
Distrib. Comput. (2008) 20:415–433
DOI 10.1007/s00446-007-0046-9

The weakest failure detectors to boost obstruction-freedom

Rachid Guerraoui · Michał Kapałka ·
Petr Kouznetsov

Received: 30 December 2006 / Accepted: 4 October 2007 / Published online: 31 October 2007
© Springer-Verlag 2007

Abstract It is considered good practice in concurrent
computing to devise shared object implementations that
ensure a minimal obstruction-free progress property and del-
egate the task of boosting liveness to independent generic
oracles called contention managers. This paper determines
necessary and sufficient conditions to implement wait-free
and non-blocking contention managers, i.e., contention man-
agers that ensure wait-freedom (resp. non-blockingness) of
any associated obstruction-free object implementation. The
necessary conditions hold even when universal objects (like
compare-and-swap) or random oracles are available in the
implementation of the contention manager. On the other
hand, the sufficient conditions assume only basic read/write
objects, i.e., registers. We show that failure detector ♦P is
the weakest to convert any obstruction-free algorithm into
a wait-free one, and Ω∗, a new failure detector which we
introduce in this paper, and which is strictly weaker than
♦P but strictly stronger than Ω , is the weakest to convert
any obstruction-free algorithm into a non-blocking one. We
also address the issue of minimizing the overhead imposed
by contention management in low contention scenarios. We

This paper is a revised and extended version of a paper with the same
title in the Proceedings of the 20th International Symposium on
Distributed Computing (DISC’06).

R. Guerraoui ·M. Kapałka (B)
School of Computer and Communication Sciences,
EPFL, Lausanne, Switzerland
e-mail: michal.kapalka@epfl.ch

R. Guerraoui
Computer Science and Artificial Intelligence Laboratory,
MIT, Cambridge, USA

P. Kouznetsov
Max Planck Institute for Software Systems,
Saarbrucken, Germany

propose two intermittent failure detectors IΩ∗ and I♦P that
are in a precise sense equivalent to, respectively, Ω∗ and ♦P ,
but allow for reducing the cost of failure detection in eventu-
ally synchronous systems when there is little contention. We
present two contention managers: a non-blocking one and
a wait-free one, that use, respectively, IΩ∗ and I♦P . When
there is no contention, the first induces very little overhead
whereas the second induces some non-trivial overhead. We
show that wait-free contention managers, unlike their non-
blocking counterparts, impose an inherent non-trivial over-
head even in contention-free executions.

Keywords Shared memory · Obstruction-free ·
Non-blocking ·Wait-free · Contention manager ·
Failure detector

1 Introduction

Multiprocessor systems are becoming more and more com-
mon nowadays. Multithreading thus becomes the norm and
studying scalable and efficient synchronization methods is
essential. Traditional locking-based techniques do not scale
and may induce priority inversion, deadlock and fault-toler-
ance issues when a large number of threads is involved.

Wait-free synchronization algorithms [18] circumvent the
issues of locking and guarantee individual progress even
in presence of high contention. Wait-freedom is a liveness
property which stipulates that every process completes every
operation in a finite number of its own steps, regardless of
the status of other processes, i.e., contending or even crashed.
Ideal synchronization algorithms combine wait-freedom with
linearizability [3,21], a safety property which provides the
illusion of instantaneous operation executions.

123



416 R. Guerraoui et al.

Fig. 1 A modular implementation of a shared object O

Alternatively, a liveness property called non-blockingness1

may be considered instead of wait-freedom. Non-blocking-
ness guarantees global progress, i.e., that some process will
complete an operation in a finite number of steps, regard-
less of the behaviour of other processes. Non-blockingness
is weaker than wait-freedom as it might not protect some
processes from starvation.

1.1 Obstruction-freedom and contention managers

Wait-free and non-blocking algorithms are, however, notori-
ously difficult to design [4,23], especially with the practical
goal to be fast in low contention scenarios, which are usu-
ally considered the most common in practice. An appeal-
ing principle to reduce this difficulty consists in separating
two concerns of a synchronization algorithm: (1) ensuring
linearizability with a weak conditional progress guarantee,
and (2) boosting progress. More specifically, the idea is to
focus on algorithms that ensure linearizability together with a
weak liveness property called obstruction-freedom [20], and
then combine these algorithms with separate generic ora-
cles that boost progress, called contention managers [15,19,
27,28] (see Fig. 1). This separation lies at the heart of mod-
ern (obstruction-free) software transactional memory (STM)
frameworks [19]. The approach simplifies the task of pro-
grammers, for they do not have to care about wait-freedom
or non-blockingness. Instead they can focus on safety prop-
erties of their implementation, knowing that liveness can be
boosted later, using a generic contention manager, possibly
developed by concurrency experts and optimized for a given
system.

An obstruction-free (or OF, for short) algorithm ensures
progress only for processes that execute in isolation for suf-
ficiently long time. In presence of high contention, however,
OF algorithms can livelock, preventing any process from ter-
minating. Contention managers are used precisely to cope
with high contention scenarios. When queried by a process

1 The term non-blocking is defined here in the traditional way [18]:
“some process will complete its operation in a finite number of steps,
regardless of the relative execution speeds of the processes.” This term
is sometimes confused with the term lock-free.

executing an OF algorithm, a contention manager can delay
the process for some time in order to boost the progress of
other processes. The contention manager can neither share
objects with the OF algorithm, nor return results on its behalf.
If it did, the contention manager could peril the safety of the
OF algorithm, hampering the overall separation of concerns
principle.

In short, the goal of a contention manager is to provide
processes with enough time without contention so that they
can complete their operations. In its simplest form, a conten-
tion manager can be a randomized back-off protocol. More
sophisticated contention management strategies have been
experimented in practice [16,27,28]. Precisely because they
are entirely devoted to progress, they can be combined or
changed on the fly [15]. Most previous strategies were prag-
matic, with no aim to provide worst case guarantees. In this
paper we focus on contention managers that provide such
guarantees. More specifically, we study contention manag-
ers that convert any OF algorithm into a non-blocking or
wait-free one, and which we call, respectively, non-blocking
or wait-free contention managers.

1.2 Contention management and failure detectors

Two wait-free contention managers have recently been pro-
posed [10,14]. Both rely on timing assumptions to detect pro-
cesses that fail in the middle of their operations. (The notion
of failure might for instance model the fact that a process is
swapped-out by the operating system for a long period.) This
suggests that some information about failures might inher-
ently be needed by any wait-free contention manager. But this
is not entirely clear because, in principle, a contention man-
ager could also use randomization to schedule processes, or
even powerful synchronization primitives like compare-and-
swap, which is known to be universal, i.e., able to wait-free
implement any other object [18]. In the parlance of [7], we
would like to determine whether a failure detector is actu-
ally needed to implement a contention manager that provides
strong liveness guarantees even in the worst case, and if it
is, what is the weakest one [6]. Besides the theoretical inter-
est, determining the weakest failure detector D for a given
contention manager C is, we believe, of practical relevance,
for it provides a uniform implementation of C in any system
where D (and thus C) can actually be implemented.

A failure detector is a distributed oracle that periodically
outputs, at each process, some information about which pro-
cesses are still alive and which have already crashed (failed).
Failure detectors differ in the quality of information they pro-
vide. For example, perfect failure detector P [7] ensures,
intuitively, that every failure is eventually detected by every
correct (i.e., non-faulty) process and that there is never any
false detection. On the other hand, eventually perfect fail-
ure detector ♦P [7] gives the same guarantees as P but

123



The weakest failure detectors to boost obstruction-freedom 417

only after some unknown, but finite, time. That is, the output
of ♦P can be arbitrary for any finite period of time, but
eventually it stabilizes and becomes as accurate as for P .
The common property of P and ♦P is that they provide
each alive process with some information about the status
of every other process. However, this is not always the case.
For example, failure detector Ω [6] provides processes with a
leadership information: it guarantees that eventually all cor-
rect processes will elect the same correct process as their
leader.

Clearly, any output of P is also a valid output of ♦P .
Thus, having P in a system, we can also have ♦P at no
cost. It is also straightforward to implement Ω in a system
that already has P: every process simply chooses the non-
crashed (according to P) process with the lowest id as its
leader. In fact, if we used ♦P instead of P in this algorithm,
we would still have a correct implementation of Ω . On the
contrary, if we only have Ω in a system, we can implement
neither P nor ♦P . Also, it is impossible to transform the
output of ♦P into a valid output of P in an asynchronous
system.

The above discussion highlights a way in which failure
detectors can be compared. Informally, a failure detector D
is said to be weaker than a failure detector D ′ if we can
implement D using D ′ in an asynchronous system [6]. If the
opposite is not true, i.e., if we cannot implement D ′ out of
D , then D is said to be strictly weaker than D ′.

1.3 Minimal failure detectors to boost obstruction-freedom

We show in this paper that the eventually perfect failure
detector ♦P is the weakest to implement a wait-free conten-
tion manager. We also introduce a failure detector Ω∗, which
we show is the weakest to implement a non-blocking con-
tention manager. Failure detector Ω∗ is strictly weaker than
♦P , and strictly stronger than failure detector Ω , known to
be the weakest to wait-free implement the (universal) con-
sensus object [6].

