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Abstract. On the basis of semigroup and interpolation-extrapolation techniques we derive exis-
tence and uniqueness results for the Navier–Stokes equations. In contrast to many other papers
devoted to this topic, we do not complement these equations with the classical Dirichlet (no-slip)
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regularity properties of the solutions obtained and provide conditions for global existence.
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1. Introduction

Throughout this paper we suppose that n ≥ 2 and that Ω is a bounded domain
in R

n with smooth boundary, ∂Ω, lying locally on one side of Ω. We consider the
nonstationary Navier–Stokes equations

∂tu + (u · ∇)u − µ∆u + ∇π = f
div (u) = 0

}

in Ω × (0,∞) (1)

describing the motion of a viscous incompressible (isothermal) Newtonian fluid
in Ω. Here f is a given exterior force field, and u = (u1, . . . , un) and π are the
unknown velocity and pressure field, respectively. Moreover, µ > 0 is a given
constant, the kinematic viscosity, and the (constant) density has been normalised
to 1.

An enormous amount of literature by numerous authors has been devoted to
the study of these equations. However, the overwhelming majority of those works
is concerned with the Navier–Stokes equations coupled with Dirichlet (no slip)
boundary conditions, that is, the fluid is required to be at rest at the boundary
∂Ω. It is the aim of this paper to derive solvability results for the Navier–Stokes
equations with different, but nonetheless physically reasonable, boundary condi-
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tions.

We denote the stress tensor of the fluid by T (u, π) := 2µD(u)− (πδij)i,j=1,...,n,

where D(u) := 1
2

(

∂iu
j + ∂ju

i
)

i,j=1,...,n
is the rate of deformation tensor and δij is

the Kronecker delta symbol. Then writing γ for the trace operator, ν for the out-
ward unit normal on ∂Ω, and φν and φτ for the normal and tangential components
of φ on ∂Ω, we want to consider the boundary conditions

T1(u, π) := γT (u, π)ν = 0 on ∂Ω × (0,∞), (2)1

as well as

T2(u, π) := (γD(u)ν)τ + (γu)νν = 0 on ∂Ω × (0,∞). (2)2

The first boundary condition means that the normal surface stress of the fluid has
to vanish. In the literature this condition is, therefore, usually called the stress-
free boundary condition, and the system (1) and (2)1 is referred to as the second
boundary value problem for the Navier–Stokes equations, see e.g. [19].

The other boundary condition (2)2 admits motion of the fluid at the boundary
in tangential directions. It is often called the slip condition, cf. [9], [10].

Complementing equations (1) and (2)k with an initial condition for the velocity
field, we arrive at the following initial boundary value problem to be studied

∂tu + b(u) − µ∆u + ∇π = f
div u = 0

}

in Ω × (0,∞),

Tk(u, π) = 0 on ∂Ω × (0,∞),
u(·, 0) = u0 on Ω.















(NSE)k

For abbreviation, we have set b(u, v) := div(u ⊗ v), as well as b(u) := b(u, u).
Observe that b(u, v) = (u · ∇)v provided div(u) = 0.

In the case of the stress-free boundary conditions the pressure field is present
not only in the equation of motion but also in the boundary condition. This
causes additional difficulties, because one cannot simply apply a Helmholtz-type
projection to the equation of motion to get rid of the pressure. Nevertheless, it
has been shown by G. Grubb and V. A. Solonnikov, e.g. [17], how this boundary
value problem can be reduced, by pseudodifferential techniques, to one involving
the velocity only.

On the other hand, we want to treat the case of slip boundary conditions
differently, much more like the Navier–Stokes equations with Dirichlet boundary
conditions, see [3]. The main reasons for doing so are the following: First, this
approach is more elegant than the one used for the stress-free problem, in the sense
that we do not have to work with pseudodifferential operators, and secondly the
incompressibility constraint, div(u) = 0, can be naturally incorporated into the
domain of definition of the differential operator under consideration.

Let us introduce a few notations: Suppose that E and F are Banach spaces.
Then, by L(E,F ) we mean the Banach space of all bounded linear operators from
E into F , and L(E) := L(E,E). Furthermore, Lis(E,F ) consists of all topological
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linear isomorphisms from E onto F , and Laut(E) := Lis(E,E). If G is a third
Banach space then L(E,F ;G) is the set of all continuous bilinear maps from E×F
into G. We set L2(E,F ) := L(E,E;F ).

If E is a linear subspace of F and the natural injection i : [x 7→ x] belongs to
L(E,F ), we write E →֒ F . If E is also dense in F , we express this by writing

E
d→֒ F , in this case (F,E) is said to be a densely injected Banach couple. We also

write E
.
= F if E →֒ F and F →֒ E, that is, if E equals F except for equivalent

norms.
Now suppose in addition that X ⊂ R

n is a smooth bounded manifold. Then we
denote by W s

p (X,E), Hs
p(X,E), and Bs

p,q(X,E), the usual Sobolev–Slobedeckii,
Bessel potential, and Besov spaces, respectively. To shorten the notation we set
W s

p (X) := W s
p (X, R) etc. We also employ the following convention: If F(Ω, Rn) is

a vector space of R
n-valued distributions on Ω then we simply denote it by F. For

instance,

W s
p := W s

p (Ω, Rn), Hs
p := Hs

p(Ω, Rn), etc.

1.1. Solution operators and projections

We denote by KD : ϕ 7→ u the solution operator for the semi-homogeneous Dirich-
let problem for the Laplacian

−∆u = 0 in Ω, γu = ϕ on ∂Ω,

and by RD : f 7→ u the solution operator for the other semi-homogeneous Dirichlet
problem

−∆u = f in Ω, γu = 0 on ∂Ω.

We know from Theorem 3.11 in [13], in view of [17, Example 2.1] and [13, Example
3.14], that these operators enjoy the following continuity properties for 1 < p < ∞
and 1 ≤ q < ∞

KD ∈ L
(

Bs−1/p
p,p (∂Ω),Hs

p(Ω)
)

∩ L
(

Bs−1/p
p,q (∂Ω), Bs

p,q(Ω)
)

, s ∈ R, (3)

and

RD ∈ L
(

Hs−2
p (Ω),Hs

p(Ω)
)

∩ L
(

Bs−2
p,q (Ω), Bs

p,q(Ω)
)

, s > 1/p. (4)

On the other hand, the Neumann problem for the Laplacian

−∆u = f in Ω, ∂νu = ϕ on ∂Ω,

has a solution u, uniquely determined up to a constant, provided the given func-
tions f and ϕ satisfy the condition

∫

Ω

f dx −
∫

∂Ω

ϕdσ = 0.
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We fix a solution u by requiring that
∫

Ω
u dx = 0, and denote the correspond-

ing solution operators for the semihomogeneous problems by KN : ϕ 7→ u and
RN : f 7→ u.

The solution operators, introduced above, allow us to treat the decomposition
of the Lebesgue space Lp into divergence free functions and gradients of H1

p (Ω)-
functions in a rather elegant way. If we define

Pk :=

{

id + ∇RD div, if k = 1,

(id −∇KNγν)(id + ∇RD div), if k = 2,

then the calculus of pseudodifferential operators, [13, Theorem 3.11 and Example
3.14], guarantees that

Pk = (Pk)2 ∈ L
(

Hs
p

)

∩ L
(

Bs
p,q

)

, 1 < p, q < ∞, s > −1 + 1/p.

Now, restricting the maps P1 and P2 to Lp we get the following two distinct direct
sum decompositions of Lp

Lp = im(Pk|Lp) ⊕ ker(Pk|Lp), k = 1, 2.

It is worth noting that the operator P2 coincides with the usual Helmholtz-project-
ion on Lp, which turns up in the study of the Navier–Stokes equations with no-slip
boundary conditions, i.e.

im(P2|Lp) = {u ∈ Lp; div(u) = 0, γνu = 0} =: Lp,σ

and
ker(P2|Lp) =

{

u = ∇g; g ∈ H1
p (Ω)

}

.

The other projection P1 is quite similar. Namely, we have that

im(P1|Lp) = {u ∈ Lp; div(u) = 0} ,

as well as
ker(P1|Lp) =

{

u = ∇g; g ∈ H1
p (Ω) : γg = 0

}

.

