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Abstract Understanding the factors that aVect establish-
ment success of new species in established communities
requires the study of both the ability of new species to
establish and community resistance. Spatial pattern of spe-
cies within a community can aVect plant performance by
changing the outcome of inter-speciWc competition, and
consequently community invasibility. We studied the
eVects of spatial pattern of resident plant communities on
Wtness of genotypes from the native and introduced ranges
of two worldwide invasive species, Centaurea stoebe and
Senecio inaequidens, during their establishment stage. We
experimentally established artiWcial plant mixtures with 4
or 8 resident species in intra-speciWcally aggregated or ran-

dom spatial patterns, and added seedlings of genotypes
from the native and introduced ranges of the two target spe-
cies. Early growth of both S. inaequidens and C. stoebe was
higher in aggregated than randomly assembled mixtures.
However, a species-speciWc interaction between invasive-
ness and invasibility highlighted more complex patterns.
Genotypes from native and introduced ranges of S. inaequi-
dens showed the same responses to spatial pattern. By con-
trast, genotypes from the introduced range of C. stoebe did
not respond to spatial pattern whereas native ones did.
Based on phenotypic plasticity, we argue that the two target
species adopted diVerent strategies to deal with the spatial
pattern of the resident plant community. We show that
eVects of spatial pattern of the resident community on the
Wtness of establishing species may depend on the diversity
of the recipient community. Our results highlight the need
to consider the interaction between invasiveness and invasi-
bility in order to increase our understanding of invasion
success.

Keywords Establishment success · Invasive species · 
Genotype · Phenotypic plasticity · Spatial aggregation

Introduction

Invasive exotic species are a threat to natural and managed
ecosystems (Prieur-Richard and Lavorel 2000), because
they can displace native species (Walker and Vitousek
1991; Vitousek et al. 1997; Levine et al. 2003; Reinhart
et al. 2006), modify rates of ecosystem processes (Vitousek
et al. 1997; Gordon 1998; Mack et al. 2001; Ehrenfeld
2003), and cause substantial losses to plant and animal agri-
cultural production (Pimentel et al. 2000). Invasion success
is the consequence of the ability of an exotic species to
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invade (invasiveness) and the lack of resistance of the
recipient community (invasibility), which may be aVected
by propagule pressure (SimberloV 2009). So far, invasive-
ness and invasibility have rarely been studied together,
despite growing evidence that their combined study is
needed to fully understand invasion success (Hierro et al.
2005), since this depends on the niche of the invader
matching the opportunities of the novel environment (Baz-
zaz 1986; Shea and Chesson 2002). It is therefore necessary
to simultaneously consider both aspects to advance under-
standing of invasion processes.

The spatial pattern of plant communities has been dem-
onstrated to aVect species coexistence within communities
by changing the outcome of inter-speciWc competition
(Stoll and Prati 2001; Monzeglio and Stoll 2005; De Boeck
et al. 2006; Mokany et al. 2008; Lamosova et al. 2010). As
spatial intra-speciWc aggregation increases, strong competi-
tors suVer from intra-speciWc competition, while weak
competitors beneWt by being segregated from stronger com-
petitors (Stoll and Prati 2001). By reducing the importance
of inter-speciWc competition, spatial aggregation can lead to
a decrease in resource uptake and complementarity, which
may increase the number of coexisting species (De Boeck
et al. 2006; Mokany et al. 2008), and, consequently, aVect
invasibility (De Boeck et al. 2006). To our knowledge, the
eVect of spatial pattern of resident plant communities on its
resistance to invasion has never been studied.

In most experiments on intra-speciWc aggregation, it has
been assumed that only the density of diVerent plant species
varies in space and that the environment is otherwise homo-
geneous (Damgaard 2010). Since plant community compo-
sition and diversity may inXuence biotic interactions within
communities, the eVect of intra-speciWc aggregation could
be mediated by community composition. In a microcosm
experiment, the eVect of spatial pattern on community pro-
ductivity and complementarity has been shown to be medi-
ated by community diversity (Lamosova et al. 2010). These
Wndings imply that impacts of intra-speciWc aggregation on
community resistance to invasion may depend on commu-
nity composition.