It might look surprising that Ω is not sufficient to imple-
ment a wait-free or even a non-blocking contention manager.
For example, the seminal Paxos algorithm [24] uses Ω to
transform an OF implementation of consensus into a wait-
free one [5]. Each process that is eventually elected leader
by Ω is given enough time to run alone, reach a decision and
communicate it to the others. This approach does not help,
however, if we want to make sure that processes make pro-
gress regardless of the actual (possibly long-lived) object and
its OF implementation. Intuitively, the leader elected by Ω

may have no operation to perform while other processes may
livelock forever. Because a contention manager cannot make
processes help each other, the output of Ω is not sufficient:
this is so even if randomized oracles or universal objects are
available. Intuitively, wait-free contention managers need a

failure detector that would take care of every non-crashed
process with a pending operation so that the process can run
alone for sufficiently long time. As for non-blocking conten-
tion managers, at least one correct process with a pending
operation should be given enough time to run alone.

To prove each of the weakest failure detector results, we
first present (necessary part) a reduction algorithm [6] that
extracts the output of failure detector Ω∗ (respectively, ♦P)
using a non-blocking (respectively, wait-free) contention
manager implementation. When devising our reduction algo-
rithms, we do not restrict what objects (or random oracles)
can be used by the contention manager or the OF algorithm.
Then (sufficient part) we present algorithms that implement
the contention managers using the failure detectors and sim-
ple register objects.

It is worthwhile noticing that proving the results goes
through defining the notions of non-blocking and wait-free
contention managers and specifying the interactions between
OF algorithms and contention managers. These, we believe,
are interesting contributions in their own right.

1.4 Reducing the cost of contention management

Our implementations of contention managers use failure
detectors Ω∗ and ♦P . In some systems it is possible to
implement Ω∗ and ♦P efficiently, e.g., when there is some
failure detection functionality in the operating system [4]. In
general, however, when timeout-based mechanisms have to
be used, this is not the case. The problem with failure detec-
tors in their conventional form [7] is that their output can-
not depend on computations being performed by processes.
Thus, a timeout-based implementation of Ω∗ (and a fortiori
of ♦P) will have to make processes exchange “heartbeat”
signals even when failure detection is not actually needed.
For example, in executions with low contention between pro-
cesses, a failure detector might not be necessary at all, and a
simple contention manager using, for example, an exponen-
tial back-off scheme would be sufficient to provide progress.
Ideally we would like a failure detection mechanism to be
involved only when needed.

To cope with this issue, we introduce the notion of an
intermittent failure detector (IFD). Although an IFD is not
a failure detector in the sense of [7], it gives processes some
information about failures. There are however two important
specificities of an IFD. First, its modules, running at different
processes, can be stopped and restarted at any time indepen-
dently. Thus, a process that does not need any information
about failures simply stops its local IFD module. Second,
intermittent failure detectors return only information about
failures a process explicitly queried for, similarly to [9]. This
enables frugal IFD implementations.

We present two intermittent failure detectors, IΩ∗ and
I♦P , and example implementations of theirs in eventually

123



418 R. Guerraoui et al.

synchronous systems. We establish a formal relationship
between a failure detector D and its intermittent variant ID ,
by proving that the latter provides as much information about
failures as the former. We do so by treating ID as an abstract
problem and proving that D is the weakest failure detector
to implement ID . Intuitively, in the worst case (in terms of
contention), IΩ∗ and I♦P give processes the same amount
of information about failures as, respectively, Ω∗ or ♦P .
However, in many scenarios intermittent failure detectors can
be used in a more efficient way than their failure detector
counterparts. Namely, a process triggers a failure detection
mechanism only when the process needs some information
about failures. Clearly, this may cause failures to be detected
with a much larger delay than for classical failure detectors.
However, in the arguably most common scenarios of low
contention and low failure rate, intermittent failure detection
is appealing.

We present a non-blocking contention manager CMnb and
a wait-free contention manager CMwf that use intermittent
failure detectors IΩ∗ and I♦P , respectively. Both contention
managers can be easily combined with heuristic contention
management strategies [27,28] to achieve good average-case
performance. Also, both are minimal in terms of failure infor-
mation. In executions with no contention, i.e., when pro-
cesses always run alone, contention manager CMnb imposes
very little overhead: its implementation (together with the
underlying implementation of IFD IΩ∗ ) does not require any
communication between processes. On the contrary, conten-
tion manager CMwf provides some level of overhead which
we prove is unavoidable. While doing so, we exhibit an inter-
esting “overhead gap” between non-blocking and wait-free
contention management.

1.5 Related work

Obstruction-freedom, as a weak liveness property, was intro-
duced by Herlihy et al. [20]. They proposed to delegate stron-
ger progress guarantees to specialized contention manage-
ment oracles. In this paper, we present implementations of
contention managers that ensure progress (non-blockingness
or wait-freedom) when combined with any obstruction-free
algorithm.

Our contention manager implementations share many sim-
ilarities with the algorithms of [10] and [14], both of which
ensure wait-freedom, but use timeout-based failure detection
mechanisms directly. In fact, the techniques used in all these
algorithms originate in indulgent algorithms [13] designed
for partially synchronous systems [7,8,24], ported later to
shared memory systems [5,12]. However, the way our con-
tention managers obtain information about failures—from
(intermittent) failure detectors—and the way they can be
combined with heuristic contention management techniques
are, we believe, novel. The implementations of IFDs IΩ∗

and I♦P we give in this paper are similar to known message
passing implementations of ♦P [1,7,9,25].

1.6 Roadmap

The paper is organized as follows. Section 2 presents our sys-
tem model and formally defines wait-free and non-blocking
contention managers. In Sects. 3 and 4, we prove our weak-
est failure detector results. Then, in Sect. 5, we introduce
the abstraction of an intermittent failure detector (IFD) and
define IFDs IΩ∗ and I♦P . Next, we present the implementa-
tions of contention managers CMnb and CMwf (Sect. 6) and
example implementations of IΩ∗ and I♦P in eventually syn-
chronous systems (Sect. 7). In Sect. 8, we discuss the over-
head of non-blocking and wait-free contention managers. We
conclude the paper with some final remarks in Sect. 9.

2 Preliminaries

2.1 Processes and failure detectors

We consider a set of n processes Π = {p1, . . . , pn} in a
shared memory system [18,22]. A process executes the (pos-
sibly randomized) algorithm assigned to it, until the process
crashes (fails) and stops executing any action. We assume the
existence of a global discrete clock that is, however, inacces-
sible to the processes. We say that a process is correct if it
never crashes. We say that process pi is alive at time t if pi

has not crashed by time t .
A failure detector [6,7] is a distributed oracle that provides

every process with some information about failures. The out-
put of a failure detector depends only on which and when
processes fail, and not on computations being performed by
the processes. A process pi queries a failure detector D by
accessing local variableD-outputi —the output of the module
of D at process pi . Failure detectors can be partially ordered
according to the amount of information about failures they
provide. A failure detector D is weaker than a failure detec-
tor D ′, and we write D � D ′, if there is an algorithm (called
a reduction algorithm) that uses D ′ (as the only source of
information about failures) to emulate the output of D [6]. If
D � D ′ but D ′ � D , we say that D is strictly weaker than
D ′, and we write D ≺ D ′.

2.2 Base and high-level objects

Processes communicate by invoking primitive operations
(which we will call instructions) on base shared objects and
seek to implement the operations of a high-level shared object
O . Object O is in turn used by an application, as a high-level
inter-process communication mechanism. We call invoca-
tion and response events of a high-level operation op on the

123



The weakest failure detectors to boost obstruction-freedom 419

implemented object O application events and denote them
by, respectively, inv(op) and ret(op) (or invi (op) and reti (op)

at a process pi ).
An implementation of O is a distributed algorithm that

specifies, for every process pi and every operation op of O ,
the sequences of steps that pi should take in order to complete
op. Process pi completes operation op when pi returns from
op. Every process pi may complete any number of opera-
tions but, at any point in time, at most one operation op can
be pending (started and not yet completed) at pi .

We consider implementations of O that combine a sub-
protocol that ensures safety and a weak liveness property,
called obstruction-freedom, with a sub-protocol that boosts
this liveness guarantee. The former is called an obstruction-
free (OF) algorithm A and the latter a contention manager
CM. We focus on linearizable [3,21] implementations of
O: every operation appears to the application as if it took
effect instantaneously between its invocation and its return.
An implementation of O involves two categories of steps
executed by any process pi : those (executed on behalf) of
CM and those (executed on behalf) of A. In each step, a pro-
cess pi either executes an instruction on a base shared object
or queries a failure detector. The latter case occurs only if pi

executes a step on behalf of CM.
Obstruction-freedom [19,20] stipulates that if a process

invokes an operation op on object O and from some point
in time executes steps of A alone,2 then the process eventu-
ally completes op. Non-blockingness stipulates that if some
correct process never completes an invoked operation, then
some other process completes infinitely many operations.
Wait-freedom [18] is stronger and ensures that every correct
process that invokes an operation eventually returns from the
operation.

2.3 Interaction between modules

OF algorithm A, executed by any process pi , communicates
with contention manager CM via calls tryi and resigni imple-
mented by CM (see Fig. 2). Process pi invokes tryi just
after pi starts an operation, and also later (even several times
before pi completes the operation) to signal possible conten-
tion. Process pi invokes resigni just before returning from
an operation, and always eventually returns from this call (or
crashes). Both calls, tryi and resigni , return ok.