It is important to observe that the projection P2 can be rewritten as

P2 = id −∇(KNγν − RN div).

Moreover, we deduce again from [13, Theorem 3.11] that

KNγν − RN div ∈ L
(

Hs
p ,Hs+1

p

)

∩ L
(

Bs
p,q, B

s+1
p,q

)

, s > −1 + 1/p, (5)

in virtue of [17, Theorem 2.6].

2. Preliminary results

2.1. Reduction of the problems

Let us now carry out the reduction of the initial boundary value problem (NSE)1.
We follow here the ideas of G. Grubb and V. A. Solonnikov [17]. Applying the
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divergence operator to the first line of (NSE)1 and multiplying the boundary
condition by the outward unit normal ν, we obtain for each t > 0 that

−∆π = div(b(u) − f) in Ω,
γπ = 2µ (γD(u)ν)ν on ∂Ω.

With the aid of the solution operators and projections introduced above, we can
therefore express the pressure in terms of the velocity u and the exterior force f ,
so that substituting π in the equation (NSE)1 yields

∂tu + P1b(u) − µ∆u + G1(u) = P1f in Ω × (0,∞),
B1(u) = 0 on ∂Ω × (0,∞),
u(·, 0) = u0 on Ω.







(6)

Here, G1(u) := 2µ∇KD (γD(u)ν)ν is a singular Green operator (a non-local pseu-
dodifferential operator) of second order and the trace operator B1 is defined by

B1(u) := (γD(u)ν)τ + γ div(u)ν.

The reason for being able to drop the condition div(u) = 0 in favour of γ div(u) = 0,
stems from the fact that it can be recovered from (6), due to the unique solvability
of the homogeneous heat equation with zero Dirichlet boundary conditions, see
the proof of Theorem 3.8.

We set

AAA1u := AAA1,pu := −µ∆u + G1(u), u ∈ dom(AAA1),

with

dom(AAA1) :=
{

u ∈ H2
p ;B1(u) = 0

}

=: H2
p,B1

.

It follows from [14, Section 1.3], and likewise from [21] (whose approach is entirely
different and does not rely on the calculus of pseudodifferential operators at all),
that AAA1 ∈ L

(

H2
p,B1

, Lp

)

is the negative infinitesimal generator of an analytic
semigroup on Lp, which we indicate by

AAA1 ∈ H
(

H2
p,B1

, Lp

)

.

Concerning the dual operator of AAA1, considered as an unbounded linear operator
in Lp, we can state the following Lemma.

Lemma 2.1. The dual operator of AAA1, in the sense of unbounded linear operators

in Lp, is given by

AAA′

1v = −µ∆v, v ∈ dom(AAA′

1),

with

dom(AAA′

1) =
{

v ∈ H2
p′ ;B′

1(v) = 0
}

=: H2
p′,B′

1
,

where we have set

B′

1(v) = S′

1(v) + N ′

1(v),
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as well as

S′

1(v) := ∂νv + (κν − grad∂Ω)γνv − (s0 + ν div∂Ω)γτv,

N ′

1(v) := 2(grad∂Ω −κν)γν(P1v).

Here, grad∂Ω and div∂Ω denote the gradient and divergence operator on ∂Ω, re-

spectively, and κ := γ(div ν) stands for the mean curvature on ∂Ω.

Proof. It is shown in [17] that the operator A1 is elliptic and the corresponding
trace operator T1 is normal (in the sense of [12, Definition 1.4.3]). Moreover,
according to [12, Lemma 1.6.8] the domain of definition of A1 is dense in Lp.
Hence, we can apply the general theory developed in [12] to derive an explicit
characterisation of the dual operator of A1. Interpreting the formulas in [12,
Theorem 1.6.9] we immediately get that A′

1 has the form stated in the assertion
and that the corresponding trace operator B′

1 is normal. In particular, the nonlocal
part N ′

1 of B′
1 is of class 0. ¤

We now turn our attention to the problem with slip-boundary conditions. In
this case, applying the Helmholtz projection P2 to the first line of (NSE)2 elimi-
nates the pressure from the equations.

∂tu + P2b(u) − µP2∆u = P2f
div u = 0

}

in Ω × (0,∞),

B2(u) = 0 on ∂Ω × (0,∞),
u(·, 0) = u0 on Ω.















(7)

Here we have put
B2(u) := (γD(u)ν)τ + (γu)νν.

This leads us to the following definition of the operator AAA2 and its domain of
definition.

AAA2u = −µP2∆u, u ∈ dom(AAA2),

with
dom(AAA2) =

{

u ∈ H2
p ;B2(u) = 0,div(u) = 0

}

=: H2
p,C2

.

In [10] Y. Giga has studied the Navier–Stokes equations with general boundary
conditions of first order and proven that, under an algebraic assumption on the
coefficients of the boundary operator, the corresponding operator generates an
analytic semigroup on Lp,σ, the space of solenoidal Lp-functions. As pointed out
in [10] the slip boundary condition satisfies Giga’s condition. Therefore,

AAA2 ∈ H
(

H2
p,C2

, Lp,σ

)

.

Lemma 2.2. The operator AAA2 is formally self-adjoint, that is, the dual operator

of AAA2, in the sense of unbounded linear operators in Lp,σ, is given by

AAA′

2v = −µP2∆v, v ∈ dom(AAA′

2) = H2
p′,C2

,
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Proof. Thanks to Gauss’ theorem and the fact that the dual operator of P2 consid-
ered as a bounded linear map in Lp equals the canonical injection ip′ : Lp′,σ → Lp′ ,
we obtain that

〈AAA2u, v〉 = 〈u,−µP2∆v〉, u ∈ H2
p,C2

, v ∈ H2
p′,C2

.

Since AAA2 and AAA′
2 are the negative generators of analytic semigroup it follows that

their resolvent sets have a nonempty intersection. Now the assertion is obvious.
¤

2.2. Interpolation-extrapolation scales

For the remainder of this paper we suppose that 1 < p < ∞ and that whenever k
appears as an index, it is assumed to belong to {1, 2}.

Notations. Fix for each θ ∈ (0, 1) an interpolation functor

(·, ·)θ ∈ {[·, ·]θ, (·, ·)θ,p} . (8)

Here we have denoted by [·, ·]θ the complex, and by (·, ·)θ,q, 1 < q < ∞ the real
interpolation functor of exponent θ ∈ (0, 1) (and parameter q).

Now put

F 2j
p := H2j

p , j ∈ {0,±1},
and for s = 2j + 2θ with j ∈ {−1, 0} and 0 < θ < 1,

F s
p :=

{

Hs
p , if (·, ·)θ = [·, ·]θ,

Bs
p,p, if (·, ·)θ = (·, ·)θ,p.

We also define the spaces whose elements satisfy the boundary conditions (denoted
by Bk), or all the additional conditions (Ck), in a suitable sense. Let us first assume
that k = 1, then

F s
p,C1

:= F s
p,B1

:=











{

u ∈ F s
p ;B1(u) = 0

}

, 1 + 1/p < s ≤ 2,

F s
p , 0 ≤ s < 1 + 1/p,

(

F−s
p′,C′

1

)′
, −2 ≤ s < 0, s 6= −1 + 1/p,

where F s
p,C′

1

:= F s
p,B′

1

is defined for 0 ≤ s ≤ 2 by replacing condition B1(u) = 0 by

B′
1(u) = 0 in the above formula.

Now suppose that k = 2, we set

F s
p,B2

:=



















{

u ∈ F s
p ;B2(u) = 0

}

, 1 + 1/p < s ≤ 2,
{

u ∈ F s
p ; γνu = 0

}

, 1/p < s < 1 + 1/p,

F s
p , 0 ≤ s < 1/p,

(

F−s
p′,B2

)′
, −2 ≤ s < 0, s 6∈ {−2 + 1/p,−1 + 1/p},
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as well as,

F s
p,C2

:=

{

F s
p,B2

∩ Lp,σ, 0 ≤ s ≤ 2, s 6∈ {1/p, 1 + 1/p},
(

F−s
p′,C2

)′
, −2 ≤ s < 0, s 6∈ {−2 + 1/p,−1 + 1/p}.

To avoid bothersome distinction of cases, we also write F s
p,B′

2

:= F s
p,B2

.