The exotic species has to match community opportuni-
ties at each stage of the invasion process for a successful
invasion (reviewed in Catford et al. 2009). This can be
inXuenced by ecological processes, according to which
invasion success is the consequence of extrinsic changes in
the new environment that favor the invading species, with-
out any intrinsic change of the invasive species (Callaway
and Aschehoug 2000; Mack et al. 2000; Maron and Vila
2001; Keane and Crawley 2002; Hierro et al. 2005;
Eppinga et al. 2006). Comparing the performances of geno-
types from the introduced range of a species with those of
its own native range, under the same growth conditions,
provides an indication of which changes in the environment

enable exotics to dominate recipient communities (Hierro
et al. 2005; Dlugosch and Parker 2008).

In this study, we tested the eVect of intra-speciWc aggre-
gation on the early establishment success of two invasive
species, namely the native and introduced genotypes of two
worldwide invasive species, Senecio inaequidens and Cen-
taurea stoebe. SpeciWcally, we tested whether spatial pat-
tern of the resident plant community diVerentially aVected
the performances of native and introduced genotypes of the
two species during early stages of establishment. These two
species: (1) belong to the same family (Asteraceae); (2)
occupy similar ecological niches in their native range; and
(3) tend to invade similar habitats in their introduced range.
However, previous studies have shown that they have two
diVerent invasion mechanisms: Senecio inaequidens relies
on an increased propagule pressure to invade (Thébault
et al. 2011), whereas C. stoebe can induce changes in the
soil bacterial community to succeed (Thébault et al. 2010).
We experimentally established two types of artiWcial mix-
tures of intra-speciWcally aggregated and randomly dis-
persed resident plant species. One type of mixtures was
composed of 4 resident species and the second of 8 resident
species (hereafter called 4-species and 8-species mixtures,
respectively), to which we added seedlings of native and
introduced genotypes of the two invasive species. We
hypothesized that: (1) since intra-speciWc aggregation is
known to lower competitive potential of strong competitors
and inter-speciWc competition, establishment success
should be higher in aggregated compared to randomly dis-
persed species assemblage, but this may be mediated by (2)
community composition and/or (3) the genotype’s range.

Materials and methods

Invasive and resident species

Centaurea stoebe L. is a perennial tap-rooted forb with a
rosette of basal leaves and relatively thick Xowering stems
(Hook et al. 2004; Treier et al. 2009). Native from western
Asia to western Europe, Centaurea stoebe was introduced
in the PaciWc Northwest of the United States in the late
1800s (Watson and Renney 1974) and expanded rapidly
throughout north-western America and western Canada,
where it is now widespread in rangelands, pastures, and on
roadsides (Skinner et al. 2000; Duncan 2001). Introduced
genotypes are known to induce changes in soil bacterial
communities, which may explain their invasion success
(Thébault et al. 2010). Seeds of C. stoebe were collected
during summer 2005 throughout its native range in Europe
as well as in Montana and Oregon, USA, in its introduced
range (Broennimann et al. 2007; Treier et al. 2009). In all,
15 populations from 97 available populations were ran-
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domly chosen for this study: 9 from native tetraploid popu-
lations and 6 from introduced populations known to be only
tetraploids.

Senecio inaequidens D.C. is an erect perennial dwarf
shrub native from South Africa and Lesotho. Originally
found in grasslands from 1,400 to 2,800 m a.s.l., it is now
common in South Africa. It was accidentally introduced to
Europe at the end of 1880s (Bornkamm 2002) where it is
now widespread, even at lower altitudes. It is also found in
Australia and South America (Ernst 1998; Lafuma et al.
2003). According to a recent study, S. inaequidens is
thought to successfully invade new areas through high
propagule pressure (Thébault et al. 2011). Seeds of S. ina-
equidens (mostly provided by Dr. Daniel Prati, University
of Bern) were collected in western Europe, South Africa
and Lesotho (Lafuma et al. 2003). Additional seeds were
collected from two populations in Switzerland. Of 89 avail-
able populations, 23 were randomly chosen: 14 native tet-
raploids and 9 introduced tetraploids.