An example OF algorithm that uses this model of inter-
action with a contention manager is Algorithm 1. The algo-
rithm implements a timestamping mechanism and is based
on the implementation of a splitter [26]. It is not meant to be
practical or efficient—it just shows how calls try and resign
should be used.

2 That is without encountering step contention [2].

Fig. 2 The OF algorithm/contention manager interface

Algorithm 1: An example OF algorithm implementing
a timestamping mechanism (code for process pi )

uses: A[1, . . .]—unbounded array of registers,
B[1, . . .]—unbounded array of single-bit registers, L—a
register

initially: A[1, . . .] ← ⊥, B[1, . . .] ← false, L ← 1

upon of-getTimestamp do1.1

CM.tryi1.2

j ← L1.3

while true do1.4

A[ j] ← i1.5

if B[ j] = false then1.6

B[ j] ← true1.7

if A[ j] = i then1.8

L ← j + 11.9

CM.resigni1.10

return j1.11

CM.tryi1.12

j ← j + 11.13

The intuition behind the algorithm is the following. A
process pi that invokes of-getTimestamp scans the array B
of registers, starting from the index stored in register L , to
find the lowest value j for which B[ j] is false. Then, pi sets
B[ j] to true. (The value of B[ j] will never change thereaf-
ter.) If no other process is executing steps concurrently to pi ,
then pi returns j as a new timestamp. Also, pi stores value
j + 1 in register L to optimize future invocations of of-get-
Timestamp. The splitter code in lines 1.5–1.8 guarantees that
at most one process can return a given value j , thus ensuring
that the timestamps are unique. However, if two or more pro-
cesses execute the algorithm concurrently, it might happen
that none of them ever returns. That is why it is important
that a contention manager delays some processes and let only
one execute steps of the algorithm at a time.

We denote by B(A) and B(CM) the sets of base shared
objects, always disjoint, that can be possibly accessed by
steps of, respectively, A and CM, in every execution, by every

123



420 R. Guerraoui et al.

process. Calls try and resign are thus the only means by which
A and CM interact. The events corresponding to invocations
of, and responses from, try and resign are called cm-events.
We denote by tryinv

i and resigninv
i an invocation of call tryi

and resigni , respectively (at process pi ), and by tryret
i and

resignret
i —the corresponding responses.

2.4 Executions and histories

An execution of an OF algorithm A combined with a conten-
tion manager CM is a sequence of events that include steps
of A, steps of CM, cm-events and application events. Every
event in an execution is associated with a unique time rep-
resenting the moment at which the event took place. Simul-
taneous events (say in case of multiprocessors) are arbitrarily
ordered. Every execution e induces a history H(e) that
includes only application events (invocations and responses
of high-level operations). The corresponding CM-history
HCM(e) is the longest subsequence of e containing only
application events and cm-events of the execution, and the
corresponding OF-history HOF(e) is the longest subsequence
of e containing only application events, cm-events, and steps
of A. For a sequence s of events, s|i denotes the longest
subsequence of s containing only events at process pi .

We say that a process pi is blocked at time t in an exe-
cution e if (1) pi is alive at time t , and (2) the latest event
in HCM(e)|i that occurred before t is tryinv

i or resigninv
i . A

process pi is busy at time t in e if (1) pi is alive at time t ,
and (2) the latest event in HCM(e)|i that occurred before t
is tryret

i . We say that a process pi is active at t in e if pi is
either busy or blocked at time t in e. We say that a process
pi is idle at time t in e if pi is not active at t in e.3 A process
resigns when it invokes resign on a contention manager.

We say that a process pi is obstruction-free in an interval
[t, t ′] in an execution e, if pi is the only process that takes
steps of A in [t, t ′] in e and pi is not blocked infinitely long
in [t, t ′] (if t ′ = ∞). We say that process pi is eventually
obstruction-free at time t in e if pi is active at t or later and
pi either resigns after t or is obstruction-free in the inter-
val [t ′,∞) for some t ′ > t . Note that, since algorithm A is
obstruction-free, if a correct active process pi is eventually
obstruction-free at some point in time, then pi eventually
resigns and completes its operation thereafter.

2.5 Well-formed executions

We impose certain restrictions on the way an OF algorithm
A and a contention manager CM interact. In particular, we
assume that no process takes steps of A while being blocked
by CM or idle, and no process takes infinitely many steps of A
without calling CM infinitely many times. Further, a process

3 Note that every process that has crashed is permanently idle.

must inform CM that an operation is completed by calling
resign before returning the response to the application.

Formally, we assume that every execution e is well-formed,
i.e., H(e) is linearizable [3,21], and, for every process pi , (1)
HCM(e)|i is a prefix of a sequence [op1][op2], . . . , where
each [opk] has the form invi (opk), tryinv

i , tryret
i , . . . , tryinv

i ,
tryret

i , resigninv
i , resignret

i , reti (opk); (2) in HOF(e)|i , no step
of A is executed when pi is blocked or idle, (3) in HOF(e)|i ,
invi can only be followed by tryinv

i , and reti can only be pre-
ceded by resignret

i ; (4) if pi is busy at time t in e, then at
some t ′ > t , process pi is idle or blocked. The last condi-
tion implies that every busy process pi eventually invokes
tryi (and becomes blocked), resigns or crashes. Clearly, in a
well-formed execution, every process goes through the fol-
lowing cyclical order of modes: idle, active, idle, . . . , where
each active period consists itself of a sequence blocked, busy,
blocked, . . ..

2.6 Non-blocking contention manager

We say that a contention manager CM guarantees non-block-
ingness for an OF algorithm A if in each execution e of
A combined with CM the following property is satisfied: if
some correct process is active at a time t , then at some time
t ′ > t some process resigns.

We say that a contention manager CM is non-blocking if,
for every OF algorithm A, in every execution of A combined
with CM the following property is ensured at every time t :

Global Progress. If some correct process is active at t , then
some correct process is eventually obstruction-free at t .

Intuitively, a non-blocking contention manager allows at
least one active process to be obstruction-free (and busy) for
sufficiently long time, so that the process can complete its
operation.

Theorem 1 A contention manager CM guarantees non-
blockingness for every OF algorithm if and only if CM is
non-blocking.

Proof (⇒) Consider a contention manager CM that guar-
antees non-blockingness for every OF algorithm. Let A be
any OF algorithm and e be any execution of A combined
with CM. Let some correct process be active at time t in e.
Since CM guarantees non-blockingness, some active process
resigns at some future time, and the Global Progress property
is trivially ensured.

(⇐) By contradiction, assume that there exists a non-
blocking contention manager CM such that, for some OF
algorithm A, there is an execution e of A combined with
CM, such that some correct process is active at t , and no
active process resigns after t . By Global Progress, some cor-
rect active process pi is eventually obstruction-free at t . Since

123



The weakest failure detectors to boost obstruction-freedom 421

A is obstruction-free and pi takes infinitely many steps of A
in isolation, pi must complete its operation and resign after
t—a contradiction. 
�

2.7 Wait-free contention manager

We say that a contention manager CM guarantees wait-free-
dom for an OF algorithm A if in every execution e of A
combined with CM the following property is satisfied: if a
process pi is active at a time t , then at some time t ′ > t , pi

becomes idle. In other words, every operation executed by a
correct process eventually returns.

A contention manager CM is wait-free if, for every OF
algorithm A, in every execution of A combined with CM,
the following property is ensured at every time t :4

Fairness. If a correct process pi is active at t , then pi is
eventually obstruction-free at t .

Intuitively, a wait-free contention manager makes sure that
every correct active process is given “enough” time to com-
plete its operation, regardless of how other processes behave.

Theorem 2 A contention manager CM guarantees wait-
freedom for every OF algorithm if and only if CM is wait-free.

Proof (⇒) Consider a contention manager CM that guaran-
tees wait-freedom for every OF algorithm. Let A be any OF
algorithm and e be any execution of A combined with CM.
Since in e every active process is eventually idle, every cor-
rect active process eventually resigns in e, and so the Fairness
property is trivially satisfied.

(⇐) Let CM be a wait-free contention manager, and A be
any OF algorithm. Consider any execution e of A combined
with CM.

Suppose, by contradiction, that some correct process pi

is active at time t and never completes its operation thereaf-
ter. But then, by Fairness, pi is eventually obstruction-free
at t and so pi is obstruction-free in period [t ′,∞) for some
t ′ > t . Therefore, since A is obstruction-free and pi takes
infinitely many steps of A in isolation, pi must eventually
resign and complete its operation—a contradiction. 
�

In the following, we seek to determine the weakest [6] fail-
ure detector D to implement a non-blocking (resp. wait-free)
contention manager CM. This means that (1) D implements
such a contention manager, i.e., there is an algorithm that
implements CM using D , and (2) D is necessary to imple-
ment such a contention manager, i.e., if a failure detector
D ′ implements CM, then D � D ′. In our context, a reduc-
tion algorithm that transforms D ′ into D uses the D ′-based

4 This property is ensured by wait-free contention managers from the
literature [10,14].

implementation of the corresponding contention manager as
a “black box” and read-write registers.

3 Non-blocking contention managers

3.1 Failure detector Ω∗

Let S ⊆ Π be a non-empty set of processes. Failure detector
ΩS outputs, at every process, an identifier of a process (called
a leader), such that all correct processes in S eventually agree
on the identifier of the same correct process in S.5

Failure detector Ω∗ is the composition {ΩS}S⊆Π,S =∅: at
every process pi , Ω∗-outputi is a tuple consisting of the out-
puts of failure detectors ΩS . We position Ω∗ in the hierarchy
of failure detectors of [7] by proving the following theorem:

Theorem 3 Ω ≺ Ω∗ ≺ ♦P .

