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Abstract Agglomerate aerosols in a turbulent flow may be subjected to very high
turbulent shear rates which through the generation of lift and drag can overcome
the adhesive forces binding the constituents of an agglomerate together and cause
it to break-up. This paper presents an analysis of the experimental measurements
of the breakup of agglomerates between 0.1–10 μm in size, in a turbulent pipe flow
followed by an expansion zone with a Reynolds numbers in the range 105 to 107.
The analysis shows that even in wall bounded turbulence, the high turbulent shear
stresses associated with the small scales of turbulence in the core can be the main
source of breakup preceding any break-up that may occur by impaction at the wall.
More importantly from these results, a computationally fast and efficient solution
is obtained for the General Dynamic Equation (GDE) for agglomerate transport
and breakup in highly turbulent flow. Furthermore the solution for the evolution
of the aerosol size distribution is consistent with the experimental results. In the
turbulent pipe flow section, the agglomerates are exposed continuously to turbulent
shear stresses and experience more longer term breakup than in the expansion zone
(following the pipe flow) where the exposure time is much less and break-up occurs
instantaneously under the action of very high local turbulent shear stresses. The
validity of certain approximations made in the model is considered. In particular,
the inertia of the agglomerates characterised by a Stokes Number from 0.001 for the
smallest particles up to 10 for 10 μm particles and the fluctuations of the turbulent
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shear stresses are important physical phenomena which are not accounted for in the
model.

Keywords Agglomerate · Turbulence · Break-up · De-agglomeration · Aerosol

Abbreviations

BI Berner Impactor
CFD Computational Fluids Dynamics
CMD Count Median Diameter
DNS Direct Numerical Simulation
ELPI Electrical Low Pressure Impactor
FBG Fluidized bed generator
GDE General Dynamic Equation
GSD Geometric standard deviation
LDA Laser Doppler anemometer
OPC Optical Particle Counter
PSD Particle size distribution
SEM Scanning electron microscopy

1 Introduction

In turbulent flow, individual aerosol agglomerates interact with turbulent structures.
In particular, they are segregated into straining regions where they either break up
through the high shearing of the flow in these regions or continue to grow with en-
hanced collision rates [1]. For the most part in clouds for instance, there is no break-
up, and droplets will continue to grow at an enhanced rate until they precipitate
out (rain) due to gravitational settling. In other situations where solid agglomerates
are formed, break up might be due to either inter-agglomerate collisions, through
impact with a wall, or aerodynamic shear forces as in a turbulent jet. For instance,
chemical engineers actively investigate the competition between agglomeration and
break-up in bioreactors [2, 3]. If the agglomerate suspension is dilute enough, break-
up becomes the predominant process as the agglomeration rate becomes negligible
compared to break-up rate.

The break-up of aerosol agglomerates in turbulent flow has application in a num-
ber of important environmental and industrial processes. Of particular importance
is the release of radioactive aerosols in a severe nuclear accident. The evidence
suggests strongly that break-up could play a role in reducing the radioactive aerosol
size distribution and increasing the rate of release to the environment in the event
of a severe accident. Of similar importance are the size and shape of agglomerates
in the pharmaceutical, detergent and food processing industries where agglom-
erates offer better ‘flowability’ with less dust formation in comparison with fine
powders [4].

Break-up mechanisms have been extensively studied and understood in the con-
text of break-up of droplets in turbulent flows [5] because the mechanisms involving
droplet deformation are well-known. However the break-up of solid agglomerates
presents more uncertainties mainly due to the difficulty of expressing the adhesive
forces for complex agglomerate morphology.
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The study presented here is concerned with providing a model for the break-
up mechanism for aerosol agglomerates smaller than the Kolmogorov scale of
turbulent gas flow at very high Reynolds number (typically 105 and above). Break-
up mechanisms due to both wall bounded and free turbulent shear stresses on
aerosol particles are assessed. The timescales of the physical phenomena applied
to highly turbulent flow laden particles are compared, based on an experimental
investigation described in [6, 7]. The experiments consisted of measuring the size
of the agglomerates by light scattering at the inlet and the outlet of a test section
composed of a tube of varying length (20 cm, 2 m and 4 m long pipes were used)
and an expansion zone. Possible dependency of the de-agglomeration on the level
of turbulence was investigated by varying the velocity at the inlet of the test section;
this velocity ranged from a few m/s all the way to ∼150 m/s.

As originally suggested by Sonntag and Russel [8], break-up was assumed to be
instantaneous with respect to the smallest time scale of turbulence and based on this
assumption, it was shown that the break-up event takes place before the agglomerate
impacts to the wall. Aerosol agglomerates refer here to an assembly of nanometre
solid primary particles with branch-like and irregular structures characterized by self
similarity over several orders of magnitude [9]. In this paper, it is assumed that even if
the agglomerates are composed of primary particles with varying shape and diameter,
they consist of identical spherical primary particles held together by adhesive forces.

