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Abstract Whether the response of the fetal heart to

ischemia-reperfusion is associated with activation of the

c-Jun N-terminal kinase (JNK) pathway is not known. In

contrast, involvement of the sarcolemmal L-type Ca2+

channel (LCC) and the mitochondrial KATP (mitoKATP)

channel has been established. This work aimed at investi-

gating the profile of JNK activity during anoxia-

reoxygenation and its modulation by LCC and mitoKATP

channel. Hearts isolated from 4-day-old chick embryos

were submitted to anoxia (30 min) and reoxygenation

(60 min). Using the kinase assay method, the profile of

JNK activity in the ventricle was determined every 10 min

throughout anoxia-reoxygenation. Effects on JNK activity

of the LCC blocker verapamil (10 nM), the mitoKATP

channel opener diazoxide (50 lM) and the blocker 5-hy-

droxydecanoate (5-HD, 500 lM), the mitochondrial Ca2+

uniporter (MCU) inhibitor Ru360 (10 lM), and the anti-

oxidant N-(2-mercaptopropionyl) glycine (MPG, 1 mM)

were determined. In untreated hearts, JNK activity was

increased by 40% during anoxia and peaked fivefold rela-

tive to basal level after 30–40 min reoxygenation. This

peak value was reduced by half by diazoxide and was

tripled by 5-HD. Furthermore, the 5-HD-mediated stimu-

lation of JNK activity during reoxygenation was abolished

by diazoxide, verapamil or Ru360. MPG had no effect on

JNK activity, whatever the conditions. None of the tested

pharmacological agents altered JNK activity under basal

normoxic conditions. Thus, in the embryonic heart, JNK

activity exhibits a characteristic pattern during anoxia and

reoxygenation and the respective open-state of LCC, MCU

and mitoKATP channel can be a major determinant of JNK

activity in a ROS-independent manner.
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Introduction

The signaling pathways involved in the response of the

fetal heart to inadequate oxygenation, resulting from

transient maternal hypoxemia, reduction in uterine or

umbilical blood flow, remain to be explored. We have

previously characterized in detail the electrical and con-

tractile disturbances induced by anoxia and reoxygenation

in the embryonic heart model [1, 2] and found that a

moderate inhibition of the sarcolemmal L-type calcium

channel (LCC) [3] or activation of the mitochondrial

ATP-sensitive potassium (mitoKATP) channel can improve

postanoxic recovery [4]. Opening of the mitoKATP chan-

nel is also involved in ischemic preconditioning of

isolated embryonic ventricular myocytes [5] and adult

heart [6].

Several studies have underlined the key role played by

the mitogen-activated protein kinases (MAPKs) pathways

[7] in myocardial ischemia and reperfusion, particularly the

stress-activated c-Jun N-terminal kinase (JNK) [8, 9]. In
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the ventricle of the anoxic-reoxygenated embryonic chick

heart, activity of the extracellular signal-regulated kinase

(ERK) is not significantly altered and the profile of the p38

MAPK phosphorylation is not affected by opening of the

mitoKATP channel [10]. However, information regarding

the JNK signaling pathway in the hypoxic fetal heart is

lacking and a better understanding is especially required in

the context of recent advances in developmental cardiology

[11], fetal cardiac surgery [12] and research dealing with

intrauterine programming [13]. Furthermore, as Ca2+ is one

of the second messengers capable of modulating JNK

activity [14], the cytosolic and mitochondrial Ca2+ over-

load induced by anoxia-reoxygenation in embryonic

cardiomyocytes [15] could interfere with the JNK signaling

pathway.

The aim of this work was to establish the profile of JNK

activity in the ventricle of the embryonic heart during

anoxia and reoxygenation and to investigate the possible

link between JNK activity and the state of activation of the

Ca2+ and mitoKATP channels. The results suggest that LCC

and mitochondrial Ca2+ and KATP channels are involved in

the modulation of JNK activity in the embryonic ventricle

submitted to anoxia-reoxygenation.