Proof It is immediate that Ω is weaker than Ω∗: ΩΠ is the
same as Ω . In a system of three or more processes, Ω is
strictly weaker than Ω∗. Indeed, consider a system of three
processes, p1, p2, and p3, and assume, by contradiction, that
Ω∗ is weaker than Ω , i.e., that there exists a reduction algo-
rithm TΩ→Ω∗ which extracts the output of Ω∗ using Ω . Take
an execution e of TΩ→Ω∗ in which p3 is correct, p2 is faulty,
Ω always outputs p3 at every process and consider the emu-
lated output of Ω{p1,p2}. Since p1 is the only correct process
in {p1, p2}, there is a finite prefix e′ of e in which Ω{p1,p2}
outputs p1 at p1. But this finite execution is indistinguish-
able from a finite execution e′′ in which p2 is correct but slow.
Now consider a finite extension of e′′ in which p1 fails, and
thus eventually Ω{p1,p2} outputs p2 at p2. But this finite exe-
cution is indistinguishable from a finite execution in which
p1 is correct but slow. By repeating this argument, we obtain
an infinite execution of TΩ→Ω∗ in which both p1 and p2 are
correct, and the output Ω{p1,p2} never stabilizes at a single
correct process—a contradiction.

It is immediate that Ω∗ is weaker than ♦P: eventually
each correct process pi has complete and accurate informa-
tion from ♦P about failures of all other processes, so pi can
perform an eventually perfect leader election in each subset
of processes pi belongs to, thus extracting the output of Ω∗.

To show that Ω∗ is strictly weaker than ♦P , consider a
system of two processes, p1 and p2, and assume, by contra-
diction, that ♦P is weaker than Ω∗, i.e., that there exists a
reduction algorithm TΩ∗→♦P which extracts the output of
♦P using Ω∗.

5 ΩS can be seen as a restriction of the eventual leader election failure
detector Ω [6] to processes in S. The definition of ΩS resembles the
notion of Γ -accurate failure detectors introduced in [17]. Clearly, ΩΠ

is Ω .

123



422 R. Guerraoui et al.

Using TΩ∗→♦P , we implement ♦P in an asynchronous
system, establishing a contradiction with [7,11]. In the imple-
mentation, the processes run two parallel algorithms, T1 and
T2. The algorithm Ti (i = 1, 2) is identical to TΩ∗→♦P ,
except that, instead of querying Ω∗, it assumes that the
Ω{p1,p2} component of Ω∗ always outputs pi at each pro-
cess. (Clearly, Ω{pi } must always output pi .) Note that every
finite execution of Ti is also a finite execution of TΩ∗→♦P . If
pi is correct, then every (even infinite) execution of Ti is also
an execution of TΩ∗→♦P . Thus, every process pi (correct or
not) obtains from Ti a valid output of ♦P . But Ti does not
use any failure detector, and so we get an implementation of
♦P in an asynchronous system. 
�

3.2 The necessity part

To show that Ω∗ is necessary to implement a non-blocking
contention manager, it suffices to prove that, for every non-
empty S ⊆ Π , ΩS is necessary to implement a non-blocking
contention manager. Let CM be a non-blocking contention
manager using failure detector D . We show that Ω∗ � D by
presenting an algorithm TD→ΩS (Algorithm 2) that, using
CM and D , emulates the output of ΩS .

Algorithm 2: Extracting ΩS from a non-blocking con-
tention manager (code for each processes pi from set S;
others are permanently idle)

uses: L—register
initially: ΩS-outputi ← pi , L ← some process in S

Launch two parallel tasks: Ti and Fi

parallel task Fi2.1

ΩS-outputi ← L2.2

parallel task Ti2.3

while true do2.4

issue tryi and wait until busy (i.e., until call tryi returns)2.5

L ← pi // announce yourself a leader2.6

The algorithm works as follows. Every process pi ∈ S
runs two parallel tasks Ti and Fi . In task Ti , process pi peri-
odically (1) gets blocked by CM after invoking tryi (line 2.5),
and (2) once pi gets busy again, announces itself a leader for
set S by writing its id in L (line 2.6). In task Fi , process
pi periodically determines its leader by reading register L
(line 2.2).6

Thus, no process ever resigns and every correct process in
S is permanently active from some point in time. Intuitively,

6 If a process is blocked in one task, it continues executing steps in
parallel tasks.

this signals a possible livelock to CM which has to eventu-
ally block all active processes except for one that should run
obstruction-free for sufficiently long time. By Global Pro-
gress, CM cannot block all active processes forever, and so
if the elected process crashes (and so becomes idle), CM lets
another active process run obstruction-free. Eventually, all
correct processes in S agree on the same correct process in
S. Processes outside S are permanently idle and permanently
output their own ids: they do not access CM.

This approach contains a subtlety. To make sure that there
is a time after which the same correct leader in S is perma-
nently elected by the correct processes in S, we do not allow
the elected leader to resign (the output of ΩS has to be even-
tually stable). This violates the assumption that processes
using CM run an obstruction-free algorithm, and thus, a pri-
ori, CM is not obliged to preserve Global Progress. However,
as we show below, since CM does not “know” how much
time a process executing an OF algorithm requires to com-
plete its operation, CM has to provide some correct process
with unbounded time to run in isolation.

Theorem 4 Every non-blocking contention manager can be
used to implement failure detector Ω∗.

Proof Let S ⊆ Π , S = ∅ and consider any execution
of Algorithm 2. If S contains no correct process, then
ΩS-outputi (for every process pi ∈ S) trivially satisfies the
property of ΩS . Now assume that there is a correct process
in S. We claim that CM eventually lets exactly one correct
process in S run obstruction-free while blocking forever all
the other processes in S.

Suppose not. We obtain an execution in which every cor-
rect process in S is allowed to be obstruction-free only for
bounded periods of time. But the CM-history of this exe-
cution corresponds to an execution of some OF algorithm A
combined with CM in which no active process ever completes
its operation because no active process ever obtains enough
time to run in isolation. Thus, no active process is eventu-
ally obstruction-free in that execution. This contradicts the
assumption that CM is non-blocking.

Therefore, there is a time after which exactly one correct
process p j ∈ S is periodically busy (others are blocked or
idle forever) and, respectively, register L permanently stores
the identifier of p j . Thus, eventually, every correct process
in S outputs p j : the output of ΩS is extracted. 
�

3.3 The sufficiency part

We describe an implementation of a non-blocking conten-
tion manager using Ω∗ and registers in Algorithm 3. The
algorithm works as follows. All active processes, upon call-
ing try, participate in the leader election mechanism using
Ω∗ in lines 3.3–3.5. The active process pi that is elected
a leader returns from try and is (eventually) allowed to run

123



The weakest failure detectors to boost obstruction-freedom 423

obstruction-free until pi resigns. Once pi resigns, the pro-
cesses elect another leader. Failure detector Ω∗ guarantees
that if an active process is elected and crashes before resign-
ing, another active process is eventually elected.

Algorithm 3: A non-blocking contention manager using
Ω∗ = {ΩS}S⊆Π,S =∅ (code for process pi )

uses: T [1, . . . , n]—array of single-bit registers
initially: T [1, . . . , n] ← false

upon tryi do3.1

T [i] ← true3.2

repeat3.3

S← { p j ∈ Π | T [ j] = true }3.4

until ΩS-outputi = pi3.5

upon resigni do3.6

T [i] ← false3.7

Lemma 1 The contention manager implemented by Algo-
rithm 3 guarantees non-blockingness for every OF algo-
rithm.

Proof Assume, by contradiction that there exists an OF algo-
rithm A for which contention manager CM implemented by
Algorithm 3 does not guarantee non-blockingness, i.e., there
exists an execution e of A combined with CM in which there
are a correct process pi and a time t , such that pi is active at
t but for all t ′ > t , no active process resigns at t ′.

Take any time t ′ > t . Let us denote by S(t ′) the set of all
processes p j such that T [ j] = true at time t ′ in e. Since no
active process resigns after t , there is a time t∗ ≥ t and a set
S, such that for all t ′ > t∗, S(t ′) = S. By the algorithm, pi

eventually sets T [ j] to true. Thus, pi is in S, i.e., S includes
at least one correct process. At every correct process in S,
ΩS eventually outputs the same correct process p j in set S
(a leader).

Since every active process eventually invokes try, resigns
or crashes (by the properties of OF algorithms), and no pro-
cess resigns after t∗, there is a time t ′ > t∗ after which every
correct process except for p j gets permanently blocked in
lines 3.3–3.5. That is because p j does not resign after t and
so p j does not reset T [ j] to false thereafter and remains the
leader for set S forever. Thus, p j is eventually obstruction-
free at t . Since p j runs an obstruction-free algorithm A, it
eventually resigns and completes its operation—a contradic-
tion. 
�

From Theorem 1 and Lemma 1 we immediately obtain
the following result:

Theorem 5 Algorithm 3 implements a non-blocking conten-
tion manager.

4 Wait-free contention managers

We prove here that the weakest failure detector to implement
a wait-free contention manager is ♦P [7]. Failure detec-
tor ♦P outputs, at each time and every process, a set of
suspected processes. There is a time after which (1) every
crashed process is permanently suspected by every correct
process and (2) no correct process is ever suspected by any
correct process.