Of course, we denote F s
p,Bk

and F s
p,Ck

by Hs
p,Bk

and Hs
p,Ck

, respectively, if the
underlying space is a Bessel potential space, and by Bs

p,p,Bk
and Bs

p,p,Ck
, respec-

tively, in the case of Besov spaces. Furthermore,

Lp,Ck
:= F 0

p,Ck
=

{

Lp, if k = 1,

Lp,σ, if k = 2.

Remarks 2.3. (a) Observe that we have not defined the spaces F s
p,Bk

and F s
p,Ck

for all s ∈ [−2, 2], although this can be done in a consistent way, so that the
assertions of the following lemma are true for all s. We refrain from doing this
and refer the interested reader instead to [11], [20] and [23].

For the sake of convenience, let us define those exceptional values of s depending
on 1 < p < ∞ and k ∈ {1, 2}

Σk,p :=

{

{−2 + 1/p, 1 + 1/p} , if k = 1,

{−2 + 1/p,−1 + 1/p, 1/p, 1 + 1/p} , if k = 2.

(b) It follows immediately from the definitions that the spaces F s
p,Bk

coincide
with the usual Bessel potential (or Besov) spaces for some s ∈ [−2, 2]. Namely

F s
p,B1

= F s
p , −1 + 1/p < s < 1 + 1/p,

and
F s

p,B2
= F s

p , −1 + 1/p < s < 1/p.

(c) The projection Pk enjoys the following continuity properties

Pk ∈ L
(

F s
p,Bk

)

∩ L
(

F s
p,Bk

, F s
p,Ck

)

, −1 + 1/p < s < 1 + 1/p, (9)

provided s is not singular in the sense of remark (a).

Proof. Suppose that −1 + 1/p < s < 1 + 1/p with s 6∈ Σk,p. By the continuity of
Pk in F s

p and the fact that

im(P2|F s
p ) =

{

u ∈ F s
p ; div(u) = 0, γνu = 0

}

, s ≥ 0,

we infer that (9) is true if k = 1 or if k = 2 and s ≥ 0. The assertion in the
remaining cases follows by duality, confer also Section 2 in [6] (We note that the
spaces called H

s
p there coincide with Hs

p,Ck
for −1 + 1/p < s < 1/p.) ¤

(d) Let us consider the problem with slip boundary conditions, that is,
k = 2. Moreover, suppose that −2 ≤ s < 0 and s 6∈ Σ2,p. Then we can show, by
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a modification of the proofs of [6, Lemma 2.1 and Theorem 2.2], that F s
p,Ck

is a
closed subspace of F s

p,Bk
and that the map P2|Lp possesses a uniquely determined

continuous extension P2,s,p on F s
p,Bk

, such that P2,s,p is a projection of F s
p,Bk

onto
F s

p,Ck
. Of course, P2,s,p equals P2|F s

p,Bk
if −1 + 1/p < s < 0 since F s

p,Bk
= F s

p in
this range.

(e) In this paper we restrict ourselves to the situation where (·, ·)θ is either the
complex [·, ·]θ or the real interpolation functor (·, ·)θ,p. However, it is not difficult
to verify that all results remain valid if (·, ·)θ is chosen to be the real interpolation
functor (·, ·)θ,q with 1 < q < ∞ arbitrary. This leads to interpolation-extrapolation
scales which we obtain by setting F s

p := Bs
p,q in the preceding definitions.

Lemma 2.4. Suppose that 0 < θ < 1 with 2θ 6∈ Σk,p. Then
(

Lp,H
2
p,Bk

)

θ

.
= F 2θ

p,Bk
, and

(

Lp,H
2
p,B′

k

)

θ

.
= F 2θ

p,B′

k
,

as well as
(

Lp,Ck
,H2

p,Ck

)

θ

.
= F 2θ

p,Ck
.

Proof. (a) Since both (system of) boundary operators B1 = (γD(·)ν)τ + γ div(·)ν
and B2 = {(∂ν ·)τ , γν} are normal (in the sense of Seeley), the first assertion follows
from P. Grisvard [11], in the case of real interpolation, and from R. T. Seeley [20],
for complex interpolation.

(b) Assume that k = 1 and consider the operator B′
1 = S′

1 + N ′
1. We set

F s
p,S′

1
:=

{

{

u ∈ F s
p ;S′

1(u) = 0
}

, 1 + 1/p < s ≤ 2,

F s
p , 0 ≤ s < 1 + 1/p.

Then invoking again the results of Grisvard and Seeley for the normal trace oper-
ator S′

1, we obtain that
(

Lp,H
2
p,S′

1

)

θ

.
= F 2θ

p,S′

1
, 0 < θ < 1, 2θ 6= 1 + 1/p.

The boundary operator B′
1 contains the nonlocal parts N ′

1. Nevertheless, it is still
possible to establish the asserted interpolation result by means of an isomorphism
from F s

p,B′

1

onto F s
p,S′

1

Λ ∈ Lis
(

F s
p,B′

1
, F s

p,S′

1

)

, 0 ≤ s ≤ 2, s 6= 1 + 1/p, (10)

see [12, Lemma 1.6.8]. The construction of Λ relies on the fact that there exists an

operator from B
s−1/p
p,p (∂Ω) × B

s−1−1/p
p,p (∂Ω) into Hs

p (Ω), which is a coretraction
(a right inverse) of the trace operator ρ = (γ, ∂ν) provided s > 1+1/p, and whose

norm as a map from B
−1/p
p,p (∂Ω) × B

−1−1/p
p,p (∂Ω) to Lp (Ω) is arbitrarily small.

The existence of such an operator is shown in Lemma 1.6.4 of [12] if p = 2. In
the non-Hilbert space setting one can construct such a map on the basis of the
results in Appendix B of [5]. We omit the details of these constructions and refer



Vol. 8 (2006) Navier–Stokes Equations with First Order B.C. 465

to the articles already cited and to [22]. However, it is important to note, that the
isomorphism Λ does not depend on 1 < p < ∞.

(c) Now suppose that k = 2. The last assertion follows from a simple modi-
fication of the proof of Lemma 3.2 in [3]. Note, in particular, that the operator
defined by

BBBu := −µ∆u − µ∇div(u), u ∈ dom(BBB) := H2
p,B2

is the negative generator of an analytic semigroup on Lp and satisfies P2BBBu = AAA2u
for every u ∈ dom(AAA2). ¤

We continue by proving an important embedding theorem. For this we recall
that, given 0 ≤ s0 ≤ s1 ≤ 2 and 1 < p0, p1 < ∞,

F s1

p1
→֒ F s0

p0
, s1 − n/p1 ≥ s0 − n/p0. (11)

The following theorem shows that an analogous results is true for the spaces F s
p,Bk

and F s
p,Ck

.

Theorem 2.5. Suppose that 1 < p0, p1 < ∞ and that −2 ≤ s0 ≤ s1 ≤ 2 with

sj 6∈ Σk,pj
for j = 0, 1. Moreover assume that

s1 − n/p1 ≥ s0 − n/p0. (12)

Then

F s1

p1,Bk

d→֒ F s0

p0,Bk
,

as well as

F s1

p1,Ck

d→֒ F s0

p0,Ck
.

Proof. First, we observe that the reflexivity of Lq carries over to the spaces F s
q,Bk

and F s
q,B′

k
for 1 < q < ∞ and 0 ≤ s ≤ 2 with s 6∈ Σk,q.

(a) Now, suppose that 0 ≤ s0 ≤ s1 ≤ 2 and that condition (12) is satisfied.
Then thanks to the embedding (11) and the definition of F

sj

pj ,Bk
we deduce that

F s1

p1,Bk
→֒ F s0

p0,Bk
. (13)

Regarding the asserted density of the above embedding, let us define

C2
Bk

(Ω)n :=
{

u ∈ C2
(

Ω, Rn
)

;Bk(u) = 0
}

.

It is a consequence of the arguments of Section 5 in [4] (see also appendix B in [5])
that C2

Bk
(Ω)n is dense in F s

q,Bk
, for 1 < q < ∞ and s ∈ [0, 2]\Σk,q. Therefore the

embedding (13) is dense.

(b) Next, assume that −2 ≤ s0 ≤ s1 < 0 and that (12) is fulfilled. Moreover,
suppose that k = 1, then similarly as in (a), we define the spaces

C2
S′

1
(Ω)n :=

{

u ∈ C2
(

Ω, Rn
)

;S′

1(u) = 0
}

.



