rapidly
enough.

4 Drumming

Drumming is a challenging application as it requires co-
ordination between the limbs, precise timing and the ro-
bust on line modulation of the parameters—without rais-
ing the question of balance, as the robot is fixed to metallic
structure in our case. Drumming has been implemented on
robots several times before, to study agent-object interaction
(Williamson 1999), learning from demonstration (Ijspeert
et al. 2002) or human-robot interaction (Kose-Bagci et al.
2010) for instance. Here we focus mainly on the adaptability
and robustness of the implementation: trajectories are mod-
ulated on line both by high level commands and by feedback
information.

In this application, a user can define in real time the score
that the robot is playing through a graphical user interface

(GUI). The robot is playing on an electronic drum set, with
two drum pads for each arms and two pedals for the legs.
More precisely, the user can decide if the limb is idle or not,
on which drum the limb is hitting (for the arms), the general
frequency and the phase differences between the four limbs.
The architecture is robust enough so that any user can play
with the interface in a way that is secure for the robot. This
demonstration was shown in CogSys 2008 in Karlsruhe and
Automatica 2008 in Munich and ran during several hours.
Note that the implementation is not platform dependent and
that a similar application, although with predefined scores,
has been implemented before on the Hoap2 robot (see De-
gallier et al. 2006 for details).

The whole system is modulated by two feedback signals,
that are contact detection between the limbs and the drums
(on the real robot) and visual tracking of the drums (in sim-
ulation for now). More precisely, contact detection is used
to stop the robot in its current position when encountering
an obstacle to safely handle the collision, and the drums are
visually tracked so that the trajectories of the limbs can be
adapted autonomously to their actual position. A synthetic
version of this section, excluding the visual feedback, was
presented at the BIOROB conference in 2008 (Degallier et
al. 2008).

4.1 Software implementation

The implementation, depicted on Fig. 15, consists of four
main blocks:

(i) Task specification: a graphical interface (GUI) that al-
lows a user to define the behavior (i.e. the score) of the
robot on line.

(ii) Whole-body CPG: the network is composed of a CPG
for each of the four limbs and the head; each of them are

170 Auton Robot (2011) 31:155–181

coupled to a clock that is used as an absolute referential
of time (similarly to a metronome in music).

(iii) Constraints: the control commands need to be adapted
to the actual environment and state of the system; this
is done through two subsystems:
(a) Timing: The phase of the different CPGs is moni-

tored to know when a new note of the score should
be played and thus to gate the update of the control
commands of the CPGs.

(b) IK: Thanks to the visual feedback, the Cartesian
position of the drums, indicated by markers, are
transformed into target joint angles through the in-
verse kinematics algorithm iKin (see Sect. 3).

Fig. 15 Implementation of the drumming behavior. This implementa-
tion is designed so that any user can interact with the robot to make
it play a score of his/her choice through a simple graphical user inter-
face. Visual feedback is added to the system so that the robot can detect
the drums through ARToolKItPlus markers and autonomously adapt its
movement to their position. Finally, a feedback to deal with collisions
between the arms of the robot and the drums is added for security rea-
sons. Five parts are controlled, namely the head, the left arm, the right
arm, the left leg and the right leg. Green arrows denote couplings

(iv) Feedback: the information from the robot is used to
modulate the trajectories; it consists in two subsystems
(a) Contact feedback: The movement is temporarily

stopped when a collision with an obstacle is de-
tected.

(b) Visual tracker: Vision is used to track and update
the Cartesian position of the drums.

These blocks will be presented more in details in the follow-
ing. The set up for drumming can be seen on Fig. 16: the
robot is fixed to a metallic structure by the hips and plays
on an electronic drum set. The four limbs together with the
head are controlled. We control actively four joints for each
limb (the shoulder pitch, roll and yaw and the elbow for the
arms, and the hips pitch, roll and yaw and the knee for the
legs) and the six DOFs of the head (neck and eyes). The
sticks are grasped by the hands which remain closed after-
wards. The pedals are placed so that the robot can easily
reach them when its legs are stretched.

4.2 Design of the whole-body CPG

All the DOFs are controlled by the unit pattern generator de-
fined in Sect. 2.3. Only two joints per limb are oscillating:
the shoulder pitch and the elbow for the arms and the hip
pitch and the knee for the legs, the other DOFs output being
always purely discrete. The neck yaw is also oscillating. The
network is illustrated on Fig. 15: all the limbs CPGs are uni-
laterally coupled to the clock, as well as the head. Note that
the coupling is unilateral so that the limbs do not affect the
clock. The coupling parameters were set to Kx

ij = K
y
ij = 2.

This value was chosen as it allows for a rapid convergence
to the desired state (less than half a cycle) with a limited
acceleration.

4.3 Task specification and constraints

A graphical interface (based on the open source library Qt3)
was developed to ease the control of the robot. The open
parameters are the following:

• for each arm: ID of the target drum or idle, phase shift
relatively to the clock

Fig. 16 Snapshots of the iCub drumming (Automatica fair, Munich,
2008). The robot is playing with both his arms and legs, the score being
defined on line by a user through a graphical interface. Note that the

robot is kept in a upright posture through a metallic structure. Movie
available as an Online Resource, Movie 1

http://dx.doi.org/10.1007/s10514-011-9235-2
http://dx.doi.org/10.1007/s10514-011-9235-2

Auton Robot (2011) 31:155–181 171

Fig. 17 Drumming trajectories. The blue vertical lines indicate when
the new control commands are received by the limb CPG. (a) Simple
commands sent to the UPG of the left shoulder pitch result in drum-
ming trajectories. Top panel: Control commands: the target (in red), the
amplitude (in black) and the frequency (in green). Bottom panel: Re-

sulting desired and actual trajectories (in black and red respectively).
(b) A simple parameter allows for the modulation of the phase shift of
the right hip pitch relatively to the left hip pitch1. Top panel: Control
command for the phase shifts. Bottom panel: Resulting trajectories: In
black the left hip pitch and in red the right one

• for each leg: drumming or idle, phase shift relatively to
the clock

• for the head: idle or scanning (to locate drums) or looking
at one of the drums

• for the whole system: the frequency

The user can modify the score at any time, however the
parameters of the CPG are changed only when it is safe for
the robot, that is during the period where the limb moves
away from the drums. An intermediate module (the “con-
straints” block on the figure) is responsible to monitor the
phase of each limb and to send the new commands dur-
ing the secure phase. The frequency, the amplitude and the
phase shifts can be sent to the CPGs without transformation,
while the drums ID are mapped to target joint angles (for
each controlled DOF of the limb) defined relatively to the
position of the drums. These target joint angles can be ei-
ther predefined or determined through a visual tracker sys-
tem combined with an inverse kinematics algorithm, as will
be discussed below.