4.1 The necessity part

We first consider a wait-free contention manager CM using
a failure detector D , and we exhibit a reduction algorithm
TD→♦P (Algorithm 4) that, using CM and D , emulates the
output of ♦P .

Algorithm 4: Extracting ♦P from a wait-free conten-
tion manager (code for process pi )

uses: R[1, . . . , n]—array of registers
initially: ♦P-outputi ← Π − {pi }, k ← 0, R[i] ← 0

Launch n(n − 1) parallel instances of CM: C jk ,
j, k ∈ {1, . . . , n}, j = k
Launch 2n − 1 parallel tasks: Ti j , Tji , j ∈ {1, . . . , n}, i = j ,
and Fi

parallel task Fi4.1

// “heartbeat” signal
while true do R[i] ← R[i] + 14.2

parallel task Ti j , j = 1, . . . , i − 1, i + 1, . . . , n4.3

while true do4.4

x j ← R[ j]4.5

// stop suspecting p j
♦P-outputi ← ♦P-outputi − {p j }4.6

issue tr yi j
i (in Ci j ) and wait until busy4.7

issue resigni j
i (in Ci j ) and wait until idle4.8

// start suspecting p j
♦P-outputi ← ♦P-outputi ∪ {p j }4.9

// wait until p j takes a new step
wait until R[ j] > x j4.10

parallel task Tji , j = 1, . . . , i − 1, i + 1, . . . , n4.11

while true do issue tr y ji
i (in C ji ) and wait until busy4.12

We run several instances of CM. These instances use dis-
joint sets of base shared objects and do not directly interact.
Basically, in each instance, only two processes are active and
all other processes are idle. One of the two processes, say p j ,
gets active and never resigns thereafter, while the other, say
pi , permanently alternates between being active and idle. To
CM it looks like p j is always obstructed by pi . Thus, to
guarantee wait-freedom, the instance of CM has to eventu-
ally block pi and let p j run obstruction-free until p j resigns
or crashes. Therefore, when pi is blocked, pi can assume that

123



424 R. Guerraoui et al.

p j is alive and when pi is busy, pi can suspect p j of having
crashed, until pi eventually observes p j ’s “heartbeat” sig-
nal, which p j periodically broadcasts using a register. This
ensures the properties of ♦P at process pi , provided that p j

never resigns.
As in Sect. 3, we face the following issue. If p j is cor-

rect, pi will be eventually blocked forever and p j will thus
be eventually obstruction-free. Hence, in the corresponding
execution, obstruction-freedom is violated, i.e., the execution
cannot be produced by any OF algorithm combined with CM.
One might argue then that CM is not obliged to preserve Fair-
ness with respect to p j . However, we show below that, since
CM does not “know” how much time a process executing an
OF algorithm requires to complete its operation, CM has to
provide p j with unbounded time to run in isolation.

More precisely, the processes in Algorithm 4 run n(n−1)

parallel instances of CM, denoted each CM jk , where j, k ∈
{1, . . . , n}, j = k. We denote the events that process pi

issues in instance CM jk by try jk
i and resign jk

i . Besides, every
process pi runs 2n − 1 parallel tasks: Ti j , Tji , where j ∈
{1, . . . , n}, i = j , and Fi . Every task Ti j executed by pi is
responsible for detecting failures of process p j . Every task
Tji executed by pi is responsible for preventing p j from
falsely suspecting pi . In task Fi , pi periodically writes ever-
increasing “heartbeat” values in a shared register R[i].

In every instance CMi j , there can be only two active pro-
cesses: pi and p j . Process pi cyclically gets active (line 4.7)
and resigns (line 4.8), and process p j gets active once and
keeps getting blocked (line 4.12). Each time before pi gets
active, pi removes p j from the list of suspected processes
(line 4.6). Each time pi stops being blocked, pi starts sus-
pecting p j (line 4.9) and waits until pi observes a “new” step
of p j (line 4.10). Once such a step of p j is observed, pi stops
suspecting p j and gets active again.

Theorem 6 Every wait-free contention manager can be used
to implement failure detector ♦P .

Proof Consider any execution e of TD→♦P , and let pi be
any correct process. We show that, in e, ♦P-outputi satisfies
the properties of ♦P , i.e., pi eventually permanently sus-
pects every non-correct process and stops suspecting every
correct process. (Note that if a process pi is not correct, then
♦P-outputi trivially satisfies the properties of ♦P .)

Let p j be any process distinct from pi . Assume p j is
not correct. Thus pi is the only correct active process in
instance CMi j . By the Fairness property of CM, pi is even-
tually obstruction-free every time pi becomes active, and so
pi cannot be blocked infinitely long in line 4.7. Since there is
a time after which p j stops taking steps, eventually pi starts
suspecting p j (line 4.9) and suspends in line 4.10, waiting
until p j takes a new step. Thus, pi eventually suspects p j

forever.

Assume now that p j is correct. We claim that pi must
eventually get permanently blocked so that p j would run
obstruction-free from some point in time forever. Suppose
not. Then we obtain an execution in which pi alternates
between active and idle modes infinitely many times, and
p j stays active and runs obstruction-free only for bounded
periods of time. But the CM-history of this execution could be
produced by an execution e′ of some OF algorithm combined
with CM in which p j never completes its operation because
p j never runs long enough in isolation. Thus, Fairness is
violated in execution e′ and this contradicts the assumption
that CM is wait-free. Hence, eventually pi gets permanently
blocked in line 4.7. Since each time pi is about to get blocked,
pi stops suspecting p j in line 4.6, there is a time after which
pi never suspects p j .

Thus, there is a time after which, if p j is correct, then p j

stops being suspected by every correct process, and if p j is
non-correct, then every correct process permanently suspects
p j . 
�

4.2 The sufficiency part

We describe an implementation of a wait-free contention
manager using ♦P and registers in Algorithm 5. The algo-
rithm relies on a (wait-free) primitive GetTimestamp() that
generates unique, locally increasing timestamps and makes
sure that if a process gets a timestamp ts, then no process
can get timestamps lower than ts infinitely many times (this
primitive can be implemented in an asynchronous system
using read-write registers). The idea of the algorithm is the
following. Every process pi that gets active receives a time-
stamp in line 5.2 and announces the timestamp in register
T [i]. Every active process that invokes try repeatedly runs a
leader election mechanism (lines 5.3–5.6): the non-suspected
(by ♦P) process that announced the lowest (non-⊥) time-
stamp is elected a leader. If a process pi is elected, pi returns
from tryi and becomes busy. ♦P guarantees that eventually
the same correct active process is elected by all active pro-
cesses. All other active processes stay blocked until the pro-
cess resigns and resets its timestamp in line 5.8. The leader
executes steps obstruction-free then. Since the leader runs
an OF algorithm, the leader eventually resigns and resets
its timestamp in line 5.8, so that another active process,
which now has the lowest timestamp in T , can become a
leader.

Lemma 2 The contention manager implemented by
Algorithm 5 guarantees wait-freedom for all OF algorithms.

Proof Consider an execution e of any OF algorithm A com-
bined with contention manager CM implemented by
Algorithm 5. By contradiction, assume that in e some cor-
rect process is active at some time t and never resigns after
t . Let V denote the non-empty set of correct processes that

123



The weakest failure detectors to boost obstruction-freedom 425

Algorithm 5: A wait-free contention manager using ♦P
(code for process pi )

uses: T [1, . . . , n]—array of registers (other variables are local)
initially: T [1, . . . , n] ← ⊥
upon tryi do5.1

if T [i] = ⊥ then T [i] ← GetTimestamp()5.2

repeat5.3

sacti ← { j | T [ j] = ⊥ ∧ p j /∈ ♦P-outputi }5.4

leaderi ← argmin j∈sacti T [ j]5.5

until leaderi = i5.6

upon resigni do5.7

T [i] ← ⊥5.8

are active at some time t but never resign (in line 5.8) and
complete their operations thereafter, i.e., that remain active
after t forever. Recall that every process in V either invokes
try infinitely many times or invokes try and stays blocked
forever (by the properties of OF algorithms). Let t∗ be time
after which no process in V resigns, and at which, for every
process pi ∈ V , T [i] = ⊥. Let ts∗j denote the value of T [ j]
at time t∗. Since, for every process pi ∈ V , ts∗i = ⊥, and
no process in V resigns after time t∗, T [i] = ts∗i at all times
t ≥ t∗.

Let pi be the process in V having the lowest timestamp in
{ ts∗k | pk ∈ V } (there is exactly one such process since time-
stamps are unique). We establish a contradiction by showing
that pi has to eventually resign.

Let us consider time t ′ > t∗ after which:

– at every correct process, failure detector♦P permanently
outputs the list of all non-correct processes (by the prop-
erties of ♦P , this eventually happens),

– all non-correct processes have crashed,
– for every correct process p j = pi , if T [ j] = ⊥, then

T [ j] > ts∗i .

The last condition eventually holds, because timestamps
are unique, no process can receive a timestamp lower that
ts∗i infinitely many times and pi has the lowest timestamp
among processes in V (that retain their timestamps infinitely
long).

Thus, after t ′, pi is always elected a leader, and every cor-
rect process p j other than pi that gets blocked after time t ′
will remain blocked in lines 5.3–5.6, as long as pi does not
resign.