Materials and methods

Reagents

Dimethylsulfoxide (DMSO), mitoKATP channel opener

diazoxide and blocker 5-hydroxydecanoate (5-HD), radical

scavenger N-(2-mercaptopropionyl)glycine (MPG), were

purchased from Sigma (Sigma–Aldrich, Buchs, Switzer-

land). L-Type Ca2+ channel inhibitor verapamil (Isoptin�)

was from Abbott and mitochondrial Ca2+ uniporter (MCU)

inhibitor Ru360 was purchased from Calbiochem (JURO

Supply, Lucerne, Switzerland).

[c-33P]ATP was from Amersham Biosciences and

inhibitors of proteases from Roche Biosciences.

Preparation and in vitro mounting of the heart

Fertilized eggs from Lohman Brown hens were incubated

during 96 h at 38�C and 95% relative humidity to obtain

stage 24 HH embryo (according to Hamburger and Ham-

ilton [16]). Spontaneously beating hearts were carefully

excised and placed in the culture compartment of an air-

tight stainless steel chamber. The chamber was equipped

with two windows for observation and maintained under

controlled conditions on the thermostabilized stage

(37.5�C) of an inverted microscope (IMT2 Olympus,

Tokyo, Japan) as previously detailed [4]. Briefly, the cul-

ture compartment (300 ll) was separated from the gas

compartment by a 15 lm transparent and gas-permeable

silicone membrane (RTV 141, Rhône-Poulenc, Lyon,

France). Thus, pO2 at the tissue level could be strictly

controlled and rapidly modified (within less than 5 s) by

flushing high-grade gas of selected composition through

the gas compartment. At this developmental stage, the

heart lacks vascularization and the myocardial oxygen

requirement is met exclusively by diffusion.

The standard HCO3/CO2 buffered medium was com-

posed of (in mmol/l): 99.25 NaCl; 0.3 NaH2PO4; 10

NaHCO3; 4 KCl; 0.79 MgCl2; 0.75 CaCl2; 8 D+glucose.

This culture medium was equilibrated in the chamber with

2.31% CO2 in air (normoxia and reoxygenation) or in N2

(anoxia) yielding a pH of 7.4. All reagents were diluted in

this medium containing 0.5% DMSO (vehicle).

Anoxia-reoxygenation protocol

After 45 min of in vitro stabilization under normoxia at

37.5�C (stab), the hearts were submitted to strict anoxia

during 30 min and then reoxygenated during 60 min. The

pharmacological agents were present throughout anoxia-

reoxygenation. The hearts were collected every 10 min

and the ventricle was carefully dissected on ice and stored

at -80�C for subsequent determinations. As control, in a

separate set of experiments, hearts were maintained under

steady normoxia for 60 and 90 min after stabilization,

corresponding to the time points of 30 and 60 min

of postanoxic reoxygenation, respectively. Ventricles of

these untreated hearts were also dissected and stored at

-80�C.

Kinase assay

Ventricular JNK activity was determined using a published

method [17] with minor modifications. Ventricles were

homogenized in ice-cold lysis buffer (in mmol/l: 20 Tris-

acetate (pH 7), 270 sucrose, 1 EGTA, 1 EDTA, 50 NaF, 10

b-glycerophosphate, 10 dithiothreitol (DTT), 10 4-nitro-

phenyl phosphate disodium salt hexahydrate (PNPP), 1%

Triton X-100 and inhibitors of proteases). Insoluble mate-

rial was removed by a 5 min centrifugation at 10,000g and

protein contents were measured by the method of Lowry

[18] with bovine serum albumin as standard.

Soluble ventricular protein extract (30 lg) were incubated

for 3 h at 4�C in the presence of 1 lg GST-c-Jun(1–219)

bound to gluthatione-agarose beads as both JNK-specific

ligand and substrate. The beads were washed three times in

washing buffer (same as lysis buffer but with 0.1% Triton

X-100) and twice in kinase buffer (in mmol/l, 20 HEPES pH

7.5, 10 MgCl2, 20 b-glycerophosphate, 10 DTT, 10 PNPP

and inhibitors of proteases). Kinase reaction was carried out

for 30 min at 30�C in 20 ll of kinase buffer containing 5 lCi
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[c-33P]ATP. Reaction products were resolved by 12%

SDS-polyacrylamide gel electrophoresis (SDS-PAGE), gels

were dried, and phosphorylation signals were visualized by

autoradiography, quantified by PhosphoImager (Quantity-

one 1.4.0, Biorad) and expressed as fold increase relative to

the respective preanoxic value (stab).