Eight species commonly found in European grasslands
were selected to build artiWcial communities. Seeds were
provided by a local supplier (FENACO, Yverdon-les-
Bains, Switzerland). These species were chosen so as to
belong to 3 functional groups: grasses (Arrhenaterum ela-
tius, Agrostis capillaris, Bromus erectus, and Lolium per-
enne), legumes (Lotus corniculatus and Trifolium repens)
and forbs (Achillea millefolium and Sanguisorba minor).
To prevent the possible lack of germination of the resident
species, a ninth species (the grass Festuca pratensis) was
sown at the same time. After 10 days, S. minor did not have
enough seedlings to be transplanted in the microcosms,
leading to its replacement by F. pratensis. In the following
sections, invasive species will be called target species,
whatever the genotype’s range considered, while species of
the community will be addressed as resident species.

Community assemblage—experimental setup

On April 2008, seeds of the resident species composing the
community were sown in peat seedbed cubes of
3.0 £ 3.5 £ 4 cm. Seeds of target species (genotypes from
the native and introduced ranges) were sown 2 weeks later
in the same manner. All seeds were put in a dark germina-
tion chamber for 10 days before being assembled in a
greenhouse. The 4-species mixtures were composed of
A. elatius (A), L. perenne (B), F. pratensis (C), and T. repens
(D). The 8-species mixtures were composed of the four pre-
vious species (A, B, C, and D) in addition to B. erectus (E),
A. capillaris (F), A. millefolium (G), and L. corniculatus
(H). Thus, due to lack of germination of S. minor and its
replacement by F. pratensis, the two mixture types vary in
terms of composition and diversity. The mixtures were
assembled 1 month after seed sowing, at the beginning of

May 2008, in boxes of 60 £ 60 £ 30 cm (hereafter called
“plots”). All seedbed cubes were placed on a homogeneous
substrate made of sand (67 %) and compost (33 %).

Spatial pattern (random vs. aggregated) and mixture
types (4-species mixture vs. 8-species mixture) varied at the
plot level, target species (S. inaequidens vs. C. stoebe) at
the subplot level, and genotype’s range (native vs. intro-
duced) at the sub-subplot level, resulting in a randomized
split–split plot design. All combinations of spatial patterns
and mixture types were randomly assigned to plots and
each treatment was replicated 4 times yielding 16 plots
arranged in four blocks (Fig. 1a). The main plots of
60 £ 60 cm were subdivided into 2 subplots of 30 £ 60
cm, each one containing one of the target species. Each
subplot was further subdivided into 2 sub-subplots of
30 £ 30 cm containing 8 experimental units. While one
sub-subplot contained genotypes from the native range of
the target species, the other one contained genotypes from
the introduced range of the same target species (Fig. 1b).
An experimental unit was deWned as one individual of a
range (genotype from the native range vs. genotypes from
the introduced range) of one target species (C. stoebe vs.
S. inaequidens) for a combination of a spatial pattern and a
mixture type (Fig. 1b). Within each experimental unit, the
individual target species was surrounded by 8 seedlings of
resident species. In the random pattern, target species were
growing in the middle of a mixture of resident species, sim-
ulating a seed growing in a mosaic of resident species. By
contrast, in the spatially aggregated pattern, the 8 surround-
ing seedlings belonged to the same resident species, simu-
lating a seed arriving in a patch of one resident species or a
monoculture (Fig. 1c).

Measurements

Survival was measured 15 days after the mixture assem-
blage to test for eVects of the experimental setup on estab-
lishment. A harvest of target species was done 1.5 months
after mixture assemblage. Surviving targets were counted
and aboveground parts of surviving plants were harvested,
dried at 60 °C during 3 days, and weighed for measurement
of standing biomass. A second harvest of resprouting plants
was done 4 months after mixture assemblage. As for the
Wrst harvest, survival of resprouted plants was measured
and aboveground biomass was dried at 60 °C during 3 days
before being weighed. During the experiment, Xowering
was recorded and analyzed as a binary response (Xowering/
non-Xowering) for individuals during the experiment.
Capitula of target species (capitulum production) were
counted weekly and cut since we wanted to prevent seed
dispersal for safety reasons. At each harvest, resident plant
species were mown, sorted to the functional group level,
dried at 60 °C for 3 days and weighed.
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Statistical analyses

A hierarchical generalized linear mixed eVects model (lme
function from the nlme library of R), with spatial pattern
and mixture type as Wxed eVects and plot as a random fac-
tor, was used to test for diVerences in total resident standing
biomass and percentages of grasses, forbs and legumes.
Mixture type, spatial pattern and their interactions were
tested at the plot-level using block:plot as error term. Resi-
dent standing biomasses at Wrst and second harvest were

log-transformed to reduce heteroscedasticity and the mod-
els were Wtted with a Gaussian error distribution. Models
Wtted with a binomial error distribution were used to ana-
lyze diVerences in percentage of grasses, legumes, and
forbs between plot level treatments.