This paper first presents the state of the art of aerosol break-up modelling.
The Computational Fluids Dynamics (CFD) predictions are validated against ex-
perimental measurements and the relevant parameters responsible for break-up
are determined by comparing the timescales of different physical phenomena. The
evolution of the particle size distribution in the geometry is finally obtained by
solving the General Dynamic Equation (GDE) (also known as population balance
equation). The implementation is performed along the turbulent flow streamlines
for inertialess aerosol particles and the applicability of the results is discussed with
regards to the assumptions made in the model.

2 Break-Up Modelling: State of the Art

Regardless of the physical phenomena involved, two pieces of information are
required in order to quantify the break-up: (i) the rate at which the break-up occurs
or particle break-up rate a′ and, (ii) the number and sizes of fragment particles which
is given by the break-up fragment distribution function b ′(L, l) for an agglomerate
of size l breaking up into fragments of characteristic size L defined as L3 = v with
v the particle volume. Both are accounted for in a simplified form of the GDE for
break-up [10]:

∂n (L, t)
∂t

+ Uf · ∇n (L, t) − ∇ (DT∇n (L, t))

=
∫ ∞

L
a′ (l, t) b ′ (L, l) n (l, t) dl − a′ (L, t) n (L, t) (1)

Here n(L, t) is the Particle Size Distribution (PSD), t is the time, Uf is the mean fluid
velocity and DT is the turbulent diffusivity. The first term on the right hand side is
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the rate of birth of particles of size L, due to the break-up of particles of size l bigger
than L whereas the second term is the rate of death of particles of size L due to the
break-up of particles of size L.

Existing models for the break-up rate and fragment distributions will be reviewed
in Sections 2.1 and 2.2 respectively. Section 2.3 will review the existing methods to
solve Eq. 1.

2.1 Expression for the break-up rate

The expression for particle break-up rate often contains parameters which need to
be deduced or inferred from experimental data. Kramer and Clark [11] derived an
expression for the break-up rate based on flow-induced normal stresses for solid
particles and similar kernels have been developed for droplet and bubble break-up
in turbulent dispersions [12, 13].

For agglomerates smaller than the Kolmogorov length scale, the hydrodynamic
stress is determined by the viscosity and local dissipation rate ε whose fluctuations
are highly intermittent. Kusters [2] gave an expression for the break-up rate of such
agglomerates in homogeneous turbulent and the local dissipation rate flow assuming
a Gaussian distribution for the local dissipation rate fluctuations, namely:

a′ (ε, L) =
(

4
15π

)1/2 ( 〈ε〉
ν

)−1/2

exp
(

−εb (L)

〈ε〉
)

, (2)

where εb is the critical turbulent energy dissipation rate above which the break-up
occurs. It is related to characteristic agglomerate size L such as:

εb (L) = P [L]−1/q , (3)

where P and q are parameters depending on the response of the agglomerate to
turbulent stresses. Equation 3 is consistent with the fact that εb decreases with
increasing agglomerate size since larger particles are more susceptible to break up
than smaller ones. This fact was observed in both experimental [14] and simulation
investigations [15], the parameter q varying between 0.4 and 5 for various flows and
agglomerate sizes. The break-up rate can also be described by a power law such as:

a′ (ε, L) = P1

( ε

ν

)P2

LP3 (4)

P1, P2 and P3 are empirical parameters that depend on the flow and the agglomerate
type under investigation.

Babler et al. [16] discussed Eqs. 2 and 4. In particular, they pointed out that
unlike experimental and theoretical evidences, these equations fail to include the
existence of a critical agglomerate size below which no break-up is observed. They
proposed a power-law expression to correlate the critical magnitude of homogeneous
turbulence fluctuations that causes break-up with the agglomerate properties and
similar to Eq. 3. The agglomerates were assumed to break up instantaneously
compared to the Kolmogorov time scale. The applicability of this assumption was
discussed in this paper for agglomerates with characteristic response time smaller
than the Kolmogorov time scale. An expression for the break-up rate was derived
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for a Gaussian turbulence fluctuation distribution. They showed that it reduces to an
exponential function and a power law similar to Eqs. 2 and 4 in the limits of very
small and very large agglomerates respectively.

2.2 The fragment distribution

It is commonly assumed that the break-up of one agglomerate produces two frag-
ments of equal size [17, 18]. Erosion [19] is another break-up model referring to the
break-up of one parent particle into one very small particle and another with size
close to the original. However, the break-up of one fractal agglomerate in turbulent
flow could result into 3 or 4 smaller sizes as illustrated by Monte Carlo simulations of
aggregate break-up in shear flow [15]. These fragments were denser than the parent
agglomerate and no direct relationship was found between parent and daughter
structure. A major problem with this kind of applications is dealing with the statistics
associated with both turbulence and fractal agglomerates.

The literature contains various standard fragment size distributions such as a
normal [13, 20] or bimodal distribution for droplets [21, 22] and a lognormal [23]
distribution for flocs in a flowing suspension. The U shaped fragment distribution is
also widely used. It represents processes in which the most probable break-up results
in small and large fragments with zero probability of equal-sized fragments [24–26].
A generalized treatment has been proposed by Kostoglou et al. [27] under the form
of a normal distribution. Diemer and Olson [28] provided a sufficiently flexible form
so that a weighted sum of power law product terms describes most of the fragment
distributions discussed above.