Figure 17 illustrates the trajectories obtained for drum-
ming in open loop on the iCub robot. It can be seen that they
are modulated through simple parameters, that are the target,
the amplitude and the frequency for one UPG (top figure)
and the phase shift between the DOFs for the CPG (bottom
figure). The vertical lines on the figure indicate the time at
which the CPG of the limb receives the new commands; it
can be seen that the trajectories converge rapidly—in less
than a cycle—to the new desired solutions. Figure 17(a)
shows the possible modulations of the UPG for one DOF
(the left shoulder pitch): the target, the oscillations (on and
off) and the frequency, and Fig. 17(b) the control of the dif-
ferences between the two hip pitches.

4.4 Visual feedback

A visual tracker based on ARToolKitPlus (see Sect. 3.3)
combined with the kinematic library iKin (see Sect. 3.1) is
used to obtain the (possibly time-varying) positions of the
different drums (for the arms). More precisely, the different
drum pads are tagged with ARToolKit markers. Once a mark
is detected, the inverse kinematics algorithm iKin is used to
compute suitable target joints angle to reach the pad. The
target angles are stored by the controller and updated when-
ever a significant displacement of the drum pad is detected.
Thanks to this feedback, the robot can autonomously adapt
to any new configuration of the drums and to modifications
of this configuration. Figure 18 shows snapshots of the robot
drumming (in simulation) while the drum pads are moved.

4.5 Contact feedback

A feedback policy term was introduced to safely, and
smoothly, handle collisions with the drums. We used the
feedback term introduced in Sect. 2, (20). We postulate than
when a collision occurs, it means that the drum pad has been
hit earlier than expected (due to imprecision of the visual
feedback for instance). The desired behavior for the robot is
thus the following: we want the robot to stay in the current
position for a while and to resume to the desired trajectory
when the new beat starts. Such feedback simulates com-
pliance on the robot and controls the way that the system
resumes to the desired trajectory.

Figure 19 illustrates the effect of the feedback in a real
application where the robot is drumming with a relatively
high frequency (1 Hz). It can be seen that the efficiency of
the feedback is related to the speed at the time of impact:

172 Auton Robot (2011) 31:155–181

Fig. 18 Simulation of drumming with moving drums. The target an-
gles corresponding to the different drums are updated continuously so
that the robot can adapt its trajectories to their actual position. Here
the robot beats alternatively the two drum pads corresponding to each

arms. Every new beat the position of one of the drums is changed.
Movie available as an Online Resource, Movie 3. The frames were
taken at regular intervals (0.45 s)

Fig. 19 Contact feedback. Right shoulder pitch trajectories while
drumming. The colored areas correspond to the interval of time where
the feedback is active, the plain line to the desired trajectory and the
dashed one to the actual trajectory. The horizontal thick lines denote
the approximated position of the drums. First the robot is in a rest posi-
tion, then at t ≈ 5 s, it starts drumming. During the first cycle, no con-
tact with the drums occur, then, at t ≈ 1.2 s, a collision is detected by
the drum set and the arm is stopped in its current position. At t ≈ 1.7 s,
the normal trajectory being safe again, the feedback is removed and
the arm start moving again. For the next two cycles, the drum pad is
moved in different positions. It can be seen that the feedback is more
efficient near the peak of amplitude (middle case), where the velocity is
smaller. Snapshots of the behavior of the system with contact feedback
is depicted in Fig. 20

the higher the speed, the longer it takes for the system to
stabilize to the fixed point. Thus the feedback will be more
efficient if the impact occurs near the peaks of amplitude
(middle case on the figure). However, even when a collision
occurs close to the peak of velocity (right case) the feedback
successfully stabilizes the arm in its current position. Fig-
ure 20 shows snapshots of the robot adapting its trajectory
to different positions of the drum pad. Note that the detec-
tion of a collision is made through the electronic drum set
(as no feedback from the robot was available at the time),
i.e. every time a collision is detected by the set, a message

was sent to the controller indicating which drum had been
hit.

5 Infant crawling

Crawling is the first stage of locomotion in infants; it allows
them to explore their environments and to move towards per-
sons or objects of interest. This behavior was implemented
on the iCub in simulation and partly on the real robot; we
developed a controller that allows for modulations of the lo-
comotion, such as changes of speed and steering, and inte-
grates both contact and visual feedback. Contact feedback is
used to trigger transitions between swing and stance accord-
ing to load information in order to increase locomotion sta-
bility; visual feedback is used to detect obstacles and objects
of interest, and more precisely to create a map of the envi-
ronment surrounding the robot. Simple reaching for marks
on the ground based on vision has also been implemented,
providing a demonstration of superimposition and switch
between discrete and rhythmic tasks. Finally, a high-level
planner algorithm based on potential fields was combined
with the CPG to obtain an autonomous, infant-like behav-
ior where the robot, attracted by an object of interest, moves
towards it while avoiding obstacles, and finally reaches for
it (in simulation only, for now). Steady-state crawling and
reaching have been implemented on the real robot iCub.

Note that this section is partly based on work published
before in conference articles, notably a previous implemen-
tation of crawling based on infant data analysis (Righetti
and Ijspeert 2006a) and a study of the combination of dis-
crete and rhythmic movements for switching between crawl-
ing and reaching (Degallier et al. 2007). The contact feed-
back policy was presented in Righetti and Ijspeert (2008)
and the high-level planner algorithm in Gay et al. (2010).
A synthetic version of this section, excluding visual feed-
back, reaching and the high-level planning, was presented
in Degallier et al. (2008).

http://dx.doi.org/10.1007/s10514-011-9235-2

Auton Robot (2011) 31:155–181 173

Fig. 20 Snapshots of the robot drumming with contact feedback. The
drum pad is moved while the robot is drumming (between first and
second snaphsots). The movement of the arm is adapted to the new
situation: it is stopped as soon as it touches the drum pad. Note that

the drum pad could not e held in this position without the feedback,
as the robot is controlled in position, with a high gear motors. Movie
available as an Online Resource, Movie 2

Fig. 21 Implementation of the crawling behavior. This implementa-
tion is designed so that the robot can autonomously evolve in a (time-
varying) environment containing obstacles and target objects. It can be
seen from the figure that the CPG output is modulated both by high-
level and feedback commands. The high-level commands can be either
triggered manually by the user (not depicted on the figure) or through
visual feedback for reaching (if the robot is close enough to a target
object) or for steering the robot to avoid obstacles and move towards
target object according to a path-planning algorithm based on potential
fields. Obstacles and targets are indicated by ARToolKitPlus markers.
There is also a local feedback based on force sensors that modulates the
behavior of the robot according to the ground contact information. Six
parts are controlled, namely the head, the torso, the left arm, the right
arm, the left leg and the right leg. Green arrows denote the couplings
between the different parts

5.1 Software Implementation

The implementation, depicted on Fig. 21, consists of four
main blocks:

(i) High-level planner: A path avoiding the obstacles and
reaching points of interest is determined through an al-
gorithm based on potential fields.