For analyzing target plants, we used hierarchical gener-
alized linear mixed eVects models (glmmPQL function
from the MASS library of R) with mixture type, spatial pat-
tern and genotype’s range (hereafter called “range eVect”)
as Wxed eVects and sub-subplot nested into subplot nested

Fig. 1 a Diagrammatic repre-
sentation of the design of the 
experiment: a split plot design, 
with sub-subplot nested into 
subplot nested into plot arranged 
in block, each sub-subplot con-
taining 8 experimental units. 
Main eVects varied at the plot 
level, so each block had one rep-
licate of each mixture type-spa-
tial pattern combination. 
b Diagram of the design at the 
plot level: each subplot had one 
of two target species (C. stoebe 
or S. inaequidens) and was 
divided into sub-subplots 
planted with seedlings from the 
native range or introduced range 
of the target species. c Spatial 
pattern (aggregated vs. random) 
and mixture type (4-species or 8-
species mixture) varied at the 
plot level. A–H represent 
resident species (A, A. elatius; 
B, L. perenne; C, F. pratensis; 
D, T. repens; E, B. erectus; 
F, A. capillaris; G, A. millefoli-
um and H, L. corniculatus). 
Cn, Ci, Sn, and Si are the target 
species: respectively Centaurea 
stoebe from the native and intro-
duced ranges and Senecio 
inaequidens from the native and 
introduced ranges

(a)

(b)

(c)
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into plot nested into block as random factors. Target spe-
cies were analyzed separately since the diVerence in inva-
sion mechanisms might aVect the response of target plants.
Mixture type, spatial pattern, and their interaction were
tested at the plot-level using block:plot as error term. The
range eVect was tested at the subplot level using the lowest-
level error term. When the interactions were signiWcant, we
used the likelihood-ratio test to select for the best or mini-
mal model. Binary data (i.e., survival, survival after respro-
uting, and Xowering) were analyxed by Wtting a generalized
linear mixed model with a binomial error distribution.
Count data (capitulum production) were analyzed by Wtting
a generalized linear mixed model with a Poisson error dis-
tribution. Since residual deviance was larger then residual
degrees of freedom, revealing overdispersion, the models
were re-Wtted with quasi-binomial and quasi-Poisson distri-
butions (Crawley 2005). Since C. stoebe did not Xower dur-
ing the experiment, reproductive output (Xowering
probability and capitulum production) was analyzed for S.
inaequidens only and at the Wrst harvest only because very
few targets Xowered after resprouting. Biomass at the sub-
subplot level (mean of 8 individuals) was log-transformed
to reduce heteroscedasticity and analyzed by Wtting a
Gaussian error distribution to the linear mixed model. All
the analyses were carried out with R 2.10.1 (R Develop-
ment Core Team 2009). SigniWcance level was considered
when P < 0.10 for model simpliWcation and when P < 0.05
in all other cases.

Results

Resident biomass

Resident total standing biomass of plots was not signiW-
cantly diVerent between the Wrst (308.4 § 25.9 g m¡2) and
the second harvest (371.5 § 27.7 g m¡2). Irrespective of
harvest time, there were no signiWcant diVerences between
assemblages in total standing biomass and the proportion of
grasses and legumes, indicating no eVect of mixture type
and spatial pattern on plant productivity.

Target species’ performances

For both target species, survival after 15 days was high
(mean survival ranging from 97.5 to 100 %), revealing no
signiWcant mortality due to the experimental setup.

Centaurea stoebe’s performances

Centaurea stoebe’s mean survival at the Wrst harvest ranged
from 59.4 to 79.8 % depending on community spatial pat-
tern and genotype’s range. Early survival of native and

introduced genotypes of C. stoebe was not aVected by spa-
tial pattern (Table 1; Fig. 2a). Mean survival after resprout-
ing only ranged from 3.6 to 31.5 % (Fig. 2b). After
resprouting, survival of both native and introduced geno-
types was higher in intra-speciWcally aggregated mixtures
than in randomly assembled ones (Table 1; Fig. 2b).