2.3 How to solve the break-up equation

The break-up equation given by Eq. 1 needs to be solved. In the case where the
system remains fully mixed throughout the break-up process and the local time
derivative for the PSD is the only non negligible term on the Left Hand Side of
Eq. 1, the modelling of the break-up rate by a power-law in particle size and with
self similar daughters, yields similarity solutions (often in the form of modified
gamma functions) for a broad class of break-up problems [29–32]. But outside these
simplifying assumptions, no general analytic solution exists. One successful approach
is based on Monte Carlo methods for the population of particles undergoing a
birth-death process [33]. For more details of the treatment of GDE equations see
Ramkrishna [10].

The method for solving the GDE equation needs to be computationally efficient
whilst being able to describe the particle size distribution accurately. The GDE can
be discretised in particle size using a number of different methods [34–36] but it
requires a relatively large number of particle size classes which renders the resolution
of this equation virtually impossible for CFD code since the solution of these classes
has to be calculated in each cell of the computational domain resulting in a very high
computation time and extensive memory requirements. Nevertheless, calculation of
the moments of the particle size distribution is often sufficient for comparison with
experiments as the instruments only measure average quantities.
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The k−th moment of the PSD is defined as:

mk (x, t) =
+∞∫

0

n (v, x, t)vkdv =
+∞∫

0

n (l, x, t) l3kdl, (5)

Where n(v,x, t) is the distribution function for the number density of particles having
volumes in the range v to v + dv.

If the particle size is characterized by its volume, the zeroth moment m0 is the total
particle number density and the first moment m1 is the particle volume fraction at a
given location. For the specific case where particle material density remains constant,
m1 is conserved in a closed system since the invariance of the first moment refers to
the conservation of mass.

However, except for special restrictive forms, solving the set of transport equa-
tions for moments requires closure models for the missing moments. As was first
shown by McGraw [37] in describing the size dependent growth in aerosols, this
closure problem can alternatively be overcome by invoking a quadrature approx-
imation for the moments referred to as to the Quadrature Method Of Moments
(QMOM). The method gives in some cases better results than those based on
pre-assumed particle size distribution forms and the alternative closure technique
described by a Laguerre series expansion on the gamma distribution. Marchisio et al.
[3] validated the method for size-dependent growth and aggregation against both
Monte Carlo simulations and analytical solutions using several functional forms for
the agglomeration, and showed good agreement of the results with those obtained
using a discretised approach.

The special case where diffusive transport can be neglected with respect to the
convective transport is of particular relevance for very high Reynolds number pipe
flows. Using this condition, it becomes possible to perform the integration of the
GDE along a streamline which significantly reduces the computational time and
as a consequence allows one to consider the direct discretisation of the Population
Balance equations into sections. Various authors have combined the Eulerian de-
scription of the carrier flow with a Lagrangian description of the GDE to determine
the droplet size distribution in air-water flow [38–43]. In the particular case of
zero diffusion, the distribution evolution in the particle state space is thus obtained
without utilising any closure approximation.

3 Turbulent Gas Flow

The flow is based on the experimental setting described in [6, 7].
The test facility is depicted in Fig. 1. It consists of a Fluidized Bed Generator

(FBG) a mixing chamber where TiO2 aerosol coming from the FBG is mixed with the
main air flow and the test tube followed by an expansion zone. The instrumentation
consists of two Optical Particle Counters (OPCs) at the inlet and outlet of the tube,
an Electrical Low Pressure Impactor (ELPI), a membrane filter, 4 Berner Impactors
(BIs) and a sampling system to extract, when required, aerosols from the gas stream
for subsequent morphological analysis by means of a scanning electron microscope
(SEM). The test section is composed of 3 sections: a smooth contraction, a 16.9 mm
diameter straight tube of variable length and a conical expansion zone of 140 mm
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Fig. 1 Schematic representation of the experimental setting

diameter (cf. Fig. 2). The inlet composed of three parts, two conical contractions
separated by a 152 mm long tube, describes a smooth diameter reduction from
70.9 mm to 16.8 mm which avoids break-up to occur prior to the tube. Due to
high velocity inside the straight tube, measurements and the aerosol samples cannot
be taken inside the straight tube section directly but prior and after, inside the
contraction inlet and expansion outlet respectively.

The break-up of particle agglomerates has been studied in the literature for
Reynolds numbers in the range from 5000 to 50000 [44, 45]. The current study
extends this range up to Reynolds numbers of 105–107 for solid gas compressible
turbulent flows. The next section will discuss the modelling of turbulent flows at this
Re range.

For highly turbulent flows, only Reynolds Averaged Navier Stokes equations
which model the entire spectrum of the turbulent motions can be solved although
the performance of this approach is uneven in flows outside of the calibration range
of the models.

CFD calculations have been performed for mass flow rates in the range 20 kg/h–
450 kg/h using the commercial package FLUENT 6.3 and accompanied by LDA
velocity measurements in an air jet for 2 mass flow rates, 110 kg/h and 450 kg/h.
A 2D axis-symmetric configuration and the standard k–epsilon turbulent model for
compressible flow were used in every CFD simulation. For more details, see [6].