Hence, eventually pi will be the only active process that
is not blocked, and thus pi will be given unbounded time
to perform steps of A in isolation. Since A is obstruction-
free, pi eventually resigns and completes its operation—a
contradiction. 
�

From Theorem 2 and Lemma 2 we immediately obtain
the following result:

Theorem 7 Algorithm 5 implements a wait-free contention
manager.

5 Intermittent failure detectors

As discussed Sect. 1, contention manager implementations
based on failure detectors might be considered not very effec-
tive, especially if the goal is to reduce the complexity of
executions with low contention. To cope with this issue, we
revisit the notion of failure detectors and introduce here an
intermittent variant of this notion.

More specifically, we introduce two intermittent failure
detectors (IFDs), which can be viewed as intermittent vari-
ants of Ω∗ and ♦P . We denote them by, respectively, IΩ∗
and I♦P . Both IΩ∗ and I♦P implement two procedures that
can be invoked by a contention manager: stop and query. The
former stops the IFD implementation on the calling process.
The latter one restarts the IFD, if it has been stopped, and
queries the IFD. We assume that an IFD module at each pro-
cess is, by default, stopped until the process queries the IFD
for the first time.

Intuitively, IΩ∗ implements an eventual leader election
mechanism among a set S ⊆ Π of processes (given as an
argument to the query procedure). When invoked by all cor-
rect processes in set S sufficiently many times, with call
query(S), IΩ∗ eventually permanently returns the same cor-
rect process in S (a leader) at all of these processes. More
precisely, IΩ∗ ensures the following property in every exe-
cution e. Let S be a set of processes, such that every correct
process in S invokes query infinitely many times in e, and
V ⊆ S be the set of all correct processes in S. Then, IΩ∗ guar-
antees that in execution e where (1) no process invokes stop
infinitely many times and (2) all processes from set V even-
tually permanently pass set S as an argument to query: every
process in V eventually returns the same process pl ∈ V in
every call to query(S).

In the same vein, IFD I♦P is similar to ♦P . I♦P ensures
the following properties. Let V be a set of correct processes
that, after some time, call query on I♦P and never call stop
thereafter, and V ′ be a set of (correct) processes that call
query and stop on I♦P infinitely many times. Call query
invoked by a process pi returns a set of processes suspected
by pi . I♦P guarantees that eventually: (1) every process in
V suspects every crashed process, and (2) no process in V is
ever suspected by any process in V ∪ V ′.

We establish a formal relationship between a failure detec-
tor D and its intermittent variant ID by proving that the latter
provides as much information about failures as the former.
We do so by treating ID as an abstract problem and proving

123



426 R. Guerraoui et al.

that D is the weakest failure detector [6] to implement ID .
We say then that D and ID are equivalent. In the following
two theorems we establish the relationship between IΩ∗ and
Ω∗, and between I♦P and ♦P .

Theorem 8 IΩ∗ and Ω∗ are equivalent.

Proof We show that Ω∗ is sufficient and necessary to imple-
ment IΩ∗ . The sufficiency part consists of exhibiting an
algorithm that implements IΩ∗ using Ω∗. The necessity part
consists of proving that the output of Ω∗ can be emulated
using some number of instances of IΩ∗ as “black boxes” and
read-write registers.

It is easy to see that one can implement IΩ∗ using Ω∗.
This can be done simply by making query(S), invoked by
a process pi , return the leader elected by Ω∗ for set S, and
ignoring every call to stop. Therefore, Ω∗ is sufficient to
implement IΩ∗ .

As Ω∗ is a composition {ΩS}S⊆Π,S =∅, it is sufficient to
prove for the necessity part that, for every non-empty subset
S of set Π , there is an algorithm that extracts the output of
ΩS from any implementation of IΩ∗ .

Let L be any instance of IΩ∗ and let every alive process
pi periodically invoke query(S) on L and put the returned
value in a local variable ΩS-outputi . Also, assume no pro-
cess ever invokes stop on L . Let V be the set of all correct
processes. Clearly, every process in V will invoke query(S)

infinitely many times. Furthermore, every correct process in
S must belong to V . Thus, by the properties of IΩ∗ , every
correct process in S has to eventually permanently output
the id of the same correct process in S in variable ΩS-output.
Therefore, at every process pi , ΩS-outputi is a valid output
of failure detector ΩS . Hence, for every S ⊆ Π, S = ∅, ΩS

is necessary to implement IΩ∗ , and so Ω∗ is also necessary
to implement IΩ∗ . 
�
Theorem 9 I♦P and ♦P are equivalent.

Proof We show that ♦P is sufficient and necessary to imple-
ment I♦P . The sufficiency part consists of exhibiting an
algorithm that implements I♦P using ♦P . The necessity
part consists of showing that the output of ♦P can be emu-
lated using some number of instances of I♦P as “black
boxes” and read-write registers.

It is easy to see that failure detector ♦P helps easily
implement I♦P . This can be done simply by making query,
invoked by a process pi , return the set of suspected processes
output by ♦P at pi , and ignoring every call to stop. There-
fore, ♦P is sufficient to implement I♦P .

Let D be any instance of I♦P . Assume that every alive
process pi periodically invokes query on D and puts the
returned value in a local variable ♦P-outputi . Also, assume
no process ever invokes stop on D. Let V be the set of all
correct processes. Clearly, every process in V will invoke

query infinitely many times and never invoke stop. Thus,
by the properties of I♦P , at every process pi the variable
♦P-outputi is a valid output of failure detector ♦P . There-
fore, ♦P is necessary to implement I♦P . 
�

6 Contention managers CMnb and CMwf

We present in this section a non-blocking contention man-
ager CMnb that uses IFD IΩ∗ , and a wait-free contention
manager CMwf that uses IFD I♦P . Both contention manag-
ers stop their local IFD modules when no information about
failures is needed. Moreover, when contention is low, both
CMnb and CMwf can use any other contention manager PCM
that satisfies the following property:

Termination. No process is blocked infinitely long.

Therefore, a contention manager PCM that provides good
average case performance (in low-contention scenarios) can
be combined with the worst-case guarantees of CMnb (non-
blockingness) or CMwf (wait-freedom).

Algorithm 6: Implementation of non-blocking conten-
tion manager CMnb (code for process pi )

uses: T [1, . . . , n]—array of single-bit registers,
IΩ∗—intermittent failure detector, PCM—a contention
manager that satisfies Termination (optional)

initially: T [1, . . . , n], tsi ← false, triesi ← 0

upon tryi do6.1

if triesi > maxTries then Serialize()6.2

else6.3

if triesi > 0 then PCM.tryi6.4

triesi ← triesi + 16.5

upon resigni do6.6

if tsi then6.7

T [i] ← false6.8

tsi ← false6.9

IΩ∗ .stop6.10

triesi ← 06.11

procedure Serialize()6.12

if not tsi then6.13

tsi ← true6.14

T [i] ← true6.15

repeat6.16

Si ← { p j ∈ Π | T [ j] = true }6.17

until IΩ∗ .query(Si ) = pi6.18

The implementation of CMnb is shown in Algorithm 6 and
the underlying idea is the following. If a process pi calls tryi
more than maxTries times before resigning, this means that
pi cannot complete its current operation (maxTries is some

123



The weakest failure detectors to boost obstruction-freedom 427

natural constant). Thus, neither obstruction-freedom nor con-
tention manager PCM is sufficient to provide progress for pi

anymore. In such case, pi enters the serialization mechanism
(procedure Serialize).

The role of the serialization mechanism is to prevent live-
locks. Indeed, if after some time no active process is able to
complete its operation, then all active processes will eventu-
ally enter the serialization mechanism (line 6.2) and only one
of them, say process pi , will be allowed to take steps (and run
obstruction-free), while others will get blocked (lines 6.16–
6.18). Once the chosen process (leader) pi resigns, pi

announces this fact to blocked processes (in line 6.8) so that
they can choose another active process among them as a
leader. Also when pi crashes, a new leader is elected.

The output of IΩ∗ is used (in line 6.18) only by seri-
alized processes, i.e., by every alive process p j for which
T [ j] = true. This means that module IΩ∗ can be suspended
at each non-serialized process. That is why each serialized
process p j calls stop on IΩ∗ when p j resigns (line 6.10).
Module IΩ∗ starts working again on a process p j once p j

invokes query(S j ) again (in line 6.18).
The serialization mechanism lets only one active process

take steps of an OF algorithm while blocking all others, but
only when active processes eventually manage to chose a
single leader among themselves in lines 6.16–6.18. If there
is no agreement and so there are many leaders, none of them
is guaranteed to be obstruction-free sufficiently long. If the
elected leader crashes and active processes do not chose
another leader, then it may happen that all active processes
get blocked forever. Thus, the quality of the leader election
provided by IΩ∗ is vital and we need to explain why the
limited properties guaranteed by IΩ∗ are sufficient.

Intuitively, CMnb guarantees non-blockingness when the
leader election provided by IΩ∗ is eventually accurate. How-
ever, IΩ∗ , as used by CMnb, guarantees the accuracy of the
leader election only in executions in which non-blocking-
ness is violated. Thus, if there existed an execution of an OF
algorithm combined with CMnb in which non-blockingness
did not hold, IΩ∗ would have to guarantee eventually accu-
rate leader election in this execution, in which case CMnb

would have to guarantee non-blockingness. Hence, such an
execution is effectively impossible.