(ii) Whole-body CPG: the network consist of a CPG for
each of the four limbs and the head and torso; the four
limbs are coupled together to obtain a trot gait.

(iii) Task manager: a module that sends the parameters ac-
cording to the task to be performed, that are here:

(a) Crawling: The manager sends the parameters cor-
responding to crawling, with the turning angle and
the speed of locomotion as open parameters.

(b) Reaching (IK): When the robot is close enough to a
target, it stops and reaches for it; the joint angles for
the reaching arm being provided by the iKin library.

(iv) Feedback: the information from the robot is used to
modulate the trajectories; it consists in two subsystems
(a) Contact feedback: The load information is used to

control the transition of each limb between swing
and stance.

(b) Visual tracker: Vision is used to detect obstacles
and objects of interest, indicated by predefined
markers.

In this application, both arms and legs are controlled as well
as the head and the torso. For each arm and leg, we actively
control 4 DOFs, that are the shoulders pitch, roll and yaw
and the elbows for the arms and the hips pitch, roll and yaw
and the knee for the legs; the six degrees of freedom of the
head and the three of the torso are also controlled. We thus
actively control 22 DOFs. The remaining DOFs are set in
particular position at the beginning of the task and remain
fixed at that position afterwards.

5.2 CPG design and choice of parameters

The design of the low-level planner is based on obser-
vations on the crawling of human infants (Righetti 2008;
Righetti and Ijspeert 2006a). While infants can have various
locomotion strategies prior to walking, most of them crawl
on hands and knees using a gait that is close to a walking
trot. The crawling gait has a duty factor higher than 50%
(i.e. the duration of the stance phase is longer than half of a
step cycle). The duration of stance is highly correlated with
speed of locomotion while the duration of swing remains
constant, as is generally observed in quadruped mammals.

The expression for the frequency (13) is used to enable
independent control of the swing and stance duration. To en-
sure the trot gait, the oscillators of shoulders and hips pitch
joints are coupled according to (22) and (23) with the Kx

ij s
set to 0 and the Kz

ij s to 1. The θij are chosen as described
for the trot in Sect. 2, Table 2.

http://dx.doi.org/10.1007/s10514-011-9235-2

174 Auton Robot (2011) 31:155–181

Fig. 22 Snapshots of the robot crawling. Steady state crawling, with
ωstance = ωswing = 0.3. Note that the hands are protected by wrist sport
pads because of their fragility and the knees are also covered by sport

pads as they are extremely slippery due to their shape and material.
The robot turns its head while walking to enhance the detection of the
visual markers. Movie available as an Online Resource, Movie 4

Table 3 Parameters for crawling. Only the shoulder and the hip
pitches are oscillating, and the amplitude of the shoulder is determined
by the amplitude of the legs due to physical constraints (i.e. the hor-
izontal distance covered by the hand during one step has to be equal

to the one covered by the knee when the robot goes forward). The po-
sition of the shoulder roll and the elbow, and of the hip roll, is fixed
during the stance but is modulated during swing to avoid contact with
the ground. The resulting trajectories can be seen on Fig. 24

Left arm γ μ Right arm γ μ Left leg γ μ Right leg γ μ

shoulder pitch −1.20 0.09 shoulder pitch −1.20 0.09 hip pitch 1.40 0.10 hip pitch 1.40 0.10

shoulder roll 0.35 −5.00 shoulder roll 0.35 −5.00 hip roll 0.40 −5.00 hip roll 0.40 −5.00

shoulder yaw 0.26 −5.00 shoulder yaw 0.26 −5.00 hip yaw 0.00 −5.00 hip yaw 0.00 −5.00

elbow 0.50 −5.00 elbow 0.50 −5.00 knee −2.00 −5.00 knee −2.00 −5.00

Concerning the joints other that the hips/shoulders
pitches, they are controlled in the following way. The shoul-
der roll, the elbow and the hip roll are kept in a fixed posi-
tion during the stance and move proportionally to the speed
of the shoulder pitch joint during swing to ensure that the
knees and the hands are lifted enough to avoid collision with
the ground. Here we set

γi = Fizj

For the arms, j denotes the shoulder pitch joint and i the
shoulder roll or the elbow joint. For the legs j denotes the
hip pitch joints and i the hip roll. The Fi ’s are constant val-
ues chosen by hand. Figure 22 shows snapshots of the robot
crawling with the parameters of Table 3 with a duty factor
of 50% (ωstance = ωswing = 0.3).

5.3 Steering

To make the robot turn, the strategy that we used is to set
the torso roll angle to a non-zero value and to modulate the
amplitude of the different limbs according to the new pos-
ture of the body. More precisely, the amplitudes of the inner
pitch angles (i.e. the pitch angles of the arm and the leg on
the side to which the robot is turning) will be smaller and the
outer angles larger to compensate the fact that the outer side
has to cover a larger distance than the inner one. Once the
amplitude of the legs is deduced, we deduce the ones of the
arms according to the closed kinematic chain constraints.
Figure 23 shows snapshots of the robot turning in simula-
tion.