472 Flow Turbulence Combust (2012) 89:465–489
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Fig. 2 Schematic representation of the experimental setting

The flow in the boundary layer was calculated using wall enhanced treatment
with the nearest wall cell y+ close to 1. The calculations were conducted until scaled
residuals dropped below 10−6 and the mean wall y+ and shear wall stresses reached
stationary values.

Gauge pressure was measured along the pipe having a length of 4 m, Fig. 3, for
a gas mass flow rate of 370 kg/h. The CFD calculations predicted very well the
experimental trend.

The velocities were measured with a Laser Doppler Anemometer (LDA) at
different downstream distances for two gas mass flow rates of 110 kg/h and 450 kg/h
in a vertical jet located in the 690 mm long conical expansion (cf. Fig. 2), emerging
from a straight tube with a length of 400 mm. LDA measurements and comparison
with CFD calculations are described in details in [6]. A very good agreement could be

Fig. 3 Gauge pressure profile
measured along the
streamwise direction for a
mass flow rate of 370 kg/h:
comparison with FLUENT
simulation results
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established between the LDA measurements and the CFD calculations with respect
to the velocity and the turbulent kinetic energy measurements. Therefore, in the
subsequent sections, the necessary turbulent quantities can be extracted from the
CFD calculations.

4 Identification of the Mechanisms Responsible for Break-Up

The aerosol agglomerate size considered here is in the range 0.1 μm–5 μm. Various
transport mechanisms and forces are applied to aerosols in highly turbulent flows.
The objective of this section is to demonstrate the relative importance of break-up
and to identify the forces causing the agglomerates to break-up.

4.1 Particle concentration across the pipe section

Particle-tracking simulations for a 2 m straight tube section as shown on Fig. 2 were
carried out using Fluent 6.3 by injecting a monodisperse sample of 1000 particles
with a diameter of one micron, homogeneously distributed across the inlet pipe
section. Inter-particle collision was not taken into account. The turbulent dispersion
model based on the Langevin equation was used as first introduced by Iliopoulos and
Hanratty [46] and more recently by Dehbi [47]. This model takes into account the
anisotropy of turbulence in the boundary layer. The walls were modelled as perfectly
reflecting [7].

The number density in each annular shell, normalized by the average number
density in the whole domain, is presented as a function of the normalised radial
position from the centre of the annular shells for different time steps in Fig. 4. The
time t = 1 corresponds to the transit time for particles to travel the pipe length. The
pipe wall is located at a radial position of 1. The particles were injected uniformly
which means that the normalised number density in each annulus was one to start
with. The particle concentration remained quasi-uniform in the pipe section except
for the last annular shells close to the wall where the particle number density is

Fig. 4 Number density versus
radial position for different
times t



474 Flow Turbulence Combust (2012) 89:465–489

almost equal to twice the value in the other shells. This latter phenomenon refers to
preferential concentration of inertial particles in turbulent boundary layers identified
by [48].

4.2 Relative importance of break-up

In the bulk, both agglomeration and break-up can typically take place. The charac-
teristic time for agglomeration is defined as [49]:

τA = 1
kA Nt

, (6)

where kA is the collision kernel and Nt is the volume-averaged total number density
of agglomerates at steady state determined experimentally.

The collision rate is typically between the limits for larger particles given by
Abrahamson [50] and for smaller particles given by Saffman and Turner [51].
Saffman and Turner defined the collision kernel between two particles of radius Ri

and R j such that:

kA (i, j) = 1.294
( ε

ν

)1/2 (
Ri + R j

)3 (7)

Abrahamson gives the collision kernel between two particles of radius Ri and R j and
RMS velocity vi and v j:

kA (i, j) = 0.5
(
Ri + R j

)2
[

16π

3

(
v2

i + v2
j

)]1/2

, (8)

where vi = uf
(
1 + 1.5 τpi ε

u2
f

)−1/2

uf is the RMS of the fluid velocity and the particle response time is defined as:

τpi = 4ρp R2
i

18μ

The characteristic time for break-up is defined as:

τB = 1
kB

, (9)

where kB is the break-up rate.
The break-up rate cannot exceed the characteristic frequency for the smallest

(Kolmogorov) scale of turbulence τ K defined as:

kB
max = τ−1

K =
(

4
15π

)1/2 ( ε

ν

)1/2
(10)

In order to determine the break-up rate, the dissipation rate of turbulent kinetic
energy needs to be estimated. Here, CFD simulation is not used to calculate the
turbulent kinetic energy. This illustrates a methodology in aerosol physics problems
which consists in preliminary calculations for the identification of the physical
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phenomena which need to be modelled. Far from the pipe wall, in the inertial
sublayer, experiments have shown that the dissipation rate of turbulence kinetic
energy in pipe flow can be expressed as [52]:

ε = u∗3

κ D
(11)

The friction velocity for normalization is evaluated from Blasius formula

u∗ = [
0.03955Re−0.25]0.5

Um, (12)

with Um being the bulk mean velocity and κ the Von Karman constant which, for
large Reynolds numbers, tends to 1/3.