466 O. Steiger JMFM

Then it follows again that C2
S′

1

(Ω)n is dense in F s
q,S′

1

, provided 1 < q < ∞ and

s ∈ [0, 2]\Σ1,q. Owing to (11) and the definition of F s
q,S′

1

, we obtain that

C2
S′

1
(Ω)n →֒ F−s0

p′

0
,S′

1

→֒ F−s1

p′

1
,S′

1

. (14)

We set

C2
B′

1
(Ω)n := Λ−1 C2

S′

1
(Ω)n,

where Λ is the isomorphism of Lemma 2.4. Hence, the density of C2
S′

1

(Ω)n in F s
p,S′

1

,

embedding (14) and equation (10) yield that

F−s0

p′

0
,B′

1

d→֒ F−s1

p′

1
,B′

1

. (15)

On the other hand, formula (15) follows for k = 2 immediately from (a), since
F s

p′,B′

2

= F s
p′,B2

. Therefore, we obtain the first assertion by duality and reflexivity.

(c) For k = 2 the second statement follows by an obvious modification of the
proof of Theorem 3.10 in [3]. ¤

In the sequel, we denote by [(EEEα,k,p,AAAα,k,p);α ∈ R] the interpolation-extrapola-
tion scale generated by (Lp,Ck

,AAAk,p) and the interpolation functor (·, ·)θ, 0 < θ < 1,
as chosen in (8). (We refer to chapter V in [1] for the definitions and fundamental
properties of interpolation-extrapolation scales). We also use the abbreviations
EEEα := EEEα,k := EEEα,k,p and AAAα := AAAα,k := AAAα,k,p, if the skipped indices are obvious
from the context.

Corollary 2.6. Suppose that −2 ≤ 2α ≤ 2 and that 2α 6∈ Σk,p. Then

EEEα,k,p
.
= F 2α

p,Ck
.

Proof. The assertion follows from Lemma 2.4 and the results in [1, Section V.2].
¤

We want to recall a few important facts on interpolation-extrapolation scales,
which will be used later on, and which show the main advantages of applying the
theory of semigroups and interpolation-extrapolation scales, cf. [1, Section V.2].

Suppose that A is the negative infinitesimal generator of an analytic semigroup
{

e−tA; t ≥ 0
}

on the reflexive Banach space E, and that [(Eα, Aα);α ∈ R] is the
interpolation-extrapolation scale generated by (E,A) and the interpolation functor
(·, ·)θ, 0 < θ < 1.

Then −Aα, α ∈ R, generates an analytic semigroup
{

e−tAα ; t ≥ 0
}

on Eα, and
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the diagrams

Eβ+1

Aβ
//

Ä _

d

²²

EβÄ _

d

²²

Eα+1
Aα

// Eα

and

Eβ
e−tAβ

//
Ä _

d

²²

EβÄ _

d

²²

Eα
e−tAα

// Eα

are commutative for −∞ < α < β < ∞ and t ≥ 0.
These properties are the abstract basis for weak formulations of quite general

initial-boundary value problems and “bootstrapping” arguments leading to rather
precise regularity results.

Drawing the consequences to the concrete situation under consideration, we
obtain that

AAAα ∈ H (EEEα+1,EEEα) , α ≥ −1

and, thanks to Corollary 2.6, that

AAAα,k,p ∈ H
(

F 2α+2
p,Ck

, F 2α
p,Ck

)

, α ≥ −1.

3. Existence and uniqueness

The following proposition investigates the continuity properties of the nonlinear
convection term Bk := Pkb. Knowing the mapping properties of Bk is crucial for
the study of the Navier–Stokes equations.

Proposition 3.1. Let 0 ≤ s ≤ 2 such that

s > max

{

−1 +
n

p
,−n − 1

2
+

n

p
,

2n

(n + 1)p

}

=: smin(n, p). (16)

Then for every 0 < δ ≤ min {s + 1 − n/p, 1}

Bk = Pkb ∈ L2
(

Hs
p,Ck

,Hs−2+δ
p,Ck

)

,

provided that s and s − 2 + δ are not singular in the sense of Remark 2.3 (a) and

that δ < 1 if s = n/p.

Proof. (a) Let us first suppose that s < n/p. Then thanks to inequalities (16) and
δ ≤ min {s + 1 − n/p, 1} there exists ρ ∈ (1,∞) such that

2/p − s/n − (1 − δ)/n ≤ 1/ρ ≤ 2/p − s/n (17)
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and
1/ρ < 2(s − n/p) + n/ρ.

Therefore setting τ := 2(s − n/p) + n/ρ and applying [18, Theorems 3.4.1 and
3.5.1] we obtain that the pointwise multiplication, and for that reason also the
tensor product ⊗, is a continuous map from Hs

p × Hs
p into Hτ

ρ . Hence, we infer
due to −1 + 1/ρ < τ − 1 ≤ 1 and Remark 2.3(b) and (c) that

Bk ∈ L2
(

Hs
p,Ck

,Hτ−1
ρ,Ck

)

. (18)

Now the assertion follows from Theorem 2.5 using inequality (17).
(b) Suppose that s > n/p. With the aid of δ ≤ min {s + 1 − n/p, 1} we deduce

that there exists ρ ∈ (1,∞) such that

1/p − (1 − δ)/n ≤ 1/ρ ≤ 1/p (19)

and
1/ρ < (s − n/p) + n/ρ.

Thus defining τ := (s−n/p)+n/ρ, invoking the results on pointwise multiplication
of Johnsen, and Remark 2.3 once more, we see that (18) is true also in this case.
Moreover, owing to (19) and Theorem 2.5 we derive that Hτ−1

ρ,Ck
→֒ Hs−2+δ

p,Ck
, so

that
Bk ∈ L2

(

Hs
p,Ck

,Hs−2+δ
p,Ck

)

.

(c) Finally let us assume that s = n/p and that 0 < δ < 1. Obviously, there
exists s̄ ∈ [0, 2] such that

s > s̄ > max {s − (1 − δ)/3, smin(n, p)} .

We set δ̄ := s̄ + 1 − n/p = min{s̄ + 1 − n/p, 1}. Then Bk is a continuous bilinear

map from H s̄
p,Ck

× H s̄
p,Ck

into H s̄−2+δ̄
p,Ck

, according to what we have already shown
in (a). Now the assertion follows again from Theorem 2.5 using that s > s̄ and
that s̄ − 2 + δ̄ > s − 2 + δ. ¤

For the remainder of this paper, we fix a real number T > 0 and set J := [0,T].
We also put JT := [0, T ] for any T > 0.

Suppose that E is a Banach space. We employ the following convention: For
T ∈ J̇ := J\{0} let XT and YT be Banach spaces of E-valued distributions on JT

being continuously embedded in L1 (JT , E). Also suppose that M ∈ L (XT, YT).
We write

M ∈ L (XT , YT ) J-uniformly

if M(XT ) ⊂ YT and ‖M‖L(XT ,YT ) ≤ c for each T ∈ J̇.

Corollary 3.2. Let smin(n, p) < s ≤ 2 and 0 < δ ≤ min{s + 1− n/p, 1} such that

none of the values s and s − 2 + δ is singular and δ < 1 if s = n/p. Then:

Bk ∈ L2
(

L2r

(

JT ,Hs
p,Ck

)

, Lr

(

JT ,Hs−2+δ
p,Ck

))

J-uniformly.
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Proof. Of course, the mapping has to be understood in the sense of a Nemyt’skii
(superposition) operator, that is,

Bk(u, v)(t) := Bk(u(t), v(t)), t ∈ JT .

The assertion is now a consequence of Proposition 3.1 and Hölder’s inequality. ¤

Let (E0, E1) be a densely injected Banach couple. Then E[θ] := [E0, E1]θ is
the complex, E0

θ,∞ := (E0, E1)
0
θ,∞ the continuous, and Eθ,q := (E0, E1)θ,q the real

interpolation space of (E0, E1) of exponent θ ∈ (0, 1) (and parameter q ∈ [1,∞]).
Recall that

E1
d→֒ Eθ,1

d→֒ Eθ,q
d→֒ Eθ,r

d→֒ E0
θ,∞ →֒ Eθ,∞

d→֒ Eϑ,1
d→֒ E0 (20)

for 1 < q < r < ∞ and 0 < ϑ < θ < 1. Moreover,

Eθ,1
d→֒ E[θ]

d→֒ E0
θ,∞, 0 < θ < 1. (21)

For convenience, we also set E[j] := Ej,q := Ej for j = 0, 1 and 1 ≤ q ≤ ∞.