Fig. 23 The iCub turning. Superimposed snapshots of the robot turn-
ing with a torso angle of 0.5 radians. Movie available as Online Re-
source, Movie 6

5.4 Switching between crawling and reaching

When the robot is close enough to a target object to reach
it, the task manager sends commands to stop crawling and
go to a rest position that is defined by the parameters γi

in Table 3, with all the oscillations “switched off” thanks
to the Hopf bifurcation (μi < 0). Once in this position, the
robot is controlled so that it first lifts the arm that is going to
reach for the object and then reaches it, as illustrated by the
snapshots on Fig. 25. The intermediate position (with the
reaching arm lifted) has been added to avoid contact with

http://dx.doi.org/10.1007/s10514-011-9235-2
http://dx.doi.org/10.1007/s10514-011-9235-2

Auton Robot (2011) 31:155–181 175

Fig. 24 Trajectories of the (real) iCub crawling and reaching for the
right arm and the left leg. At t ≈ 13 s, the robot starts crawling. At
t ≈ 64 s the robot autonomously switch from the crawling behavior to
the rest position because it is close enough to a mark to reach it. It goes
to an intermediate position (in which the reaching arm—the right one
here—is lifted above the ground) for 10 s and then it reaches the mark
on the ground (at t ≈ 74 s) until it is asked to crawl again (t ≈ 78 s): it
first resumes to the rest position and start crawling again after a while
(at t ≈ 82 s). Plain lines indicate the actual trajectories and dotted lines
the desired ones, the tracking of the robot being quite good in general.

Top panel: Trajectories of the four actively controlled DOFs of the right
arm: shoulder pitch (blue), shoulder roll (green), shoulder yaw (red)
and elbow (black). (a) Trajectories of the four controlled DOFs of the
right arm, from top panel to bottom one: the shoulder pitch, the shoul-
der roll, the shoulder yaw and the elbow. (b) Two DOFs of the left leg:
the hip pitch (top panel) and the hip roll (bottom panel). Note that the
hip yaw and the knee are kept in a constant position and are not shown
here. Note that Figs. 22 and 25 show snapshots of the robot crawl-
ing and reaching respectively. Movie available as an Online Resource,
Movie 5

the ground during the reaching movement. The object to be
reached is indicated with a ARToolKitPlus marker and the
target angle positions of the reaching arm are given by the
inverse kinematics algorithm iKin mentioned above, while
the other limbs stay in the same position. Note that as the
mark is on the ground, the range of reachable positions for
the arm is quite limited and thus the tolerated error for the
inverse kinematics was set to a relatively high value (5 cm).
Trajectories of the iCub crawling, going to the rest posi-
tion, reaching for a mark and crawling again are depicted
on Fig. 24.

5.5 Contact feedback

We use the phase-dependent sensory feedback terms pre-
sented in Sect. 2 to increase locomotion stability on uneven
terrains (Righetti and Ijspeert 2008). The dynamics of the
oscillator and thus the policy generation is modified on line
according to load sensing on the end effectors (hands and
knees of the robot). This feedback loop was tested in simu-
lation in Righetti and Ijspeert (2008). Locomotion stability
was improved on various terrains such as slopes. Figure 26
gives an illustration of the effect of feedback on the locomo-

http://dx.doi.org/10.1007/s10514-011-9235-2

176 Auton Robot (2011) 31:155–181

Fig. 25 Snapshots of the robot reaching a mark. When the robot is
close enough to a target object (here the marker on the ground), it stops
crawling and goes back to the position defined by the discrete target
(g in Table 3). Then it lifts the hand that is going to do the reaching
movement (second snaphsot). Finally it reaches for the target (third

and fourth snapshots). Note that here the robot does not touch the
ground as the maximal error tolerated was set to a high value (5 cm).
Typical reaching trajectories are depicted on Fig. 24. Movie available
as an Online Resource, Movie 5

Fig. 26 Clearing of a 10-degree slope with and without feedback.
In both experiments, the robot was initially at the same position and
snapshots were taken at the same time intervals. With the feedback,
the length and duration of the steps are adapted to the terrain and it can

be seen that robot successfully goes through the obstacle (top panel),
while it fails to do it in open loop (bottom panel). Movie available as
an Online Resource, Movie 8

tion behavior. The detailed analysis of the feedback behav-
ior, which is out of the scope of this paper, can be found in
Righetti and Ijspeert (2008), Righetti (2008).

5.6 High-level path planning

A high level planner based on potential fields has been de-
veloped in (Gay et al. 2010) to illustrate how our low-level
planner can be used in a simple navigation task in a fully
autonomous way. A representation map of the different po-
sitions of the obstacles and targets, acquired through a vision
multi-object tracking module based on ARToolKitPlus (see
Sect. 3.3), is turned into a potential field where obstacles and
targets are represented by respectively positive and negative
potentials (Khatib 1986). Note that the standard implemen-
tation of the potential fields was slightly modified to deal
with multiple targets: the closer the robot is to a target, the
more attractive it is (see Gay et al. 2010). The trajectory is
then given by the gradient of the surface.

The field of view of the robot was enhanced by coupling
the head oscillators with the rest of the body in a way that
the head and eyes of the robot perform an oscillatory move-
ment in phase with the crawling movement to scan the envi-
ronment. The positions of the markers detected during one
oscillation of the head and eyes are translated in the root
reference frame of the robot using iKin (see Sect. 3.1) and
used to construct a partial map of the direct surroundings of
the robot. This partial map is the only information available
to the robot to perform navigation. No external information
(full map of the environment, self localization . . .) is pro-
vided to the robot.

The command sent to the manager by the path planning
module is to crawl with a certain desired angle of rotation.
This angle correspond to the torso roll angle and is updated
whenever it is required to follow the path. If the reaching
module is active (i.e. if the module is launched), whenever
the robot is close enough to target marker (that is when the

http://dx.doi.org/10.1007/s10514-011-9235-2
http://dx.doi.org/10.1007/s10514-011-9235-2

Auton Robot (2011) 31:155–181 177

Fig. 27 Snapshots of the robot moving towards target object (small,
green boxes), while avoiding obstacles (tall, red boxes). ARToolKit
markers are used to track the object, with different markers for targets
and obstacles. The information is sent to the path planning algorithm
that computes a suitable path based on potential fields, this path is con-
tinuously updated. Movie available as an Online Resource, Movie 9

inverse kinematics module can find a solution), the behavior
will be switched to reaching: the robot will stop crawling
and all the steering commands will be ignored during the
completion of the reaching.