Near the pipe wall, the dimensionless dissipation rate for the turbulent kinetic
energy is curve-fitted to the Direct Numerical Simulation (DNS) data of a two-
dimensional channel flow of Mansour used by Dreeben and Pope [53] such that

ε+ = 1

4.529 + 0.0116 (y+)1.75 + 0.768 (y+)0.5 (13)

y+ = yu∗
ν

is the wall unit away from the pipe wall.
The dissipation rate of turbulence kinetic energy is then given by:

ε = u∗4

ν
ε+ (14)

The expression for the dissipation rate for the turbulent kinetic energy is accurate
only for turbulent channel and pipe flows of Reynolds numbers comparable to that
of the DNS

(
Re ∼= 104

)
. However, it is shown that the profile near the wall (y+ < 50)

is relatively insensitive to the change of Reynolds number [54].
For instance, given a bulk velocity of 200 m/s inside a pipe, the dissipation rate

amounts to ε ∼= 105m2/s3 in the bulk of the flow using Eq. 11 and ε ∼= 107 m2/s3

in the boundary layer using Eq. 14 (1 < y+ < 50). Equations 6 and 9 can then be
used to estimate the range of values taken by the ratio of the characteristic time
for agglomeration τA over the characteristic time for break-up τ B. With reference
to Table 1, one obtains τA

τB
in the range 20–1010 which indicates that the break-up

is a much faster process than agglomeration. Hence we can subsequently neglect
agglomeration in front of break-up in this study.

Table 1 Values of the
parameters for the
agglomeration and
break-up characteristic
time calculation

Particle size (μm) 0.1–1
Particle density (kg/m3) 103

Maximum volume-averaged total number 3.109

density of agglomerates measured in the
experiments (#/m3)

Bulk mean velocity (m/s) 200
Dissipation rate of turbulence 105–107

kinetic energy (m2 /s3)

Characteristic time for break-up (s) 3.96.10−6–1.25.10−5

Characteristic time for Turbulent 10−2–104

agglomeration described by Eq. 7 (s)
Characteristic time for kinetic 10−4–102

agglomeration described by Eq. 8 (s)
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4.3 Break-up mechanisms

Wengeler and Nirschl [44] showed that the elongational and turbulent stresses were
crucial for nanometer particle break-up. The elongational stresses are proportional
to the mean shear rate γ̇ m = √

E/ν with E the dissipation rate of the mean flow
and the turbulent stresses are proportional to the turbulent shear rate γ̇ = √

ε/ν.
But comparing the value of the mean shear rate with the turbulent strain rate along
the streamwise direction within FLUENT (cf. Fig. 5), it can be seen that under the
investigated conditions, turbulence is clearly the dominant mechanism within the
range of Reynolds number considered in this work and therefore, only turbulent
stresses will be considered subsequently.

The size of the smallest eddies corresponding to the Kolmogorov length scale in
the turbulent jet reaches a minimum after the throat. Figure 6 gives the value of
the minimum Kolmogorov length scale computed within FLUENT as a function
of the Reynolds numbers. The minimum Kolmogorov length scale is obtained a
few centimetres after the throat. It is worth mentioning that the curve shown in
Fig. 6 was drawn by increasing the inlet mass flow rates from 20 to 450 kg/h and
by calculating, for each mass flow rate, the value of the minimum Kolmogorov
scale and the corresponding Reynolds number. We can see that the values of the
Kolmogorov length scale in this region lie in the range ∼ 4–10 μm. This is larger
than the particle sizes with Count Mean Diameter (CMD) ∼ 0.6 μm (Geometric
Standard Deviation (GSD) ∼2) measured at the outlet of the tube and 2.5 μm
(GSD∼3 respectively) measured at the inlet of the tube. This confirms that the
turbulent forces causing the agglomerates to break-up are in the viscous subrange of
turbulence.

Sonic conditions are reached in the experiments. The elapsed time for particles
to pass through the shock is approximated to the ratio of the particle size over the
sound speed [55]. As shown in Fig. 7, the Mach number reaches 1.2 at the throat for a
velocity of 350 m/s which corresponds to a maximum sound speed of approximately
291.6 m/s. For information, the magnitude of the dissipation rate for turbulent kinetic
energy is given in Fig. 8 at the same location. The corresponding elapsed time
magnitude is approximately 10−10 s for 0.1 μm particle while it is approximately 10−8 s
for 10 μm particle. Supposing that the break-up rate due to the shock cannot exceed

Fig. 5 Comparison of the
mean elongational rate with
the turbulent shear rate in the
4 m tube versus Re
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Fig. 6 Minimum Kolmogorov
length scale against the level of
turbulence for 20 cm tube
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Fig. 8 Dissipation rate for turbulent kinetic energy versus the normal direction y to the pipe axis for
different positions x along the streamwise direction. The tube orifice is located at x = 0 and the tube
throat at x = 0.2 m

the sound wave frequency of the order of c/D ∼ 1.74.104 s−1 with D the diameter of
the tube, the particles going through the shock are more likely to break-up due to
turbulence with a rate of the order of the Kolmogorov rate ∼106 s−1. It is therefore
assumed that the break-up due to the shock can be neglected.