More precisely, if in an execution e non-blockingness is
violated, this means that at some point in time t there are
some correct active processes (a set V ) and no process resigns
thereafter. But then all these processes will keep querying IΩ∗
forever, eventually permanently about the same set of pro-
cesses S. Furthermore, no process ever stops IΩ∗ after time
t , for IΩ∗ may be stopped only by a process that resigns.
Thus, eventually IΩ∗ will make processes in set V output a
single correct active process as their leader from some point
in time forever. The elected leader will then be eventually
obstruction-free, in which case the leader has to eventually

complete the operation it executes and resign—contradicting
our assumption that no process resigns after time t .

Lemma 3 Contention manager CMnb shown in Algorithm 6
guarantees non-blockingness for every OF algorithm.

Proof By contradiction, assume that in some execution e of
an OF algorithm A combined with contention manager CMnb

non-blockingness is violated. This means that there exists
time t , such that some correct processes are active at t and
no process resigns after t . Let us denote by t ′ a point in time
after t , such that (1) only correct processes are alive after t ′
and (2) no process that is idle at t ′ becomes active after t ′.
Let us denote by V the set of processes that are active at t ′.
Clearly, each process in V is permanently active from time
t ′ forever.

For each correct process pi /∈ V the value T [i] is even-
tually permanently set to false after t ′, for pi had to resign
before t or pi is never active in e, and pi can set T [i] to true
(in line 6.15) only when pi is active. Each faulty process
must have crashed by t ′. Therefore, there exists a time after
which, for each process pi /∈ V , the value of T [i] will not
change.

Each process pi in set V has to periodically invoke tryi ,
until pi gets blocked forever (for execution e has to be well-
formed). However, pi can get blocked forever only in proce-
dure Serialize, for PCM satisfies Termination. Thus, after t ,
each process in V will eventually enter procedure Serialize in
line 6.2, because after t the value of triesi cannot be reset to 0
in line 6.11, as no process resigns after t , and triesi increases
in line 6.5 each time pi calls tryi and does not enter proce-
dure Serialize. Thus, if at time t the value of T [i] is false,
pi will eventually set the value to true. Furthermore, T [i]
cannot be reset to false after t as pi does not resign after t .
Therefore, there is a time t ′′ > t ′, such that after t ′′: (1) for
every process pi ∈ V the value T [i] will be permanently set
to true, and (2) for every process p j /∈ V the value T [ j] will
not change.

Denote by S the set of processes for which T [. . .] = true
after time t ′′. Clearly, V ⊆ S because for every process
pi ∈ V the value of T [i] is permanently set to true after
t ′′. Also, no process invokes stop infinitely many times (in
line 6.10) for no process resigns infinitely often in e. Fur-
thermore, after time t ′′ only processes in set V will be que-
rying IΩ∗ in line 6.18, and eventually all processes in V will
be querying IΩ∗ about set S, constructed in line 6.17, which
never changes after t ′′. Therefore, eventually, at each process
pi in set V , the module IΩ∗ will be permanently returning
the same process pl ∈ V in each call to query(Si = S) in
line 6.18. Thus, eventually only process pl will always return
from procedure Serialize.

Therefore, eventually all processes in set V , except for
pl , will be blocked in lines 6.16–6.18 forever and process
pl will execute infinitely many steps of algorithm A

123



428 R. Guerraoui et al.

obstruction-free. But then pl , by obstruction-freedom of A,
has to eventually resign and complete its current operation
of A. Thus, pl /∈ V —a contradiction. 
�

From Theorem 1 and Lemma 3 we immediately obtain
the following result:

Theorem 10 Contention manager CMnb is non-blocking.

Algorithm 7: Implementation of wait-free contention
manager CMwf (code for process pi )

uses: S—single-bit register, T [1 . . . n]—array of registers,
I♦P—intermittent failure detector, PCM—a contention
manager that satisfies Termination (optional)

initially: S← false, T [1 . . . n], tsi ←⊥, triesi ← 0

upon tryi do7.1

if triesi > maxTries then S← true7.2

if S then7.3

triesi ← maxTries+ 17.4

Serialize()7.5

else7.6

if triesi > 0 then PCM.tr yi7.7

triesi ← triesi + 17.8

upon resigni do7.9

if tsi = ⊥ then7.10

T [i] ← ⊥7.11

tsi ←⊥7.12

S← false7.13

I♦P .stop7.14

triesi ← 07.15

procedure Serialize()7.16

if tsi = ⊥ then7.17

tsi ← GetTimestamp()7.18

T [i] ← tsi7.19

repeat7.20

sacti ← { j |T [ j] = ⊥ ∧ j /∈ I♦P .query}7.21

leaderi ← argmin j∈sacti T [ j]7.22

until leaderi = i7.23

The implementation of CMwf is presented in Algorithm 7.
The algorithm relies on a (wait-free) function GetTimestamp()
for generating unique timestamps such that if some process
gets a timestamp ts then no process gets a timestamp lower
than ts infinitely many times. Such a timestamping mecha-
nism can be easily implemented with registers.

The basic idea of CMwf is the following. When an active
process pi invokes tryi more than maxTries times, CMwf

sets flag S to true in line 7.2 and starts serializing all reported
operations. As long as flag S is raised, every new process that
invokes try enters immediately the serialization mechanism
(procedure Serialize).

The serialization mechanism works as follows. First, pi

gets a timestamp in line 7.18 and announces the timestamp in

array T in line 7.19. Then, using I♦P , pi periodically runs
a leader election mechanism: the non-suspected process that
announced the lowest timestamp in T is elected a leader. If
pi is a leader, pi returns from the serialization mechanism.

I♦P guarantees that eventually the same correct active
process is elected leader by all serialized processes (unless
these processes resign before). The leader executes steps
of the OF algorithm obstruction-free and so it eventually
resigns. After doing so, the leader resets its timestamp in
lines 7.11 and 7.12 so that the active process that currently
has the lowest timestamp can become a leader thereafter.
When a serialized process finishes its operation, it sets flag
S to false in line 7.13. As a result, once all concurrent serial-
ized operations are completed, the processes might fall back
to some other, may be more pragmatic, contention manage-
ment scheme (provided by contention manager PCM).

It might not be straightforward to see why the properties
of I♦P are strong enough for the serialization mechanism.
Similarly to IΩ∗ , IFD I♦P , when used with contention man-
ager CMwf , provides useful information only in executions
in which wait-freedom is violated. Consider then an exe-
cution e of an OF algorithm combined with CMwf . If in e
wait-freedom is violated, there are some correct processes
(a set V ) that are active from some point in time t forever.
These processes will at some time query I♦P and never stop
I♦P thereafter. But then, by properties of I♦P , processes in
set V will be eventually never suspected by any other active
process. Thus, all the active processes have to eventually
elect the correct process with the lowest timestamp (in V ) as
their leader and let the process run obstruction-free forever.
But the leader will have to eventually complete its operation
then, and so it will not be active forever—contradicting our
assumption.

Lemma 4 Contention manager CMwf implemented by Algo-
rithm 7 guarantees wait-freedom for all OF algorithms.

Proof By contradiction, assume that in some execution e of
some OF algorithm A combined with contention manager
CMwf there are some correct processes (a set V ) that do not
complete their operations, i.e., from some point in time they
are active forever. By properties of OF algorithms, each pro-
cess from set V has to invoke try infinitely many times, unless
the process gets blocked forever. However, the latter can hap-
pen only after the process gets serialized (i.e., enters proce-
dure Serialize) and after the process receives and announces
its timestamp in line 7.18 and line 7.19, respectively. That is
because contention manager PCM satisfies Termination and
so PCM cannot block any process forever in line 7.7. 
�
Claim For every process p j in set V there is a timestamp
tsF

j = ⊥ such that eventually ts j = tsF
j forever.

Proof Let us take some process p j in set V and denote by t
a point in time after which p j is active forever. Clearly, after

123



The weakest failure detectors to boost obstruction-freedom 429

t process p j cannot reset its timestamp to ⊥ (in line 7.12)
because p j does not resign after t . Thus, by the condition in
line 7.17, once p j receives a timestamp after time t , p j will
retain this timestamp forever.

Assume then, by contradiction, that p j has its timestamp
equal to⊥ from time t forever. But after t process p j is per-
manently active and thus p j eventually has to enter the seri-
alization mechanism, after calling try j at most maxTries+ 1
times. But then p j will receive a non-⊥ timestamp in line 7.18
after t—a contradiction. 
�

Let us denote by pi the process having the lowest time-
stamp in { ts F

k | pk ∈ V } (there is always one, and only
one, such a process, by the claim proved before and because
timestamps are unique). We will lead to a contradiction by
showing that pi has to eventually complete its current oper-
ation and resign.

Firstly, let us observe that all processes in set V will query
I♦P in line 7.21 infinitely many times and after some time
they will never invoke stop anymore in line 7.14. There-
fore, by properties of I♦P , eventually every process p j ∈
V will permanently suspect every crashed process and will
never suspect any other process from set V anymore. There-
fore, eventually all processes in set V , except for pi , will be
blocked forever in lines 7.20–7.23, because pi is in set V and
pi has the lowest timestamp from all processes in set V .

Let us consider time t after which:

– the failure detection at processes in set V (provided by
I♦P ) is already accurate,

– only correct processes are alive,
– pi has already got its timestamp tsi = tsF

i in line 7.18
and announced it in line 7.19, and

– all active processes other than pi have timestamps larger
than tsi or equal to ⊥.