Experiments were performed in randomly generated
corridor-like environments with 10 goals and 15 obsta-
cles. The distance between two obstacles or goals was con-
strained to be more than one meter so as to avoid conglom-
erates of objects and impossible situations. Results were
promising with the robot being able to reach up to 9 goals
out of 10, and avoid all obstacles. Figure 27 shows an exam-
ple of the robot evolving among obstacles and targets (please
refer to Gay et al. 2010 for more detailed results). Note
that since the robot is updating its maps continuously, it can
adapt to an environment with moving targets and obstacles.
This simple implementation allows us to reproduce the be-
havior of an infant evolving in a complex and time-varying
environment: the robot moves towards target and reaching
for them while avoiding obstacles, in an autonomous way.

6 Discussion

We have presented here a control system that allows for the
generation of both discrete and rhythmic movements based
on the concept of motor primitives in biology. From a con-
trol point of view, this concept can be translated as a set of
basis functions with open parameters that can be combined
to generate complex trajectories. Thanks to these low-level
motor primitives, the architecture that was developed allows
for an extremely simple high-level control of the tasks, in the
sense that the only parameters that need to be provided to the
CPGs are the goals of the tasks (rather than full trajectories
for instance). Such an approach is particularly well-fitted for

behavior composed of stereotyped movements, such as lo-
comotion and reaching for instance: once the nominal tra-
jectories have been chosen, these can be easily adapted to
the requirement of the task (goal of the target movement),
to some behavioral choices (speed of locomotion, steering)
or to environmental constraints (contact, close loop chains).
In addition, the implementation using attractor dynamics is
well-suited for feedback integration. The feedback can be
local and act directly on the CPGs (as for instance the con-
tact feedbacks for both drumming and crawling) or require
some high-level processing and have a behavioral effect (as
the high-level planning in crawling). Such strategies create
a tight coupling between the controller and the environment,
making the whole architecture more robust to modeling im-
precisions, perturbations or time-varying environment. Note
that the systematic design of feedback policies for trajectory
generators is still an open, exciting research question.

In a first application to interactive drumming, we have
shown both the adaptivity and the robustness of the archi-
tecture. Indeed, once the CPGs have been appropriately de-
signed, the robot can perform any score—up to the fre-
quency upper limit imposed by the motors and the con-
trol bandwidth—in a robust way; we were able to run the
demonstration for hours with random users modulating the
score that the robot was playing. In addition, thanks to the
contact feedback, the interactions with the drums were en-
sured to be safe for the robot for any frequency. Finally, it
has been shown that simple visual tracking of objects per-
mits the on line adaptation of the movement of the robot to
a changing environment.

As was illustrated in the application to crawling, the us-
age of a unique dynamical system for both discrete and
rhythmic movements eases the switch between two totally
different behaviors (crawling and reaching in our case): a
unique term controlling the amplitude (μ in the equations)
allows for transiting between discrete and rhythmic behav-
iors thanks to the Hopf bifurcation of the system. In our
example, we used intermediate positions to ensure that the
constraints induced by the close kinematics are fulfilled, but
one could imagine to use more sophisticated techniques to
compute the desired trajectory of the different limbs. The
crawling behavior can also be modulated on line, both by
high-level commands (speed and steering) or by feedback
information (stance/swing duration, steering to avoid obsta-
cles and reach target objects). In addition, a new implemen-
tation with gain scheduling is under development, in order
to modulate on line the compliance of the robot according to
the needs of the task (e.g. by having a lower stiffness during
the swing than the stance).

One could argue that a major limitation of the approach is
that the space of possible trajectories is limited by the cho-
sen dynamics. It is not exactly true, as it is possible to con-
stantly update the discrete target of the movement in order to

http://dx.doi.org/10.1007/s10514-011-9235-2

178 Auton Robot (2011) 31:155–181

obtain arbitrary movement (as was illustrated on Fig. 3(d),
bottom panel), even though this would be merely a sort of
by-pass of the motor primitives. This is analogous to auto-
matic movements and complex movements that follows a
precise kinematic plan. In addition, the dynamics of the mo-
tor primitives can be also modulated according to the spe-
cific need of the task, as was done for instance for crawling
by changing the expression of the frequency to have an inde-
pendent control of the duration of the swing and the stance
(Righetti and Ijspeert 2006a). However, designing a dynam-
ical system which solution is a predefined, desired trajectory
is generally not an easy task. An interesting approach to this
issue is the use of adaptive frequency oscillators (AFO) that
is oscillators that can learn new frequencies through entrain-
ment (Righetti et al. 2006). It can be used for frequency anal-
ysis (Buchli et al. 2008) and Righetti and Ijspeert (2006b)
used this approach to express a complex trajectory into a
sum of Hopf oscillators and successfully applied it to biped
locomotion. Buchli and Ijspeert (2008) used this technique
to develop an adaptive locomotion controller for compliant
robots that can adapt to the body properties of the robot but
also to different types of gaits.

Note that the system that we are presenting here could be
easily integrated to the dynamical systems approach to be-
havioral organization proposed by Schoener et al. (1995).
In this approach, both the high and low-level planners are
represented by dynamical systems. Applications of this ap-
proach to robotics include Steinhage and Bergener (1998),
Tuma et al. (2009) and Schoener and Santos (2001) for in-
stance.

In this contribution, we have chosen to use a system
with simple attractors properties and to adapt the trajecto-
ries to the requirements of the task if needed, through feed-
back or time-varying control commands. A different ap-
proach to movement generation using dynamical systems,
often referred to as dynamical motor primitives (DMPs), al-
lows for learning trajectories through human demonstration
(e.g., Ijspeert et al. 2003; Gribovskaya and Billard 2008;
Pastor et al. 2009; Kober and Peters 2010; Ude et al. 2010).
The encoded trajectories, either discrete or rhythmic (but not
both), can be modulated by feedback depending on the con-
text of the tasks. The trajectories obtained this way can be
more complex and human-like than the ones obtained with
our system, but they are task-specific and require learning.

A major improvement of the current approach would be
to use a model of the CPGs output combined with opti-
mization techniques to better define the parameters of the
CPGs. Indeed, it is important to note that while we have
made a minimal usage of model-based techniques in the
applications that we have presented, more complex task
could be performed through the combination of motor prim-
itives and model-based approach dealing with multiple con-
straints, as for instance whole-body control approaches such

as in Sentis and Khatib (2005) or in the case of locomo-
tion, such as Zico Kolter and Ng (2009), Kalakrishnan et
al. (2010) or Zucker et al. (2010). Since our framework
simply generates desired policies, it could be easily inte-
grated with modern torque control techniques, in a simi-
lar way that Zico Kolter and Ng (2009) and Zucker et al.
(2010) used splines. The main advantage of using differen-
tial equations over splines is that external signals can be
embedded into the dynamics (e.g. for synchronization or
to deal with perturbations). In particular, we think that our
approach, combined with a high-level planning system, is
particularly well-suited for locomotion, as the same sys-
tem integrates the primitives needed for both rhythmic mo-
tion generation and posture control. Note that Kimura and
his group obtained excellent results for locomotion based
on CPGs and bio-inspired reflexes (Kimura et al. 2007;
Maufroy et al. 2008), but here our goal is to provide a more
general approach to movement generation.