The evidence would suggest therefore that there is no extra force acting on the
agglomerates apart from that due to the turbulent shear stresses.

At the wall, impaction may play a role. The impaction rate refers to the rate at
which particles collide with the pipe surface area. It can be expressed as:

ηI = |vI | π DL(
π D2/4

)
L

= 4 |vI |
D

, (15)

where vI is the impaction velocity, D is the diameter of the pipe (16.8 mm), L is the
length of the pipe.

Figure 9 gives the cumulative distribution of impaction velocity normal to the wall
determined from tracking 1000 particles up to the wall and computing their velocities

Fig. 9 Cumulative distribution
of the impaction velocity
normal to the wall calculated
with particle tracking within
FLUENT 6.3



Flow Turbulence Combust (2012) 89:465–489 479

at the point of impaction within FLUENT 6.3. 50% of particles have an impaction
velocity less than 5 m/s for both 1 μm and 5 μm particle geometrical sizes.

It is assumed that the break-up rate due to turbulence cannot exceed the
Kolmogorov rate while the break-up due to impaction at the wall cannot exceed
the rate at which particles collide at the pipe wall. Therefore, in order to identify the
relevant break-up mechanisms taken place at the pipe wall, one needs to compare
the Komogorov rate to the rate at which particles collide at the pipe wall given by
Equation 15. For an impaction velocity |vI | ∼ 10 m/s and a Kolmogorov time scale
τ K ∼ 10−5 s at the wall, the ratio of the Kolmogorov frequency over the impaction
rate is ∼46. From this result, the break-up due to turbulence is the dominant
mechanism.

Another way to view the problem is to determine whether a particles travelling in
the radial direction is likely to break-up in the bulk before reaching the wall.

The distance travelled by a fluid particle in the radial direction is given by:

x =
√

2DTτK, (16)

where DT is the turbulent diffusion coefficient.

DT = 0.1du′
f , (17)

with the fluctuating part of the fluid velocity u′
f ∼ 0.1uf . For homogeneous and

isotropic turbulence and particles in local equilibrium with the fluid turbulence:

V ′
p

u′
f

= 1
St + 1

(18)

The distance travelled by the particle in the radial direction is therefore given by:

xp = x
St + 1

, (19)

with the Stokes number St = τp

τK
and τp the particle response time.

For ρp = 4.103kg/m3; dp = 5 μm; μ = 1.98.10−5 kg.m−1s−1; u f ∼ 200 m/s, it is
readily shown that the Stokes number St∼3 and D/xp ∼ 24 with D the diameter
of the pipe. Therefore, it is assumed that agglomerates break-up before reaching the
wall as the particle is likely to remain in the bulk. Thus, only break-up due to the
turbulent shear stresses will be considered in the rest of this paper.

The abrupt expansion of the jet starting at the tube outlet (representing the tube
rupture) results in a steep increase in the flow characteristics values. For example,
the dissipation rate of turbulent kinetic energy as a function of downstream distance
for different radial distances has been calculated using FLUENT 6.3 as shown in
Fig. 10.

The dissipation rate profile identifies two regions which contribute to the particle
break-up: (i) the pipe region where the agglomerates are under the action of quasi
constant turbulent shear stresses function of an average value of the turbulent
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Fig. 10 dissipation rate for
turbulent energy along the
axis for a mass flow rate of
320 kg/h in the 20 cm long
tube. The centreline is
denoted by y = 0 and the wall
by y = 8.3 mm. The tube
orifice is located at x = 0
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shear rate γ̇ and (ii) the turbulent jet region where agglomerates are exposed to
a maximum value for the turbulent shear stresses as a function of the maximum
turbulent shear rate in the turbulent free jet γ̇max.

The maximum turbulent shear rate computed within FLUENT 6.3 is related to
the measurement of the particle count median diameter taken after the tube in
the conical expansion outlet. Figure 11 shows that a power law describes well the
evolution of the particle count diameter as a function of the maximum turbulent
shear rate. It is given by:

d50% = 5.4 × 102γ̇ −m
max (20)
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Fig. 11 Particle count diameter d50% versus maximum Turbulent Energy Dissipation rate. The
solid line represents the power law fit
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with d50% the particle count median diameter, γ̇max the maximum turbulent shear rate
and m = 0.5 a constant.

Equation 20 confirms that larger agglomerates break more rapidly and more easily
than smaller ones which need more turbulent energy to break up.

5 Particle Transport Model

In the Lagrangian description, a fluid particle is defined as a point moving with the
local fluid velocity. The trajectory of a fluid particle in x-t space is therefore given by
time integration of

Dx
Dt

= u (x, t) , (21)

where the material derivative is defined by

D
Dt

≡ ∂

∂t
+ Ufi

∂

∂xi
(22)

After solving the fluid dynamic equations, it is possible to export from FLUENT
the values of the fluid properties along the trajectories of a fluid particle across the
domain together with the Lagrangian time.