Statistical analysis

All values are reported as mean ± standard error of the

mean (S.E.). The significance of any difference between

the groups was assessed using Student t-test. The statistical

significance was defined by a value of P \ 0.05.

Results

Profile of JNK activity during anoxia-reoxygenation

In control conditions (vehicle), JNK activity increased by

40% after 10–20 min anoxia (P \ 0.05). During reoxy-

genation, JNK activity progressively increased, peaking

after 30–40 min and further declined (Fig. 1). This cul-

mination of JNK activity was specifically related to

reoxygenation, since it was not attributable to the condi-

tions and the duration (135 min) of culture in the chamber

(Fig. 2).

Modulation of JNK activity by the opening state

of the mitoKATP channel

The mitoKATP channel opener diazoxide (50 lmol/l)

decreased JNK activity after 30 min anoxia and

throughout reoxygenation (Fig. 1). As the diazoxide-

induced inhibition was the strongest at the peak of JNK

activity (P \ 0.02), we selected this time point to phar-

macologically explore the possible mechanisms linking

the open state of the mitoKATP channel with the JNK

activity. Under preanoxic conditions, however, none of
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Fig. 1 Profile of JNK activity

in the embryonic ventricle

during anoxia-reoxygenation.

Activation of the mitoKATP

channel by diazoxide decreased

JNK activity. Upper panels

show representative

autoradiogram of JNK activity

during anoxia and

reoxygenation. Fold increase:

JNK activity is given relative to

the preanoxic stab value of

vehicle. Stab: 45 min preanoxic

stabilization; mean ± S.E. of

number of determinations

indicated in columns; *P \ 0.05
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Fig. 2 Stability of JNK activity under normoxia. In vitro culture

under steady normoxia did not affect ventricular JNK activity

assessed by kinase assay. Fold increase: JNK activity is given

relative to the mean of stab values. Stab: 45 min preanoxic

stabilization; stab + 60 min and stab + 90 min correspond to 30

and 60 min of reoxygenation in the anoxia-reoxygenation protocol,

respectively (see Fig. 1). Mean ± S.E.; n = 6–8 determinations of

JNK activity
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the reagents, alone or in combination, affected JNK

activity relative to vehicle (Fig. 3a) or disturbed the

regular contractile activity of the isolated hearts (not

shown). After 30–40 min reoxygenation, inhibition of

JNK activity by diazoxide was suppressed by the

mitoKATP channel blocker 5-HD (500 lmol/l) and,

importantly, 5-HD alone tripled JNK activity with respect

to vehicle (P \ 0.01) (Fig. 3b). The radical scavenger

MPG (1 mmol/l), known otherwise to abolish the diaz-

oxide-induced ROS production and cardioprotection at

reoxygenation [4], affected neither JNK activity nor the

diazoxide-induced JNK inhibition.

Modulation of JNK activity by sarcolemmal (LCC)

and mitochondrial (MCU) Ca2+ channels

Relative to vehicle, LCC inhibitor verapamil (10 nmol/l)

decreased JNK activity by 55%, whereas the mitochondrial

Ca2+ uniporter inhibitor Ru360 (10 lmol/l) had no signif-

icant effect (Fig. 3b). However, the 5-HD-mediated JNK

activity during reoxygenation was abolished by verapamil

and also by Ru360. These observations indicate that Ca2+

entry is a prerequisite for JNK stimulation and that MCU is

involved in JNK activation induced by the mitoKATP

channel blocker 5-HD.

Discussion

To the best of our knowledge, this is the first time that JNK

activity is explored in the embryonic myocardium sub-

mitted to an anoxic episode. Our main findings indicate

that JNK activity in the ventricle of the isolated embryonic

heart (1) is increased by anoxia and reoxygenation, (2) is

modulated by the open-state of the mitoKATP channel, and

(3) is dependent on Ca2+ flux through both LCC and MCU.

In the adult heart the effects of ischemia on JNK acti-

vation remain controversial whereas all studies show an

enhanced JNK activity during reperfusion [8, 9, 19, 20].