In this article, our main focus was robotic application.
However, another promising direction of research would
be the investigation of the basic principles of coordination
in humans. Indeed, as first postulated by Bernstein (1967),
functional units (synergies) may exist that constrain move-
ments, thus reducing redundancy. Uncovering such coordi-
nation structures would not only be beneficial to the study
of human motor control, but it could also be used to sim-
plify robotic controllers. For instance, it is known from mo-
tor control experiments that the amplitude and the frequency
of a movement are linked; the pertinence of such dependen-
cies for robotic applications, in particular for locomotion,
could provide an interesting way to reduce the dimension of
the control parameters.

7 Conclusion

The model that we have presented can be seen as a simple
trajectory generator for both discrete and rhythmic move-
ments that is easy to control and that can be modulated on
line according to new control commands and/or feedback.
Such a generator drastically reduces the planning as only
the key characteristics of the movements need to be spec-
ified, namely the target of the discrete movements gi , and
the amplitude

√[μi]+ and the frequency ωi of the rhythmic
one. In addition, the global attractiveness of the solutions
ensures robustness against perturbations, but also the capac-
ity of the system to adapt to changing environments through
feedback information. It has been shown that it can be ef-
ficiently used for diverse applications on real robots such
as drumming, crawling and reaching. The three main ad-
vantages of the approach are that (i) the planning phase is
simplified thanks to the motor primitives, in the sense that
the control commands that are required are reduced to the

Auton Robot (2011) 31:155–181 179

key characteristics of the movement (the target for discrete
movements and the amplitude and frequency for rhythmic
movements), (ii) switching between behaviors is made eas-
ier by the fact that the same system can be used for all kind
of tasks, either discrete and rhythmic, and (iii) the dynamics
of the motor primitives can be modulated by sensory feed-
back in order to obtain an adaptive behaviors. In addition,
this method has a low computational cost and is well-fitted
for applications requiring fast control loops.

Acknowledgements We would like to thank Francesco Nori,
Lorenzo Natale and Giorgio Metta from the Italian Institute of Technol-
ogy for their help with the implementation of drumming and crawling
on the iCub robot.

References

Bernstein, N. (1967). The co-ordination and regulation of movements.
London: Pergamon.

Bizzi, E., Accornero, N., Chapple, W., & Hogan, N. (1984). Posture
control and trajectory formation during arm movement. The Jour-
nal of Neuroscience, 4(11), 2738–2744.

Bizzi, E., Cheung, V. C. K., d’Avella, A., Saltiel, P., & Tresch, M.
(2008). Combining modules for movement. Brain Research Re-
views, 57(1), 125–33.

Buchli, J., & Ijspeert, A. J. (2008). Self-organized adaptive legged lo-
comotion in a compliant quadruped robot. Autonomous Robots,
25(4), 331–347.

Buchli, J., Righetti, L., & Ijspeert, A. (2008). Frequency analysis with
coupled nonlinear oscillators. Physica D, 237, 1705–1718.

Bullock, D., & Grossberg, S. (1988). The VITE model: a neural com-
mand circuit for generating arm and articulator trajectories. In
J. Kelso, A. Mandell, & M. Shlesinger (Eds.), Dynamic patterns
in complex systems (pp. 206–305). Singapore: World Scientific.

Capaday, C. (2002). The special nature of human walking and its neu-
ral control. Trends in Neurosciences, 25(7), 370–376.

Cui, X., Zhu, Y., Zang, X., Tang, S., & Zhao, J. (2010). CPG
based locomotion control of pitch-yaw connecting modular self-
reconfigurable robots. In Information and automation (ICIA),
2010 IEEE international conference on (pp. 1410–1415).

De Rugy, A., & Sternad, D. (2003). Interaction between discrete and
rhythmic movements: reaction time and phase of discrete move-
ment initiation during oscillatory movements. Brain Research,
994(2), 160–174.

Degallier, S., & Ijspeert, A. (2010). Modeling discrete and rhythmic
movements through motor primitives: a review. Biological Cyber-
netics, 103(4), 319–338.

Degallier, S., Santos, C. P., Righetti, L., & Ijspeert, A. (2006). Move-
ment generation using dynamical systems: a humanoid robot per-
forming a drumming task. In IEEE-RAS inter. conf. on humanoid
robots (pp. 512–517).

Degallier, S., Righetti, L., & Ijspeert, A. (2007). Hand placement dur-
ing quadruped locomotion in a humanoid robot: a dynamical sys-
tem approach. In IEEE-RAS international conference on intelli-
gent robots and systems (IROS07).

Degallier, S., Righetti, L., Natale, L., Nori, F., Metta, G., & Ijspeert, A.
(2008). A modular bio-inspired architecture for movement gener-
ation for the infant-like robot icub. In Proceedings of the second
IEEE RAS/EMBS international conference on biomedical robotics
and biomechatronics, BioRob.

Fitts, P. (1954). The information capacity of the human motor system in
controlling the amplitude of movement. Journal of Experimental
Psychology, 47(6), 381–391.

Fitzpatrick, P., Metta, G., & Natale, L. (2008). Towards long-lived
robot genes. Robotics and Autonomous Systems, 56(1), 29–45.

Frigon, S., & Rossignol, S. (2006). Experiments and models of senso-
rimotor interactions during locomotion. Biological Cybernetics,
95(6), 607–627.

Gay, S., Degallier, S., Pattacini, U., Ijspeert, A., & Santos, J. (2010). In-
tegration of vision and central pattern generator based locomotion
for path planning of a nonholonomic crawling humanoid robot. In
Proceedings of the 2010 IEEE/RSJ international conference on
intelligent robots and systems (IROS 2010), Taipei.

Gribovskaya, E., & Billard, A. (2008). Combining dynamical systems
control and programming by demonstration for teaching discrete
bimanual coordination tasks to a humanoid robot. In Proceedings
of 3rd ACM/IEEE international conference on human-robot inter-
action, HRI’08, Amsterdam, 12–15 March 2008.