If the diffusive transport is neglected with respect to the convective transport then
the break-up equation becomes

D
Dt

n (L, t) =
∫ ∞

L
a′ (l, t) b ′ (L, l) n (l, t) dl − a′ (L, t) n (L, t) (23)

Eq. 20 gives a power law for the evolution of d50% as a function of the turbulent shear
rate in the turbulent jet, so that the break-up rate is also assumed to follow a power
law of the turbulent shear rate and the size such as: a′ (L, t) = P1γ̇

P2 LP3 as given by
Eq. 4 with γ̇ a function of the spatial location x.

The minimum CMD observed experimentally was 0.6 μm. For the observed
threshold size, the adhesive forces are therefore supposed to become greater than
the aerodynamic forces due to the turbulent shear stresses at the surfaces of the
agglomerates so that no break-up occurs for particle size below this threshold.
Lognormal distribution has been observed as the most important class occurring in
nature [56]. The break-up process can be interpreted as a random process obeying
the law of proportionate effect [57]:

“A variate subject to a process of change is said to obey the law of proportionate
effect if the change in the variate at any step of the process is a random proportion
of the previous value of the variate.”

The final particle size distribution being lognormal, the fragment distribution b ′ is
expressed in terms of volume as:

b ′ (v, ε) = δ
(
v − [

1/ (1 + cm)
]
ε
) + δ

(
v − [

cm/ (cm + 1)
]
ε
)
, (24)
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with cm being the mass ratio. If the instantaneous mass ratio is assumed to be selected
from a uniform distribution of width 1, cm referring to the mean value of the mass
ratio is chosen to be 0.5.

If the fragment distribution is replaced by Eq. 24, Eq. 23 can be expressed as

D
Dt

n (v, x, t) = S (v, v1, v2, x, t) , (25)

with

S = [
(cm + 1) /cm

]
a′ (v1, x, t) b ′ (v1, ε) n (v1; x, t)

+ (cm + 1) a′ (v2, x, t) b ′ (v2, ε) n (v2; x, t) − a′ (v, x, t) n (v, x, t)

And

v1 = [
(cm + 1) /cm

]
v

v2 = (cm + 1) v

This type of equation can be readily solved by dividing the size domain into m
sections [vh−1, vh], h = 1, 2,.., m. Equation 25 is integrated between vh−1 and vh.

The number density of particles belonging to a section becomes:

Nh =
vh∫

vh−1

n (v, t) dv (26)

In each section h, a representative particle is chosen with volume v∗
h

(
vh−1 ≤ v∗

h ≤ vh
)
.

It is assumed that each particle in the section behaves as such a particle and that the
density function is constant in each section equal to n

(
v∗

h, t
)

so that:

Nh = (vh − vh−1) n
(
v∗

h, t
)

(27)

6 Results

The method of integration along streamlines is only applicable if the turbulent
diffusion is negligible in front of convection. A preliminary result consists in deter-
mining that this is actually the case within the context of this work.

The radial turbulent diffusion towards the pipe walls can be quantified by calcu-
lating the characteristic time for diffusion deposition [58]:

τdif = D/ (4vdif) , (28)

with the diffusion velocity vdif = ShDT/D, D being the diameter of the tube, Sh =
0.042Re f 0.5

f Sc1/3 the turbulent Sherwood number, Sc = ν/DT the Schmidt number

Table 2 Parameters for
simulation

P1 P2 P3

0.018 0.75 0.5
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Fig. 12 Comparison of L10
and L32 obtained from GDE
integration along a streamline
and experiments for 2 m long
tube at the outlet of the test
section (one point at the exit
of the expansion zone)
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and ff the Fanning friction factor calculated with the Churchill expression such as
[58]:

2
ff

=
{[

(8/Re)10 + (Re/36500)20]−1/2 + [
2.21. ln (Re/7)

]10
}1/5

(29)

The characteristic time scale for diffusion is to be compared with the residence time,
τres = D/Um, where D is the tube diameter and Um is the axial mean velocity. The
order of magnitude of these two time scales is summarized in Table 2.

The characteristic time for radial diffusion was found to be between 10−6 s and
10−4 s whereas the residence time was between 10−8 s and 10−6 s at the test section
outlet. Furthermore, with reference to [6], the Peclet number is very large in zones
of high turbulent shear stresses, where break-up is likely to occur. Therefore it can
be assumed that convection is the dominant transport mechanism. For inertialess
particles and in absence of diffusion the particles follow the streamlines in that
their convective velocity becomes the local fluid velocity and therefore Eq. 25
applies.

The mean diameter L10 = m1/m0 and the Sauter diameter L32 = m3/m2 are com-
puted for comparison with the experiments. The one dimensional GDE integration
along a streamline is an efficient and simple procedure for analysing and interpreting

Fig. 13 Comparison of L10
and L32 obtained from GDE
integration along a streamline
and experiments for 4 m long
tube at the outlet of the test
section
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Table 3 Characteristic time
scales for convection and
radial diffusion

Pipe length (m) MFR (kg/h) τdif(s) τ res(s)

0.2 120 10−6–10−4 10−8−10−7

403 10−6–10−4 10−8−10−7

2 80 10−6–10−4 10−8−10−7

320 10−5–10−4 10−8−10−6

Fig. 14 Distribution function
for the number density as a
function of the size-
Comparison between
experiments and simulation
for the PSD at the outlet. MFR
120 kg/h–20 cm long tube
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Fig. 15 Distribution function
for the number density as a
function of the size for
different inlet mass flow
rates-(20 cm long tube test
section)
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the experimental results under different levels of turbulence with good comparison
with experimental results as shown in Figs. 12 and 13 which show the values of the
moment ratio for simulation with the set of parameters given in Table 3 and for
experimental results.