Our data indicate that JNK pathway contributes to the

short-term response of the heart to oxygen lack and rein-

troduction also during early embryogenesis, although the

metabolic consequences of anoxia-reoxygenation differ to

a certain extent from those of ischemia-reperfusion.

Although 5-HD has been shown to abolish ROS pro-

duction induced by the mitoKATP channel opener diazoxide

during reoxygenation [4], it markedly increased JNK

activity (Fig. 3b). Furthermore, the membrane permeable

antioxidant MPG which significantly reduces ROS pro-

duction at reoxygenation [4] did not suppress JNK

activation. Taken together, these observations clearly

indicate that endogenous ROS are not prerequisite for JNK
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reoxygenation (b). JNK activity was dependent on the open-state of

the mitoKATP channel through Ca2+-dependent mechanisms during

reoxygenation exclusively. In panel (a), JNK activity is given relative
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the respective preanoxic stabilization value shown in panel (a). Insets

show representative autoradiograms of JNK activity during reoxy-

genation in relation to Ca2+ handling. DIAZ: diazoxide; verap:

verapamil; Ru: Ru360; Mean ± S.E. of number of determinations
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activation in the embryonic myocardium by contrast with

neonatal cardiomyocytes [21] and adult heart [8]. Such a

developmental discrepancy implies that JNK pathway can

be modulated differently in prenatal and postnatal myo-

cardium since, for example, the physiological oxygen level,

the oxidative metabolism and the capacity to generate ROS

are lower in embryonic tissues [22–24]. The facts that

diazoxide improves recovery of atrio-ventricular conduc-

tion and E-C coupling during the first 20 min of

reoxygenation [4], and reduces JNK activity from the end

of anoxia onward (Fig. 1), suggest that this protection

might be indirectly related to a reduction of JNK activity.

It has been shown that after 30 min reoxygenation, that

is, when JNK activity reached its highest value (Fig. 1),

Ca2+ uptake is maximally increased in embryonic ven-

tricular cells [15] and contractility of the ventricle is

transiently above its basal level [25], reflecting a rise of

intracellular Ca2+. The present data support the concept

that extracellular Ca2+ entry through LCC is a prerequisite

for JNK activation in the reoxygenated embryonic myo-

cardium (Fig. 3b) alike in neonatal [21] and adult

cardiomyocytes [8].

Subcellular fractionation studies have shown that JNK

can also be localized within or associated with mitochon-

drial structures [26, 27]. The facts that mitochondria are

capable of taking up some of the cytosolic Ca2+ through the

MCU in case of Ca2+ overload [28, 29] and that mitoKATP

channel opening can decrease the mitochondrial inner

membrane potential (Wm) and Ca2+ content in the matrix

during hypoxia [30] could partly explain that MCU inhi-

bition suppressed the 5-HD-induced JNK activation. Our

results, indeed, show that blocking moderately Ca2+ entry

through sarcolemmal LCC or blocking Ca2+ flux into

mitochondrion through MCU reduces JNK activity during

reoxygenation, especially when mitoKATP channel are

closed by 5-HD.

Although Wm and mitochondrial Ca2+ concentration

have not been measured because of the thickness of the

tissue and interferences due to contractions, our findings

support the hypothesis that during reoxygenation Ca2+

entry through LCC and/or influx through MCU can activate

cytosolic JNK and/or JNK associated with mitochondria

(see model proposed in Fig. 4).

When mitoKATP channels are opened by diazoxide, Wm

is known to drop [30, 31], thereby limiting mitochondrial

Ca2+ entry through MCU and consequently Ca2+ overload,

reducing JNK activation. Conversely, when mitoKATP

channels are blocked by 5-HD, Wm should be maintained

and act as a driving force for Ca2+ transport through MCU,

which also could contribute to activate JNK.

Thus, in the embryonic heart, JNK activity exhibits a

characteristic pattern during anoxia and reoxygenation and

the respective open-state of LCC, MCU and mitoKATP

channels can be a major determinant of JNK activity in a

ROS-independent manner. This work provides a first step in

understanding the regulation of the JNK signaling pathway

in the fetal heart transiently exposed to hypoxia. In partic-

ular, the cellular targets as well as the long-term functional

consequences of an acute activation of this pathway during

cardiogenesis deserve further investigations.
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