For 1 < r < ∞ and a subinterval I of J containing 0 such that I 6= {0} we
define

W
1
r (I, (E1, E0)) := Lr(I, E1) ∩ W 1

r (I, E0).

Observe that

W
1
r (I, (E1, E0))

.
=

(

{u ∈ Lr(I, E1); ∂u ∈ Lr(I, E0)} , ‖ · ‖W1
r

)

,

where ∂ is the distributional derivative, and

‖u‖W1
r

:= ‖u‖Lr(I,E1) + ‖∂u‖Lr(I,E0).

Similarly, we write W
1
r,loc (I, (E1, E0)) := Lr,loc(I, E1) ∩ W 1

r,loc(I, E0) .

We recall from [1, Section III.1.2] that u ∈ W 1
r (I, E0) if and only if u is lo-

cally absolutely continuous and u as well as the pointwise derivative u̇ belong to
Lr(I, E0). In this case ∂u = u̇.

Suppose that 0 < θ < 1 and that 1 < r < q < ∞, then it is known from (the
proof of) [2, Theorem 5.2] and [1, Theorem III.4.10.2] that the following important
embeddings are valid

W
1
r (I, (E1, E0)) →֒

{

Lq (I, Eθ,1) , θ < 1/r′ + 1/q,

BUC
(

I, E1/r′,r

)

.
(22)

Suppose that g ∈ Lr(J, E0) and

Q ∈ L2
(

W
1
r(JT , (E1, E0)), Lr(JT , E0)

)

J-uniformly

are given. Then we consider the semilinear evolution equation

u̇ + Au = g + Q(u, u) in J̇. (23)
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By a W
1
r-solution (or more precisely, a W

1
r(E1, E0)-solution) on I of (23), we mean

an element u ∈ W
1
r,loc(I, (E1, E0)) satisfying (23) on I. It is maximal if there does

not exist another such solution being a proper extension of it. If dom(u) = J then u
is called a global solution. If u is a W

1
r-solution of (23) on I then u ∈ C(I, E1/r′,r),

thanks to (22). Thus, if u0 ∈ E1/r′,r, then by a W
1
r-solution of the initial value

problem
u̇ + Au = g + Q(u, u), in J̇,

u(0) = u0.

}

we mean a W
1
r-solution u of (23) on I such that u(0) = u0.

We denote by {U(t); t ≥ 0} the semigroup on E0 generated by −A. Given any
ϕ ∈ L1(İ , E0) we define

U ⋆ ϕ(t) :=

∫ t

0

U(t − τ)ϕ(τ) dτ, t ∈ İ ,

whenever these integrals exist. Moreover, we write Ux := U(·)x for x ∈ E0. Then
the maps U := (x 7→ Ux) and U⋆ := (ϕ 7→ U ⋆ ϕ) enjoy the following properties.

Lemma 3.3. Suppose that 1 < r < ∞ and that 0 < γ < 1. Then

U⋆ ∈ L
(

Lr(JT , Eγ,∞), W1
r (JT , (E1, E0))

)

J-uniformly.

Furthermore, for 0 ≤ α < 1/r we have that

U ∈ L
(

E1−α,∞, W1
r (JT , (E1, E0))

)

J-uniformly.

Proof. The assertions follow from [7, Lemma 4]. ¤

After these preparations we can formulate one of the main result of this paper,
concerning the existence and uniqueness of maximal W

1
r-solutions of the Cauchy

problem
u̇ + AAAku = Pkf − Bk(u), in J̇,

u(0) = u0.

}

(CP )k

Here, we have used the abbreviation Bk(u) := Bk(u, u).

Theorem 3.4. Suppose that 1 < p, r < ∞ and that 0 ≤ s ≤ 2 with

2

r
+

n

p
< 3,

and

max

{

−1 +
n

p
+

1

r
,−n − 1

2
+

n

p
,

2n

(n + 1)p

}

< s − 1

r
. (24)

Furthermore, let 0 ≤ α < 1/r and γ > 0 with

(

u0, Pkf
)

∈ F s−2α
p,Ck

× Lr

(

J, F s−2+2γ
p,Ck

)

,
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and assume that none of the numbers s, s− 2, s− 2α, and s− 2 + 2γ is singular.

Then:

(i) Problem (CP )k possesses a unique maximal W
1
r(H

s
p,Ck

,Hs−2
p,Ck

)-solution

u = u(·, u0, f) ∈ W
1
r,loc

(

J+,
(

Hs
p,Ck

,Hs−2
p,Ck

))

,

and the maximal interval of existence, J+ := dom(u), is open in J.

(ii) For each T ∈ J̇ there exists R > 0 such that J+ ⊃ JT whenever
∥

∥u0
∥

∥

F s−2α
p,Ck

+ ‖Pkf‖
Lr

(

J,F s−2+2γ
p,Ck

) ≤ R.

Proof. We observe that, given 1 < p, r < ∞ with 2/r + n/p < 3, there exists
s ∈ [0, 2]\Σk,p satisfying inequality (24). Thus the statement of the theorem is
never empty.

We set (E0, E1) :=
(

Hs−2
p,Ck

,Hs
p,Ck

)

, A := AAAk,s/2−1 ∈ H(E1, E0), and denote by
{U(t); t ≥ 0} the semigroup on E0 generated by −A.

Suppose that 0 < θ < 1 with s − 2 + 2θ 6∈ Σk,p. It follows from the reiteration
theorems for the real and complex interpolation functors that

Eθ,1 = (E0, E1)θ,1
d→֒ F s−2+2θ

p,Ck

d→֒ (E0, E1)
0
θ,∞ = E0

θ,∞, (25)

see for example [3, Lemma 1.1].

(a) Since inequality (24) is strict there exist ε ∈ (0, 1/r′) and δ > 1/r such that

max

{

−1 +
n

p
+

1

r
+ ε,−n − 1

2
+

n

p
,

2n

(n + 1)p

}

< s − 1

r
− ε. (26)

as well as

δ < min

{

s − 1

r
+ 1 − n

p
− 2ε, 1 − ε

}

,

and such that neither s − 1/r − ε nor s − 1/r − 2 + δ are singular. Then, in
particular, we infer from (26) and Corollary 3.2 that

Bk ∈ L2
(

L2r

(

JT ,H
s−1/r−ε
p,Ck

)

, Lr

(

JT ,H
s−2+(δ−1/r)
p,Ck

))

J-uniformly.

Putting η := (2 − 1/r − ε)/2 and ξ := min{γ, (δ − 1/r)/2} implies by (25) that

Eη,1
d→֒ H

s−1/r−ε
p,Ck

, and H
s−2+(δ−1/r)
p,Ck

d→֒ E0
ξ,∞.

Therefore, it follows from Lemma 3.3, with the aid of the formulas (22) and (25),
that Q := U ⋆ Bk ∈ L2

(

L2r

(

JT , Eη,1

)

, L2r

(

JT , Eη,1

))

. However, a more careful
analysis of the mapping properties of U⋆ reveals that the norm of Q is, in fact,
independent of T ∈ J̇, that is,

Q = U ⋆ Bk ∈ L2 (L2r (JT , Eη,1) , L2r (JT , Eη,1)) J-uniformly, (27)
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see Lemmas 1 and 3 in [7]. Now let us consider a := Uu0 + U ⋆ Pkf . We derive
from (25) and (20) that

(

u0, Pkf
)

∈ E1−α,∞ × Lr(JT , Eξ,∞). (28)

Similarly as above, we infer from [7, Lemmas 1 and 3] that a ∈ L2r(JT , Eη,1) and
that there exists ε̄ > 0 with

∥

∥a
∥

∥

L2r(JT ,Eη,1)
≤ cT ε̄

(

∥

∥u0
∥

∥

F s−2α
p,Ck

+
∥

∥Pkf
∥

∥

Lr

(

JT ,F s−2+2γ
p,Ck

)

)

, T ∈ J̇. (29)

Owing to ‖a‖L2r(JT ,Eη,1) → 0 as T → 0, we deduce by a fixed point argument,

[8, Lemma 2.1], that there exists T0 ∈ J̇ and a unique u0 ∈ L2r (JT0
, Eη,1) such

that
u0 = a + Q(u0, u0)

and

‖u0 − a‖L2r(JT0
,Eη,1)

<
2 −

√
3

4‖Q‖ .