Grillner, S. (2006). Biological pattern generation: the cellular and com-
putational logic of networks in motion. Neuron, 52(5), 751–766.

Hersch, M., & Billard, A. (2008). Reaching with multi-referential dy-
namical systems. Autonomous Robots, 25(1–2), 71–83.

Ijspeert, A., Nakanishi, J., & Schaal, S. (2002). Learning rhythmic
movements by demonstration using nonlinear oscillators. In Pro-
ceedings of the IEEE/RSJ int. conference on intelligent robots and
systems (IROS2002) (pp. 958–963).

Ijspeert, A. J., Nakanishi, J., & Schaal, S. (2003). Learning attrac-
tor landscapes for learning motor primitives. In S. T. Becker &
K. Obermayer (Eds.), Neural information processing systems 15
(NIPS2002) (pp. 1547–1554).

Kalakrishnan, M., Buchli, J., Pastor, P., Mistry, M., & Schaal, S.
(2010). Fast, robust quadruped locomotion over challenging ter-
rain. In IEEE international conference on robotics and automa-
tion (ICRA10).

Kelso, J. A. S., Southard, D. L., & Goodman, D. (1979). On the na-
ture of human interlimb coordination. Science, 203(4384), 1029–
1031.

Khatib, O. (1980). Commande dynamique dans l’espace opérationnel
des robots manipulateurs en présence d’obstacles. PhD thesis,
Ecole Nationale Supérieure de l’aéronautique et de l’espace,
Toulouse, France.

Khatib, O. (1986). Real-time obstacle avoidance for manipulators and
mobile robots. The International Journal of Robotics Research,
5(1), 90–98.

Kimura, H., Fukuoka, Y., & Cohen, A. H. (2007). Adaptive dynamic
walking of a quadruped robot on natural ground based on bio-
logical concepts. The International Journal of Robotics Research,
26(5), 475–490.

Kober, J., & Peters, J. (2010). Imitation and reinforcement learning.
IEEE Robotics & Automation Magazine, 17(2), 55–62.

Kose-Bagci, H., Dautenhahn, K., Syrdal, D. S., & Nehaniv, C. L.
(2010). Drum-mate: interaction dynamics and gestures in human-
humanoid drumming experiments. Connection Science, 22(2),
103–134.

Matsuoka, K. (1985). Sustained oscillations generated by mutually
inhibiting neurons with adaptation. Biological Cybernetics, 52,
367–376.

Maufroy, C., Kimura, H., & Takase, K. (2008). Towards a general
neural controller for quadrupedal locomotion. Neural Networks,
21(4), 667–681.

Michel, O. (2004). Webots tm: Professional mobile robot simulation.
International Journal of Advanced Robotic Systems, 1, 39–42.

Pastor, P., Hoffmann, H., Asfour, T., & Schaal, S. (2009). Learning and
generalization of motor skills by learning from demonstration.
In International conference on robotics and automation (ICRA
2009).

Righetti, L. (2008). Control of legged locomotion using dynamical sys-
tems. PhD thesis, EPFL, Lausanne.

180 Auton Robot (2011) 31:155–181

Righetti, L., & Ijspeert, A. (2006a). Design methodologies for central
pattern generators: an application to crawling humanoids. In Pro-
ceedings of robotics: science and systems, Philadelphia, USA.

Righetti, L., & Ijspeert, A. (2006b). Programmable central pattern gen-
erators: an application to biped locomotion control. In Proceed-
ings of the 2006 IEEE international conference on robotics and
automation.

Righetti, L., & Ijspeert, A. (2008). Pattern generators with sensory
feedback for the control of quadruped locomotion. In Proceed-
ings of the 2008 IEEE international conference on robotics and
automation (ICRA 2008) (pp. 819–824).

Righetti, L., Buchli, J., & Ijspeert, A. (2006). Dynamic hebbian learn-
ing in adaptive frequency oscillators. Physica D, 216(2), 269–
281.

Ronsse, R., Sternad, D., & Lefèvre, P. (2009). A computational model
for rhythmic and discrete movements in uni- and bimanual coor-
dination. Neural Computation, 21(5), 1335–1370.

Ronsse, R., Vitiello, N., Lenzi, T., van den Kieboom, J., Carrozza, M.,
& Ijspeert, A. (2010). Human-robot synchrony: flexible assistance
using adaptive oscillators. IEEE Transactions on Biomedical En-
gineering, (99), 1. doi:10.1109/TBME.2010.2089629

Schaal, S., Kotosaka, S., & Sternad, D. (2000). Nonlinear dynam-
ical systems as movement primitives. In International confer-
ence on humanoid robotics (Humanoids00) (pp. 117–124). Berlin:
Springer.

Schoener, G. (1990). A dynamic theory of coordination of discrete
movement. Biological Cybernetics, 63, 257–270.

Schoener, G., & Kelso, J. A. S. (1988). Dynamic pattern generation in
behavioral and neural systems. Science, 239(4847), 1513–1520.

Schoener, G., & Santos, C. (2001). Control of movement time and
sequential action through attractor dynamics: a simulation study
demonstrating object interception and coordination. In Neurons,
networks, and motor behavior.

Schoener, G., Dose, M., & Engels, C. (1995). Dynamics of behav-
ior: theory and applications for autonomous robot architectures.
Robotics and Autonomous Systems, 16(2–4), 213–245.

Sentis, L., & Khatib, O. (2005). Synthesis of whole-body behaviors
through hierarchical control of behavioral primitives. Interna-
tional Journal of Humanoid Robotics, 2(4), 505–518.

Sproewitz, A., Pouya, S., Bonardi, S., van den Kieboom, J., Moeckel,
R., Billard, A., Dillenbourg, P., & Ijspeert, A. (2010). Roombots:
reconfigurable robots for adaptive furniture. IEEE Computational
Intelligence Magazine, special issue on “Evolutionary and devel-
opmental approaches to robotics”.

Steinhage, A., & Bergener, T. (1998). Dynamical systems for the be-
havioral organization of an anthropomorphic mobile robot. In
Proceedings of the fifth international conference on simulation of
adaptive behavior on from animals to animats 5 (pp. 147–152).
Cambridge: MIT Press.