The simulation reproduces very well the tail of the lognormal distribution, see
Fig. 14. The model over-estimates the variance of the distribution with a maximum
difference of 15% which is acceptable considering an uncertainty on the measure-
ment of about 7% [6].

As expected, the area under the curves increases with the level of turbulence since
the number of particles resulting from the break-up process inevitably increases in
absence of agglomeration, see Fig. 15.

Fig. 16 a. Evolution of the
distribution function for the
PSD along the pipe axis
(x coordinate) of the
2 m long pipe test section.
b. Comparison of the
simulated distribution
at the exit of the pipes
(2 m and 4 m length)
and downstream at the
exit of the expansion zone
(2.5 m and 4.5 m)

x

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

L

2

4

6

N

0

2

4

6

0

1

2

3

4

5

6

7

8

0 2 4 6
L (microns)

P
S

D

2m

2.5 m

4m 

4.5 m

Inlet

a

b



486 Flow Turbulence Combust (2012) 89:465–489

Figure 16a gives the PSD change along the axis for 4 m long tube and Fig. 16b
compares the PSD just at the exit of the pipe (2 m and 4 m locations) and the PSD
at the exit of the expansion zone (2.5 m and 4.5 m locations) with the distribution
measured at the inlet of the test section. In the expansion zone, the area under the
PSD curve increases sharply which reveals an important increase in the number of
particles in the domain due to break-up. The two regions of break-up identified
earlier appear quite clearly i.e. break-up due to constant turbulent shear stresses
in the pipe and break-up under the action of very high local shear stresses in the
expansion zone. Furthermore, from the results illustrated in Fig. 16, it now appears
clearly that the expansion zone is the zone where most of the break-up takes place.

7 Discussion

The turbulent flow field simulated with CFD was validated against pressure and
LDA measurements and it was used to determine the magnitude of the parameters
relevant for the break-up, as well as the associated exposure times. Break-up of
particles by turbulent stresses was identified to be the dominant mechanism respon-
sible for the observed reduction in particle size following a tube break. Also, for
particles smaller than the Kolmogorov length scale, turbulent stresses which acted
on the particles were shown to be shear stresses due to the instantaneous fluid
velocity difference across the agglomerate diameter. The turbulent shear rate, which
was a function of the turbulent dissipation rate and the kinematic viscosity, was the
most relevant parameter to be taken into account for the break-up process, together
with the residence time of the particles in the tube. It is worth mentioning that the
fluctuations of the turbulent shear rate resulting in fluctuations of the shear stresses
acting on the aggregates were not considered.

The near wall region did not affect break-up since the break-up of particles by
impaction at the wall was shown to be negligible for TiO2 agglomerates in the range
0.1 μm–5 μm. Furthermore, attaining sonic conditions was shown not to play a role
in particle break-up and therefore there existed no extra force acting on the particles
compared to the case of particle-laden incompressible turbulent flows.

The latter conclusions about break-up mechanisms were used to define the
appropriate source terms in the Population Balance equation. The radial and axial
diffusive transport could be neglected with respect to the convective transport in the
regions where the break-up took place and therefore, the GDE could be integrated
along streamlines.

The effect of particle inertia on transport can be estimated via the Stokes number.
For a Kolmogorov time scale ∼10−5 s the Stokes number is St∼10−1 for a typical
agglomerate size of 1 μm and St∼3 for 5 μm. This suggests that for the largest
particles considered in this work, the inertia of the particles could play a role in the
calculation of the forces acting on the particles.

Although it was only exact for inertialess particles in the bulk, the model given
here reproduced very well the experimental data trend. In addition, it offered a
computationally efficient approach (when compared with solving the full population
balance), allowed the use of as many as 500 size sections to discretise the particle size
distribution and thereby provided directly the evolution of the distribution along the
pipe length, instead of using closure approximation model based on the moments of
the distribution. The simulation results agreed with the experimental analysis.
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8 Conclusion

The break-up of agglomerates in very high turbulent pipe flows has been analysed.
Due to the complexity of the flow field, CFD was used to examine the relevant
mechanisms responsible for the break-up. It was found that under the investigated
conditions, the break-up was dominated by that due to turbulent shear stresses.

The proposed one dimensional model consisting of integrating the GDE along
streamlines was validated against experimental data. It is a computationally efficient
approach which was shown to describe well the changes in the distribution of
aerosol agglomerates subjected to highly turbulent flow whilst not accounting for
the influence of the fluctuations of the turbulent stresses and the inertial effect which
can be important for particle sizes greater than one micron.

Two regions of break-up were identified. In the pipe, the particles see continu-
ously constant turbulent shear stresses and break-up to a lesser extent than in the
expansion zone where particles break-up instantaneously under the action of very
high local shear stresses.
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