Due to the above construction, the solution u0 belongs to L2r (JT0
, Eη,1). However,

Lemma 3.3 guarantees, in view of (28), that u0 possesses more regularity, namely

u0 = Uu0 + U ⋆ (Pkf − Bk(u0)) ∈ W
1
r(JT0

, (E1, E0)).

Setting g := Pkf − Bk(u0) we infer that u0 is a mild solution of the linear initial
value problem

u̇ + Au = g, t ∈ J̇T0
, u(0) = u0. (30)

If (u0, g) ∈ E1 × C1(JT0
, E1) then, it follows from [1, Theorem II.1.2.1], that u0

is a strict classical solution of (30) on JT0
, that is, u0 ∈ C1(JT0

, E0) ∩ C(JT0
, E1)

and
∂u0 + Au0 = g, u0(0) = u0.

We claim that, due to the density of E1 ×C1(JT0
, E1) in E0

1−α,∞×Lr(JT0
, E0

ξ,∞),

this implies that u0 is a W
1
r-solution of (CP )k. Indeed, there exists a sequence

(u0
j , gj) in E1 × C1(JT0

, E1) such that

(u0
j , gj) → (u0, g) in E0

1−α,∞ × Lr(JT0
, E0

ξ,∞). (31)

By Lemma 3.3 we see that vj := Uu0
j + U ⋆ gj converges in W

1
r(JT0

, (E1, E0))
towards u0 and consequently

gj = ∂vj + Avj → ∂u0 + Au0 in Lr(JT0
, E0).

Hence, we deduce from (31) that u̇0 + Au0 = ∂u0 + Au0 = g so that u0 is in fact
a W

1
r-solution of (CP )k on JT0

.

(b) Next we show that the solution u0 can be extended to some Interval JT1

with T1 > T0. Thanks to (22) we know that u0 ∈ BUC(JT0
, E1/r′,r), and in

particular u1 := u0(T0) ∈ E1/r′,r. Unfortunately, this (spatial) regularity is not
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sufficient to apply the method in (a) of constructing a W
1
r(E1, E0)-solution with

initial value u1. However, since the inequalities (24), α < 1/r, and γ > 0 are
strict, we can increase the regularity of u0 slightly: We choose µ > 0 such that
µ < min{1/r − α, η} and set

α̃ := α + µ, η̃ := η − µ, s̃ := s + 2µ.

We also put
(

Ẽ0, Ẽ1

)

:=
(

H s̃−2
p,Ck

,H s̃
p,Ck

)

, Ã := AAAk,s̃/2−1 and denote by {Ũ(t); t ≥ 0}
the semigroup on Ẽ0 generated by −Ã, so that Ũ(t) ⊂ U(t) for t ≥ 0. Now,
invoking Lemma 3.3 once more, we see that

u0 = Ũu0 + Ũ ⋆ (Pkf − Bk(u0)) ∈ W
1
r

(

JT0
,
(

Ẽ1, Ẽ0

))

.

We deduce from (20) and (25) that

u1 = u0(T0) ∈
(

Ẽ0, Ẽ1

)

1/r′,r
→֒ (E1, E0)1/r′+µ/2,∞.

Thus, as in step (a), we infer that there exists T1 > T0 and a unique W
1
r-solution

v1 ∈ W
1
r(JT1−T0

, (E1, E0)) on JT1−T0
of

v̇ + Av = Pkf(· + T0) − Bk(v), in J̇,
v(0) = u1,

}

satisfying

‖a1‖L2r(JT1−T0
,Eη,1) < (2 −

√
3)/(4‖Q‖), where a1 := Uu1 + U ⋆ Pkf(· + T0).

Now setting

u1(t) :=

{

u0(t), 0 ≤ t ≤ T0,

v1(t − T0), T0 < t ≤ T1,

yields that u1 is a W
1
r(E1, E0)-solution of (CP )k on JT1

.
By iterating this argument we arrive at a maximal extension u := u(·, u0, f) of

u0 defined on J+ such that u is a W
1
r(E1, E0)-solution of (CP )k on J+. Moreover,

if J+ 6= J then the above arguments imply that J+ is open (in R
+).

(c) Suppose that v is another W
1
r(E1, E0)-solution of (CP )k on some interval

I ⊂ J such that u 6⊃ v. Then it is known, e.g. Proposition III.1.3.1 in [1], that v
is a mild solution of (CP )k, that is, v = Uu0 + U ⋆ (Pkf − Bk(v)). Furthermore,

T ′ := max
{

t ∈ I ∩ J+;u(t) = v(t) in E1/r′,r

}

is well-defined and I ′ := (I −T ′)∩R
+ is a nontrivial subinterval of R

+ containing
0. We set x := u(T ′) and h(t) := Pk(t + T ′) for t ∈ I ′. Then the initial value
problem

ẇ + Aw = h − Bk(w), in İ ′,
w(0) = x,

}

has two distinct W
1
r(E1, E0)-solutions w1 := u(· + T ′) and w2 := v(· + T ′) on I ′.

We put a′ := Ux + U ⋆ h and observe, by formula (27) and Lebesgue’s theorem,
that

‖wj − a′‖L2r(JT ,Eη,1) → 0, as T → 0, for j = 1, 2.
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Thus there exists T ′
0 ∈ İ ′ such that ‖wj −a′‖L2r(JT ′

0
,Eη,1) < (2−

√
3)/(4‖Q‖). Now

the uniqueness assertion in step (a) implies that w1 = w2 in BUC(JT ′

0
, E1/r′,r)

which contradicts the definition of T ′. Hence, u is the unique maximal W
1
r-solution

of (CP )k.

(d) Lastly, owing to inequality (29) the second assertion is obvious. ¤

Theorem 3.4 guarantees for each choice of p, r and s a unique maximal solution
up,r,s. The following propositions show, however, that up,r,s is independent of the
parameters p, r and s, provided the data are sufficiently regular. The proofs rely
essentially on the smoothing properties of the semigroup generated by −AAAk, see
for instance [7, Lemmas 1-4].

Proposition 3.5. Suppose that 1 < r0 < r1 < ∞ and 0 ≤ s ≤ 2 such that

max

{

−1 +
n

p
+

1

r0
,−n − 1

2
+

n

p
,

2n

(n + 1)p

}

< s − 1

r0
. (32)

Also suppose that 0 ≤ α < 1/r1, γ > 0,
(

u0, Pkf
)

∈ F s−2α
p,Ck

× Lr1

(

J, F s−2+2γ
p,Ck

)

,

and that none of the values s, s − 2, s − 2α, and s − 2 + 2γ is singular.

Let uj denote the maximal W
1
rj

-solution of (CP )k, according to Theorem 3.4.

Then:

u0 = u1.

Proof. It is obvious that Pkf ∈ Lrj

(

J, F s−2+2γ
p,Ck

)

for j = 0, 1. Thus uj is well-

defined. Denote the interval of existence of u0 by J+
0 and fix some T ∈ J̇+

0 . Then
u0 = Uu0 + U ⋆ (Pkf −Bk(u0)) ∈ W

1
r0

(

JT ,
(

Hs
p,Ck

,Hs−2
p,Ck

))

, by [1, Prop. III.1.3.1].
Thanks to Lemma 3.3 we know that

Uu0 + U ⋆ Pkf ∈ W
1
r1

(

JT ,
(

Hs
p,Ck

,Hs−2
p,Ck

))

.

Now let us show that U ⋆ (Bk(u0)) belongs to this space as well. First, we cover
the situation where the difference of r0 and r1 is rather small. To be precise, we
assume that

1

r0
− 1

r1
< min

{(

s − 1

r0

)

− smin(n, p), 1 − 1

r0
,
1

2

(

s −
(

−1 +
n

p
+

2

r0

))}

.