Tsagarakis, N., Metta, G., Sandini, G., Vernon, D., Beira, R., Becchi,
F., Righetti, L., Santos-Victor, J., Ijspeert, A., Carrozza, M., &
Caldwell, D. (2007). iCub—the design and realization of an open
humanoid platform for cognitive and neuroscience research. In-
ternational Journal of Advanced Robotics, 21(10), 1151–1175.
Special Issue on Robotic platforms for Research in Neuroscience.

Tuma, M., Iossifidis, I., & Schoner, G. (2009). Temporal stabilization
of discrete movement in variable environments: an attractor dy-
namics approach. In Robotics and automation, 2009. ICRA ’09.
IEEE international conference on (pp. 863–868).

Turvey, M. (1990). Coordination. The American Psychologist, 45(8),
938–953.

Ude, A., Gams, A., Asfour, T., & Morimoto, J. (2010). Task-specific
generalization of discrete and periodic dynamic movement primi-
tives. IEEE Transactions on Robotics, 26(5), 800–815.

Wächter, A., & Biegler, L. T. (2006). On the implementation of an
interior-point filter line-search algorithm for large-scale nonlinear
programming. Mathematical Programming, 106, 25–57.

Wagner, D., & Schmalstieg, D. (2007). Artoolkitplus for pose tracking
on mobile devices. In Proceedings of 12th computer vision winter
workshop (CVWW’07).

Williamson, M. (1999). Robot arm control exploiting natural dynam-
ics. PhD thesis, MIT Department of Electrical Engineering and
Computer Science.

Won, J., & Hogan, N. (1995). Stability properties of human reaching
movements. Experimental Brain Research, 107(1), 125–136.

Zico Kolter, J., & Ng, A. Y. (2009). Task-space trajectories via cu-
bic spline optimization. In Proceedings of the 2009 IEEE interna-
tional conference on robotics and automation, Kobe, Japan (pp.
2364–2371). New York: IEEE Press.

Zucker, M., Bagnell, J. A. D., Atkeson, C., & Kuffner, J. (2010). An
optimization approach to rough terrain locomotion. In IEEE con-
ference on robotics and automation.

Sarah Degallier has a B.Sc./M.Sc.
in Mathematics from the Ecole
Polytechnique fédérale de Lausanne
(2005) and a doctorate (Dr. in Sci-
ence) from EPFL, under the super-
vision of Prof. Auke Ijspeert, in
November 2010. She now works as
a research associate for the CNBI
Lab at EPFL. Her main research
interests are nonlinear dynamical
systems, locomotion, reaching and,
more generally, humanoid robotics.

Ludovic Righetti received a
Diploma (eq.M.Sc.) in Computer
Sciences from the Ecole Polytech-
nique Fédérale de Lausanne (EPFL),
Switzerland, in March 2004 and
a doctorate (Dr. in Science) from
EPFL, under the supervision of
Prof. Auke Ijspeert, in November
2008. His research interests include
robot control, nonlinear dynami-
cal systems and complex systems
in general, animal locomotion and
computational neurosciences.

Sebastien Gay graduated in 2007
as Informatics Engineer at the Na-
tional Institute of applied Sciences
(INSA) in Lyon (France). He re-
ceived a MSc with honours in Ar-
tificial Intelligence from the Uni-
versity Claude Bernard in Lyon in
2007. He joined the Biorobotics
Laboratory (formerly BIRG) for the
first time in 2007 to carry out his
master project about reconfigura-
tion of modular robots. He started
his Ph.D. in April 2009, hosted by
both the Biorobotics Laboratory at
EPFL in Lausanne and the VisLab

at the IST in Lisbon. He was integrated in the RobotCub project, a Eu-
ropean attempt build an infant like humanoid robot to study cognition
and it’s development in children, which ended in January 2010. He is

http://dx.doi.org/10.1109/TBME.2010.2089629

Auton Robot (2011) 31:155–181 181

now attached to the Amarsi project about designing adaptive locomo-
tion modules to develop rich motor skills in compliant legged robots.
He’s main research interests are the coordination of vision and loco-
motion in legged robots, stabilization of compliant legged robots using
vision, locomotion on rough terrain.

Auke Ijspeert is an associate pro-
fessor at the EPFL (the Swiss Fed-
eral Institute of Technology at Lau-
sanne), and head of the Biorobotics
Laboratory (BioRob). He has a
B.Sc./M.Sc. in Physics from the
EPFL, and a Ph.D. in artificial intel-
ligence from the University of Edin-
burgh (with John Hallam and David
Willshaw as advisors). He carried
out postdocs at IDSIA and EPFL
(LAMI) with Jean-Daniel Nicoud
and Luca Gambardella, and at the
University of Southern California
(USC), with Michael Arbib and Ste-

fan Schaal. He then became a research assistant professor at USC, and
an external collaborator at ATR (Advanced Telecommunications Re-
search institute) in Japan. In 2002, he came back to the EPFL first as a
SNF assistant professor, and since October 2009 as an associate profes-
sor (with tenure). His research interests are at the intersection between
robotics, computational neuroscience, nonlinear dynamical systems,
and applied machine learning. He is interested in using numerical sim-
ulations and robots to get a better understanding of animal locomotion
and movement control, and in using inspiration from biology to design
novel types of robots and locomotion controllers. With his colleagues,
he has received the Best Paper Award at ICRA2002, the Industrial
Robot Highly Commended Award at CLAWAR2005, and the Best Pa-
per Award at the IEEE-RAS Humanoids 2007 conference. He is an
associate editor for the IEEE Transactions on Robotics, and has acted
as guest editor for the IEEE Transactions on Biomedical Engineering,
Autonomous Robots, and Biological Cybernetics.

	Toward simple control for complex, autonomous robotic applications: combining discrete and rhythmic motor primitives
	Abstract
	Introduction
	Presentation of the architecture
	Discrete system
	Stability and analytical solution
	Properties of the discrete system
	Some additional remarks

	Rhythmic system
	Stability and analytical solution
	Properties of the rhythmic system
	Some additional remarks

	Unit pattern generator
	Some examples of feedback loops
	Some additional remarks

	Central pattern generator

	Hardware and software
	RobotCub
	Hardware
	iCub Software

	Webots
	ARToolKitPlus

	Drumming
	Software implementation
	Design of the whole-body CPG
	Task specification and constraints
	Visual feedback
	Contact feedback

	Infant crawling
	Software Implementation
	CPG design and choice of parameters
	Steering
	Switching between crawling and reaching
	Contact feedback
	High-level path planning

	Discussion
	Conclusion
	Acknowledgements
	References