After 1.5 months, biomass of native genotypes of C. sto-
ebe was signiWcantly aVected by spatial pattern (Table 1)
and was higher in intra-speciWcally aggregated mixtures
than randomly assembled ones (Fig. 3a). By contrast, spa-
tial pattern had no eVect on introduced genotypes’ biomass
(Fig. 3a). After 4 months, spatial pattern and genotype’s
range had no eVect on the biomass of resprouted targets
(Table 1). None of C. stoebe did Xower during the experi-
ment.

Senecio inaequidens’ performances

Mean target survival ranged from 61.6 to 87.5 % and from
11.9 to 41.9 % after 1.5 months and after resprouting,
respectively. Survival of S. inaequidens was not signiW-
cantly aVected by spatial pattern and genotype’s range
(Table 1).

Early growth of both genotypes of S. inaequidens was
aVected marginally signiWcantly by spatial pattern (Table 1;
Fig. 3b). Biomass of both genotypes was higher in intra-
speciWcally aggregated mixtures than in randomly assem-
bled ones (Fig. 3b). In addition, biomass of genotypes from
the introduced range of S. inaequidens was consistently and
marginally higher than biomass of genotypes from the
native range (Table 1; Fig. 3b). After 4 months, spatial pat-
tern and genotype’s range had no eVect on the biomass of
resprouted targets (Table 1).

Senecio inaequidens’ Xowering was not aVected by spa-
tial pattern. There was no diVerence between genotype’s
range (Table 2). The eVect of spatial pattern on capitulum
production was mixture-dependent, as shown by the signiW-
cant interaction term between spatial pattern and mixture
type (Table 2). In 4-species mixtures, capitulum production
was higher in intra-speciWcally aggregated than in ran-
domly assembled mixtures ones, whereas in 8-species mix-
tures, capitulum production of S. inaequidens was lower
intra-speciWcally aggregated than in randomly assembled
mixtures ones (Fig. 4). Overall, introduced genotypes pro-
duced signiWcantly more capitula than native ones (Table 2;
Fig. 4).

Discussion

In this experiment, we tested whether (1) establishment
success of exotic species was aVected by the spatial
arrangement of the resident species in the receiving community
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and whether this eVect depends on (2) community composition
and/or (3) exotic species’ characteristics.

Intra-speciWc aggregation promotes invasibility

As expected, intra-speciWcally aggregated resident species
decreased community resistance to establishment of exotic
species compared to randomly assembled ones. Early
growth of both exotic species was greater in spatially

aggregated mixtures than in randomly assembled ones. In
addition, survival after resprouting of C. stoebe was higher
in intra-speciWcally aggregated mixtures than in randomly
assembled ones. Since resource use and complementarity
decrease with intra-speciWc aggregation (De Boeck et al.
2006; Mokany et al. 2008), a higher availability of
resources in aggregated communities may enhance growth
of newly establishing plants. Considering invasibility of the
community as the lack of resistance to the arrival of a new

Table 1 Centaurea stoebe’s and Senecio inaequidens’ survival and biomass after 1.5 months and after 4 months

Results of hierarchical generalized linear mixed eVects (a
Wtted with a quasibinomial error distribution) and hierarchical linear mixed eVects (b

Wtted
with a Gaussian error distribution) models testing eVects of mixture type (4-species vs. 8-species mixture), spatial pattern (random vs. aggregated),
genotype’s range (native vs. introduced) and their interactions. Non-signiWcant interactions have been removed on the basis of likelihood-ratio tests

Residual degrees of freedom diVer because insigniWcant interactions have been omitted