(33)
This implies together with inequality (32) that there exists s̃ ∈ R such that

max

{

smin(n, p), s − 1,
1

2

(

s − 1 +
n

p

)}

< s̃ < s − 2

r0
+

1

r1
. (34)

In particular, we deduce from (22) and formula (25) that

W
1
r0

(

JT ,
(

Hs
p,Ck

,Hs−2
p,Ck

))

→֒ L2r1

(

JT ,H s̃
p,Ck

)

.
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Then, by (34) and Corollary 3.2, we see that there exists some δ > 0 such that
Bk(u0) ∈ Lr1

(JT ,Hs−2+δ
p,Ck

). Hence, it follows from Lemma 3.3 that

u0 = Uu0 + U ⋆ (Pkf − Bk(u0)) ∈ W
1
r1

(

JT ,
(

Hs
p,Ck

,Hs−2
p,Ck

))

.

Consequently, u0 is a W
1
r1

-solution of problem (CP )k on J+
0 , and we obtain that

u0 ⊂ u1 by the maximality and uniqueness of u1. Of course, the reverse inclusion
is trivially satisfied since J is bounded.

Now suppose that (33) is not fulfilled. However, on account of (32) there exist
N ∈ N and ρ0 := r0 < ρ1 < . . . < ρN−1 < ρN := r1 such that (33) and the
assumptions of this propositions are valid if we replace (r0, r1) by (ρj , ρj+1) for
j = 0, . . . , N − 1. Thus the assertion follows by finite induction. ¤

Proposition 3.6. Let 1 < r < ∞, 1 < p0 < p1 < ∞, and 0 ≤ s ≤ 2 with

max

{

−1 +
n

p0
+

1

r
,−n − 1

2
+

n

p0
,

2n

(n + 1)p0

}

< s − 1

r
. (35)

Furthermore, suppose that 0 ≤ α < 1/r, γ > 0,
(

u0, Pkf
)

∈ F s−2α
p1,Ck

× Lr

(

J, F s−2+2γ
p1,Ck

)

,

and that s, s − 2, s − 2α, and s − 2 + 2γ are not singular.

If uj denotes the unique maximal W
1
r

(

JT ,
(

Hs
pj ,Ck

,Hs−2
pj ,Ck

))

-solution of (CP )k,

then

u0 = u1.

Proof. We deduce from Theorems 2.5 and 3.4 that uj is well-defined for j = 0, 1.
Similarly as in the proof of the preceding theorem, the assertion now follows from
Lemma 3.3. We omit the details and refer instead to [22]. ¤

Proposition 3.7. Let 1 < p, r < ∞ and 0 ≤ s0 < s1 ≤ 2 with

max

{

−1 +
n

p
+

1

r
,−n − 1

2
+

n

p
,

2n

(n + 1)p

}

< s0 −
1

r
. (36)

Also assume that 0 ≤ α < 1/r, γ > 0,
(

u0, Pkf
)

∈ F s0−2α
p,Ck

× Lr

(

J, F s1−2+2γ
p,Ck

)

,

and that none of the values sj, sj − 2, s0 − 2α, and s1 − 2 + 2γ is singular. Then:

(i) The unique maximal W
1
r

(

Hs0

p,Ck
,Hs0−2

p,Ck

)

-solution u = u(·, u0, f) of problem

(CP )k, according to Theorem 3.4, belongs to

W
1
r,loc

(

J̇+,
(

Hs1

p,Ck
,Hs1−2

p,Ck

))

.

(ii) If α + (s1 − s0)/2 < 1/r then u ∈ W
1
r,loc

(

J+,
(

Hs1

p,Ck
,Hs1−2

p,Ck

))

and u coin-

cides with the unique maximal W
1
r

(

Hs1

p,Ck
,Hs1−2

p,Ck

)

-solution of (CP )k.



476 O. Steiger JMFM

Proof. (a) By (25) and Theorem II.1.2.1 in [1] we know that

Uu0 ∈ C1
(

(0, T ],Hs0−2
p,Ck

)

∩ C
(

(0, T ],Hs0

p,Ck

)

, T > 0.

Let 0 < T0 < T1 and set u1 := u(T0/2) ∈ Hs0

p,Ck
. Since s1 − 2 < s0 < s1, we can

apply (25) and [1, Thm.II.1.2.1] once more to obtain that

Uu1 ∈ C1
(

(0, T ],Hs1−2
p,Ck

)

∩ C
(

(0, T ],Hs1

p,Ck

)

, T > 0,

and therefore
Uu0 ∈ W

1
r

(

[T0, T1],
(

Hs1

p,Ck
,Hs1−2

p,Ck

))

, (37)

by using the fact that Uu1(t) = Uu0(t + T0/2) for t ≥ 0. Combining this with
Lemma 3.3, we infer that

a := Uu0 + U ⋆ Pkf ∈ W
1
r

(

[T0, T1],
(

Hs1

p,Ck
,Hs1−2

p,Ck

))

,

for each Tj ∈ J̇ with T0 < T1.

(b) Let T0, T1 ∈ dom(u) with 0 < T0 < T1 be arbitrary. In order to provide a
comprehensive line of reasoning we define the following auxiliary functions

φ(s) := max

{

smin(n, p), s − 1,
1

2

(

s + 1 − n

p

)}

, 0 ≤ s ≤ 2,

and

δmax(s) :=
1

2

((

s − 1

r

)

− φ(s)

)

, 0 ≤ s ≤ 2.

Then it follows from inequality (36) that φ(s0) < s0 − 1/r, or equivalently that
δmax(s0) > 0. Thus, there exist δ ∈ (0, δmax(s0)) and N ∈ N such that s1 = s0+Nδ
and that s0 + kδ is not singular for every k = 1, . . . , N − 1 .

Now, we define s̃ := (s0 − 1/r) − δ/2 and observe that s̃ > φ(s0) + 3δ/2. It
follows, in particular, that s0 − 2 < s̃ < s0 and s0 − 2/r > s̃ − 2/2r, so that

u ∈ W
1
r

(

JT1
,
(

Hs0

p,Ck
,Hs0−2

p,Ck

))

→֒ L2r

(

JT1
,H s̃

p,Ck

)

,

by (22) and (25). It is not difficult to verify that Corollary 3.2 and Lemma 3.3
imply, on account of (22) and s̃ > φ(s0) + 3δ/2, that

U ⋆ Bk(u) ∈ W
1
r

(

JT1
,
(

Hs0+δ
p,Ck

,Hs0−2+δ
p,Ck

))

.

Thanks to u = a − U ⋆ Bk(u) and (37) we conclude

u ∈ W
1
r

(

[T0, T1],
(

Hs0+δ
p,Ck

,Hs0−2+δ
p,Ck

))

,

which proves the first assertion if N = 1. Otherwise, we repeat the above procedure
(N − 1 times) to obtain that

u ∈ W
1
r

(

[T0, T1],
(

Hs0+kδ
p,Ck

,Hs0−2+kδ
p,Ck

))

, k = 1, . . . , N.
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This is possible because inequality (36) remains true if we replace s0 by s0 + kδ,
and because the map (s 7→ δmax(s)) is non-decreasing on [s0, 2], so that

δ < δmax(s0 + kδ) for every k ∈ {0, . . . , N − 1}.
(c) Suppose now that α̃ := α+(s1 − s0)/2 < 1/r. Then we get by formula (25)

that

F s0−2α
p,Ck

→֒
(

Hs1−2
p,Ck

,Hs1

p,Ck

)0

1−α̃,∞
.

Thus invoking Lemma 3.3 once more, yields

a ∈ W
1
r

(

[0, T ],
(

Hs1

p,Ck
,Hs1−2

p,Ck

))

, T > 0.

The bootstrapping method used in (b) implies, therefore, that u belongs to

W
1
r,loc

(

J+,
(

Hs1

p,Ck
,Hs1−2

p,Ck

))

.

Hence, u is a W
1
r

(

Hs1

p,Ck
,Hs1−2

p,Ck

)

-solution of problem (CP )k on J+. Now the second
assertion follows from the uniqueness and maximality of u. ¤

Finally, we draw the consequences for the original Navier–Stokes equations

∂tu + div(u ⊗ u) − µ∆u + ∇π = f
div u = 0

}

in Ω × (0,∞),

Tk(u, π) = 0 on ∂Ω × (0,∞),
u(·, 0) = u0 on Ω.















(NSE)k

That is, we translate the results of Theorem 3.4 back to the system (NSE)k.

Theorem 3.8. Let 1 < p, r < ∞ with 2/r + n/p < 3 and

max

{

−1 +
n

p
+

2

r
, 1 +

1

p

}

< s ≤ 2.

Moreover, suppose that 0 ≤ α < 1/r and γ > 0 with

(

u0, Pkf
)

∈ F s−2α
p,Ck

× Lr

(

J, F s−2+2γ
p,Ck

)

, div(u0) = 0,

and none of the values s, s − 2, s − 2α, and s − 2 + 2γ is singular.

Then problem (NSE)k possesses a unique maximal solution

(u, π) ∈ W
1
r,loc

(

J+,
(

Hs
p,Ck

,Hs−2
p,Ck

))

× Lr,loc

(

J+,Hs−1
p (Ω)

)

.

subject to the condition
∫

Ω

π dx = 0, for a.a. t ∈ ˙J+ if k = 2. (38)

Furthermore, the maximal interval of existence is open in J̇; and (u, π) is a

global solution, that is, dom(u) = J = [0,T], if the data are sufficiently small.
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Proof. (a) Let us suppose that k = 1. Then, by definition, we have that

AAA0v = −µ∆v + 2µ∇KD(γD(u)ν)ν , v ∈ dom(AAA0) = H2
p,C1

.

Since AAAs/2−1 ∈ L(Hs
p,C1

,Hs−2
p,C1

) is the uniquely determined continuous extension

of AAA0 ∈ L(H2
p,C1

, Lp) to Hs
p,C1

we deduce from (3) that the extrapolated operator
AAAs/2−1 also has the form

AAAs/2−1v = −µ∆v + 2µ∇KD(γD(v)ν)ν , v ∈ dom(AAAs/2−1) = Hs
p,C1

. (39)

Simple calculations show that

max

{

−1 +
n

p
+

2

r
, 1 +

1

p

}

> max

{

−n − 1

2
+

n

p
+

1

r
,

2n

(n + 1)p
+

1

r

}

.

Therefore, Theorem 3.4 guarantees the existence of a unique maximal W
1
r-solution

u = u(·, u0, f) ∈ W
1
r,loc

(

Hs
p,C1

,Hs−2
p,C1

)

of the reduced Navier–Stokes equations (CP )1. It follows from (39) that

∂tu − µ∆u + 2µ∇KD(γD(u)ν)ν = P1 (f − b(u)) in Lr,loc

(

J+,Hs−2
p,C1

)

. (40)

Now setting v := div(u) ∈ W
1
r,loc

(

J+,
(

Hs−1
p (Ω),Hs−3

p (Ω)
))

implies that v is a

W
1
r-solution of the homogeneous heat equation with zero Dirichlet boundary con-

ditions and zero initial function v0 = 0. Indeed, applying the divergence operator
to equation (40) and using that div(∂tu) = ∂t div(u) as well as −∆KD = 0 and
div Pk = 0, entails that

∂tv − µ∆v = 0.

Since s > 1+1/p and u ∈ Lr,loc

(

J+,Hs
p,C1

)

we infer that B1(u) = 0 and therefore
that γv = γ div(u) = 0 and

v(0) = div(u)(0) = div(u(0)) = div(u0) = 0.

Hence, we derive from the unique (W1
r-)solvability of the Dirichlet problem for the

heat equation, cf. [1, Proposition III.1.3.1], that v = 0. Hence, u satisfies the
incompressibility constraint div(u) = 0.

Defining the pressure π by

π := 2µKD(γD(u)ν)ν − RD div (f − b(u)) .

we deduce from (3) and (4) that π ∈ Lr,loc

(

J+,Hs−1
p (Ω)

)

. Moreover, we infer, by
the definition of π and the solution operator KD, that (γπ)ν = 2µ (γD(u)ν)ν ν,
so that

γT (u, π)ν = 2µγD(u)ν − (γπ)ν = 0.

Thus (u, π) is a solution of (NSE)1 on J+.

Suppose that (ũ, π̃) is another such solution on I. Then the reductions, shown
in Subsection 2.1, imply that ũ is a W

1
r-solution of (CP )1 on I. By the uniqueness

and maximality of u, it follows that u ⊃ ũ and consequently that π ⊃ π̃.
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(b) Now assume that k = 2. Again, we infer from Theorem 3.4 that there exists
a unique maximal W

1
r-solution of the reduced equations (CP )2. Analogously as

in (a) we see that AAAs/2−1 = −µP2∆, so that

∂tu − µP2∆u = P2 (f − b(u)) in Lr,loc

(

J+,Hs−2
p,C2

)

.

We set

π := (KNγν − RN div) (µ∆u − b(u) + f) ∈ Lr,loc

(

J+,Hs−1
p (Ω)

)

,

by formula (5). Then, thanks to ∇π = (id−P2) (µ∆u − b(u) + f), we derive that

∂tu + b(u) − µ∆u + ∇π = f in Lr,loc

(

J+,Hs−2
p

)

.

Hence, (u, π) is indeed a solution of (NSE)2 on J+. We notice that the condition
(38) is satisfied, due to the way in which we have defined the solution operators
KN and RN .

Finally let

(ũ, π̃) ∈ W
1
r,loc

(

I,
(

Hs
p,C2

,Hs−2
p,C2

))

∩ Lr,loc

(

I,Hs−1
p (Ω)

)

be another solution of (NSE)2 on I. Then applying the Helmholtz projection P2

to the first line of (NSE)2 and using that P2(∇g) = 0 for every g ∈ Hs−1(Ω)
yields

∂tũ − µP2∆ũ = P2 (f − b(ũ)) .

Therefore, ũ is a W
1
r

(

I,
(

Hs
p,Ck

,Hs−2
p,Ck

))

-solution of (CP )2 on I, and the assertion
follows by the uniqueness and maximality of u. ¤

Remarks 3.9. (a) In this article we have restricted ourselves to the boundary
conditions

T1(u, π) := γT (u, π)ν = 2µγD(u)ν − (γπ)ν = 0 and

T2(u, π) := (γD(u)ν)τ + (γu)νν = 0.

However, if we supplement to Navier–Stokes equations with

T3(u, π) := µ∂νu − (γπ)ν = 0 or

T4(u, π) := (∂νu)τ + (γu)νν = 0,

then, by obvious modifications of the proofs, all the results stated carry over to
these problems. Indeed, the cases k = 3 and k = 4 are very similar to the stress-free
and the no-slip problems, respectively.

(b) Let us consider the case p = r. In this situation Theorem 3.8 implies the
existence of a unique maximal solution (u, π) with

u ∈ W
1
p

(

[0, T ],
(

Hs
p,Ck

,Hs−2
p,Ck

))

, (41)
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for each T ∈ ˙J+, provided

max

{

−1 +
n + 2

p
, 1 +

1

p

}

< s ≤ 2. (42)

and there exist s0, s1 > s such that
(

u0, Pkf
)

∈ F
s0−2/p
p,Ck

× Lp

(

J, F s1−2
p,Ck

)

, div(u0) = 0. (43)

(c) As already noted, the idea to reduce the Navier–Stokes equations (NSE)k

to a parabolic pseudodifferential initial value problem is due to G. Grubb and
V. A. Solonnikov [15], [16] and [17]. They prove existence and uniqueness results
in anisotropic L2 spaces (Bessel potential and Besov spaces). Later G. Grubb [14]
extended these investigations to Lp spaces. These results are difficult to compare
to ours, since the regularities in time and space variables are linked together in
anisotropic spaces (we refer to those papers for precise statements and definitions).

Under the same assumptions (42) and (43) Grubb, and Grubb and Solonnikov
show existence and uniqueness of a solution (u, π) with

u ∈ H(s,s/2)
p (Ω × [0, T ]) . (44)

(Actually, they can admit the limiting values s0 = s1 = s = −1 + (n + 2)/p
in many cases as well.) The solution spaces in (41) and (44) coincide (up to
equivalent norms) if s = 2. For s < 2 they are, in general, not comparable. We
can say, however, that functions in the anisotropic space in (44) possess less time
regularity than those belonging to the space in (41).
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