Survivala Biomassb

1.5 Months 4 Months (resprouted plants) 1.5 Months 4 Months (resprouted plants)

df F value P value df F value P value df F value P value df F value P value

Centaurea stoebe

Plot level

Mixture 1 0.022 0.885 1 0.305 0.593 1 3.445 0.093 1 0.012 0.916

Spatial pattern 1 0.437 0.524 1 5.887 0.036 1 1.938 0.194 1 2.560 0.171

Residuals 10 10 10 5

Sub-subplot level

Range 1 0.473 0.503 1 0.135 0.719 1 1.966 0.184 1 2.397 0.197

Mixture £ range 1 6.164 0.026 1 10.847 0.006

Spatial pattern £ range 1 4.531 0.053

Residuals 14 15 13 4

Senecio inaequidens

Plot level

Mixture 1 1.709 0.220 1 0.296 0.598 1 6.335 0.031 1 1.492 0.250

Spatial pattern 1 2.386 0.154 1 0.523 0.486 1 3.542 0.093 1 0.690 0.425

Residuals 10 10 10 10

Sub-subplot level

Range 1 0.242 0.630 1 0.278 0.606 1 4.187 0.059 1 0.058 0.815

Mixture £ range 1 10.637 0.006

Spatial pattern £ range

Residuals 15 14 15 9

Fig. 2 Survival of genotypes 
from the native and introduced 
ranges of C. stoebe a 1.5 months 
after planting and b after respro-
uting (survival after 4 months), 
in response to spatial pattern 
(Rand random or Aggr aggre-
gated) in the two mixture types 
(Mix 4 4-species and Mix 
8 8-species mixtures) of experi-
mentally assembled resident 
communities. Values are 
mean + SE

(a) (b)
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individual, regardless of the invasive potential of this new
species, invasibility could be promoted by community
intra-speciWc aggregation. This is in agreement with the
notion that intra-speciWc aggregation promotes species
coexistence within the community by limiting competitive
eVects of the most dominant species (Stoll and Prati 2001;
Monzeglio and Stoll 2005; De Boeck et al. 2006; Mokany
et al. 2008; Lamosova et al. 2010).

Species-dependent interaction between invasiveness 
and invasibility

Genotypes from native and introduced ranges of the inva-
sive species were diVerently aVected by spatial pattern.
This range-dependent response might be linked to pheno-
typic plasticity, which is the property of a genotype to

express diVerent phenotypes in diVerent environments
(Bradshaw 1965). Because plasticity may allow organisms
to cope with a broader range of environments, it has been
suggested to explain invasiveness (Richards et al. 2006),
since it could enhance niche breadth (Bradshaw 1965;
Richards et al. 2008). Richards et al. (2006) argued that
invaders may beneWt from plasticity through three strate-
gies. According to the Jack-of-all-trades strategy, the
invader is able to maintain Wtness in unfavorable environ-
ments, by contrast to the opportunistic Master-of-some
strategy, which states that the invader is able to increase its
Wtness in favorable environments. Since these two strate-
gies are not mutually exclusive, the Jack-and-Master strat-
egy is a combination of the former ones, where the invader
does well in all kinds of environments and is also able to
take advantage of favorable conditions (Richards et al.
2006).

The eVect of spatial pattern on early establishment of
C. stoebe was range-dependent. Genotypes from the native
range had higher biomass in intra-speciWcally aggregated
mixtures as compared to randomly assembled ones, whereas
biomass of genotypes from the introduced range was similar
in randomly assembled and intra-speciWcally aggregated
mixtures. Consequently, genotypes from the introduced
range of C. stoebe were better able to cope with competitive
environments, such as spatially randomly assembled mix-
tures, than native ones. This is characteristic of a Jack-of-all-
trades strategy, as genotypes from the introduced range were
not aVected by community spatial pattern and were able to
perform equally well in all conditions. By contrast, native
genotypes behaved as a Master-of-some strategist, being able
to increase performance in changing environments. Spatial
pattern aVected both genotypes of S. inaequidens in the same
way, revealing no interaction between invasiveness and inva-
sibility. Since genotypes from the introduced range always
had higher growth than the ones from the native range, they
can therefore be deWned as Jack-and-Master strategists, while
the genotypes from the native range can be deWned as Mas-
ter-of-some strategists.

Native genotypes of both target species behaved as Mas-
ter-of-some strategist, showing the ability to increase their
performances according to the changes in the recipient
community. By contrast, the strategies of the genotypes
from the introduced range were species-dependent. On the
one hand, the establishment success of C. stoebe in the
introduced range could be due to the ability of North Amer-
ican genotypes to deal with all kinds of environments, by
contrast to European ones. On the other hand, S. inaequi-
dens’ establishment success may be explained by a high
ability of genotypes from the introduced range to cope with
all kinds of environments, as well as to take advantage of
favorable environments, such as spatially aggregated com-
munities.

Fig. 3 Standing biomass of genotypes from native and introduced
ranges after 1.5 months of a C. stoebe and b S. inaequidens in response
to spatial pattern of experimentally assembled resident communities.
Values are mean § SE

(a)

(b)
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The eVect of spatial pattern on establishment success are 
modulated by community type

Spatial heterogeneity, by limiting intra-speciWc competi-
tion, has been hypothesized to drive the positive relation-
ship between invasibility and diversity (Davies et al. 2005).
The eVect of spatial pattern on S. inaequidens’ reproductive
output was diVerent according to the mixture type. While
intra-speciWc aggregation of resident species promoted
capitulum production of S. inaequidens in 4-species mix-
tures, it limited it in 8-species mixtures. Since capitulum
production, through propagule pressure, may be the key

trait responsible for invasive success of some exotic species
(Lockwood et al. 2005) and of S. inaequidens in particular
(Thébault et al. 2011), interactive eVects of spatial pattern
and community type may play a central role in community
invasibility, and this deserves more studies. The two mix-
ture types used in this experiment were not diVerent in
terms of productivity, but diVered in terms of number of
species, functional groups, and identity of resident species.
This mixture dependency of spatial pattern eVect on S. ina-
equidens’ capitulum production, as well as the mixture type
eVect on early biomass of both S. inaequidens and C. sto-
ebe, could be the result of a selection eVect since some of
the additional species in the 8-species mixtures could be
facilitating species for growth of  S. inaequidens or C. ste-
obe (Palmer and Maurer 1997; Levine and D’Antonio
1999). Only an experiment with all the combinations of
4-species and 8-species mixtures using these 8 species
could have addressed this question, which was beyond the
scope of this study.

As highlighted by our results, working with genotypes
from the introduced and native ranges of a given invasive
species allows the study of the interaction between inva-
siveness and invasibility, which provides key insights to
understand invasive success. In addition, for the Wrst time,
we assessed the eVect of intra-speciWc spatial aggregation
of resident species on community resistance to invasion.
We highlighted the importance of studying the eVects of
spatial pattern in diVerent plant communities, since spatial
pattern and community composition, both thought to con-
trol invasibility, may interact on community resistance.
Consequently, interactive eVects of spatial patterns with
community composition or diversity deserve more studies.
We acknowledge that these results may change if our
experiment had been run for a longer time. However, the
resident species would have spread within the microcosm
and the spatial structure would have changed, complicating
our understanding of the pattern (Lamosova et al. 2010).

Table 2 S. inaequidens’s Xowering and capitulum production during the Wrst 1.5 months

Results of hierarchical generalized linear mixed eVects models respectively Wtted with a aquasibinomial or bquasipoisson error distribution to test
eVects of mixture type, spatial, genotype’s range and their interactions. See Table 1 for more details

Floweringa Capitulum productionb

df F value P value df F value P value

Plot level

Mixture 1 6.304 0.031 1 4.672 0.083

Spatial pattern 1 0.736 0.411 1 4.485 0.088

Mixture: spatial pattern 1 27.442 0.003

Residuals 10 5

Sub-subplot level

Range 1 2.461 0.138 1 33.277 0.005

Residuals 15 4

Fig. 4 Capitulum production of genotypes from native and introduced
ranges of S. inaequidens after 1.5 months, in response to spatial pattern
in the two mixture types. Capitulum production is the number of capit-
ula produced by Xowering plant. Values are means + SE
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Despite the short duration of the experiment, all resident
species reached their full size and some of them even Xow-
ered.

We acknowledge that two species are not enough to
draw strong conclusions and that this experiment has to be
considered as a starting point for the study of the eVects of
spatial patterns on invasive success. Despite species-spe-
ciWc responses, the two model species used in this experi-
ment were aVected by community spatial pattern. We
expect that the eVects of spatial pattern on invasive success
will probably be conWrmed in later studies, which will have
important implications in terms of management, since
lower evenness, higher number of species with clonal
growth, or limited seed dispersal might increase intraspe-
ciWc aggregation within communities and therefore invasi-
bility.
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