The last condition will surely eventually hold in execution
e because of the following reasons. First, timestamps are
unique. Second, no process can get a timestamp lower than
ts F

i infinitely many times. Third, pi has the lowest time-
stamp from all correct processes that never become idle after
some point in time (set V ) and so keep their once received
timestamp forever.

Clearly, process pi cannot be blocked infinitely long.
Furthermore, all processes from set V , except for pi , will
eventually be blocked forever. This means that the only pro-
cesses that can obstruct pi infinitely many times (i.e., that
can execute infinitely many steps of OF algorithm A con-
currently with pi ) are these processes that complete infi-
nitely many operations and thus call try and resign infinitely
many times. Let us denote the set of these processes by V ′.
If we prove that V ′ is empty, then we show that from some
point in time process pi is obstruction-free forever and so, by

obstruction-freedom, has to eventually complete its current
operation and resign—a contradiction with our assumption
that pi ∈ V .

Claim Set V ′ is empty.

Proof Suppose not—that there are some processes that
belong to V ′, i.e., processes that invoke try and resign infi-
nitely many times. Process pi sets flag S to true in line 7.2
infinitely many times, because pi must execute line 7.4 after
time t and cannot reset triesi thereafter. Therefore, there has
to be some process p j ∈ V ′ that observes S = true in line 7.3
and enters procedure Serialize in line 7.5 infinitely many
times. This is because flag S can be reset to false only by a
process that observes S = true (and thus enters the seriali-
zation mechanism) and resigns, and S is set to true infinitely
many times by pi . Process p j will then invoke query and
stop on I♦P infinitely often. But p j will always have a time-
stamp larger than ts F

i after time t and, by properties of I♦P ,
p j will eventually never suspect process pi ∈ V . Thus, even-
tually process p j will be blocked forever and so p j /∈ V ′—a
contradiction. 
�

From Theorem 2 and Lemma 4 we immediately obtain
the following result:

Theorem 11 Contention manager CMwf is wait-free.

7 Implementation of IFDs IΩ∗ and I♦P

Precisely because IΩ∗ and I♦P are sufficient to implement
a non-blocking contention manager, they are impossible to
implement in an asynchronous system. It is however usually
reasonable to assume eventual synchrony, which means that
eventually there exists an upper and a lower bound on the
time it can take for a process to execute a step. These bounds
are not known to processes, can be arbitrary and also can be
different in each execution.

An example implementation of I♦P in an eventually syn-
chronous system, similar to known message passing imple-
mentations of ♦P [1,7,9,25], is presented in Algorithm 8.
The idea of the algorithm is the following. Each process
pi , for which IFD is not stopped, periodically increments
a “heartbeat” register A[i]. Process pi also checks the regis-
ters A[. . .] of other processes. If the value in a register A[ j]
of process p j has not changed since the last read, then pi

starts suspecting p j (which means that a correct processes
that never queries I♦P can be eventually permanently sus-
pected). If pi observes later that p j has incremented its reg-
ister, then pi stops suspecting p j and increases its timeout
value. This timeout tells pi how many steps pi has to perform
between two checks of the registers of other processes. Even-
tually pi adjusts its timeout to the slowest process, provided
that pi is running I♦P for sufficiently long time.

123



430 R. Guerraoui et al.

Algorithm 8: Implementation of intermittent failure
detector I♦P (code for process pi )

uses: A[1, . . . , n]—array of registers
initially: A[1, . . . , n] ← 1, previ [1, . . . , n] ← 0, timeouti ←

initial timeout, outputi ← ∅, runi ← false
upon runi do8.1

repeat8.2

for k ← 1 to timeouti do A[i] ← A[i] + 18.3

suspectedi ← ∅8.4

for j ← 1 to n do8.5

if previ [ j] < A[ j] then8.6

previ [ j] ← A[ j]8.7

if j ∈ outputi then increase timeouti8.8

else suspectedi ← suspectedi ∪ {p j }8.9

outputi ← suspectedi8.10

until not runi8.11

upon query do8.12

runi ← true8.13

return outputi8.14

upon stop do8.15

runi ← false8.16

Theorem 12 Algorithm 8 implements I♦P .

Proof Let us denote by V the set of correct processes that at
some point in time call query and never call stop thereafter.
Let us denote by V ′ the set of processes that call query and
stop infinitely many times. Let us take a point in time t , such
that after t every process p j ∈ V has its value of run j equal
to true forever.

If a process pi crashes, then pi will no longer increment
the value in A[i] in line 8.3. As run j = true at every process
p j ∈ V after t , all processes in V will eventually execute the
“repeat” loop in lines 8.2–8.11 twice after the crash of pi , and
observe that A[i] has not changed (in line 8.6). Thus, every
process p j ∈ V will eventually add pi to its set suspected j
in line 8.9. Therefore, eventually pi will be suspected by
all processes in V and thus we have proved property 1 of
I♦P .

Now let us prove property 2. Assume, by contradiction,
that a process pi ∈ V is suspected infinitely often by a
process p j ∈ V ∪ V ′. Process pi is in V and so, after
time t , runi = true forever. Therefore, pi will increment
its register A[i] infinitely many times in line 8.3. Process
p j is in V ∪ V ′ and so the condition run j = true is sat-
isfied infinitely many times, which means that p j will exe-
cute the loop in lines 8.2–8.11 infinitely often. Therefore,
p j will observe in line 8.6 infinitely many times that A[i]
has changed and so, as p j suspects pi infinitely often, p j

will increase its timeout in line 8.8 infinitely many times. It
means that at some point in time timeout j will be so large
that p j will spend much more time in the loop in line 8.3
(consisting of timeout j steps) than it will take pi to execute

the code in lines 8.4–8.10 and increment A[i] at least once
in line 8.3 (2n + 1 steps, which is constant in any given
execution). This is because eventually there exists an upper
and a lower bound on the time it can take for any process
to take a step, and thus also the relative speed of the pro-
cesses pi and p j is eventually bounded. Therefore, between
any two checks of p j , pi will manage to increment A[i],
and so pi will not be ever suspected by p j —a contradic-
tion. 
�

IFD IΩ∗ can be implemented in a similar way. In fact, one
can easily extract the output of IΩ∗ using I♦P : quer y(S)

invoked on IΩ∗ would then return this alive (i.e., non-sus-
pected by I♦P ) process in set S that has the lowest identifier.
Clearly, IΩ∗ can be implemented in a more efficient way if
I♦P is not used, for we can make only the elected leader send
“heartbeat” signals to others, unlike in the presented imple-
mentation of I♦P in which every alive process for which
IFD is not stopped has to keep incrementing its “heartbeat”
counter.

A more effective implementation of I♦P , assuming an
eventually synchronous system, is presented in Algorithm 9.
The idea is straightforward: an alive process pi with the
lowest identifier among the processes that participate in the
leader election is elected (line 9.4). Then pi permanently
increments its register A[i] to inform others that pi is still
alive (line 9.6). If a process p j observes that A[i] has not
changed since the last read, p j suspects pi of having crashed
and elects a new leader. If later p j discovers that pi is alive,
p j increases the t imeout j value (line 9.8) which tells p j how
long p j should wait (in line 9.9) between any two checks of
a register A[i].
Theorem 13 Algorithm 9 implements IΩ∗ .

Proof Assume, by contradiction, that Algorithm 9 does not
implement IΩ∗ . This means that there exists some execution
e in which the property of IΩ∗ is violated.

Denote by V the set of processes that invoke query infi-
nitely many times in e. Assume that there exists a set S of
processes such that: (1) all correct processes in S belong to
V , and (2) starting from some time t , all processes in set V
periodically invoke query(S). Assume also that no process
invokes stop infinitely many times in e. Let us denote by
pl the process from set V that has the lowest identifier. We
will lead to a contradiction by showing that all processes in
V have to eventually permanently return pl in every call to
query(S).

All correct processes from set S are in V , and pl has the
lowest identifier from all processes in V . Therefore, every
process from set S that has the identifier lower than the iden-
tifier of pl eventually crashes in e. Therefore, eventually no
process pi ∈ S such that i < l (i and l are the identifiers
of process pi and pl , respectively) will increment its register

123



The weakest failure detectors to boost obstruction-freedom 431

Algorithm 9: Implementation of intermittent failure
detector IΩ∗ (code for process pi )

uses: A[1, . . . , n]—array of registers
initially: ldi ← pi , timeouti ← initial timeout,

A[1, . . . , n] ← 1, lasti [1, . . . , n] ← 0, pseti ← ∅,
runi ← false

upon runi do9.1

while runi do9.2

prevldi ← ldi9.3

ldi ← process p j ∈ pseti with the lowest id j such that9.4

A[ j] > lasti [ j] and j < i , or pi if no such p j exists
lasti [ j] ← A[ j]9.5

if ldi = pi then A[i] ← A[i] + 19.6

else9.7

if prevldi = ldi then increase timeouti9.8

wait for timeouti steps9.9

upon query(S) do9.10

runi ← true9.11

if S = pseti then return ldi9.12

else9.13

pseti ← S9.14

return pi9.15

upon stop do9.16

runi ← false9.17

A[i]. This means that process pl will eventually permanently
elect itself a leader in line 9.4, because pl has the lowest id
from all correct processes in psetl and eventually psetl is
permanently equal to S (as pl ∈ V ). Therefore, eventually
process pl , after some time t ′, will be periodically incre-
menting its register A[l] in line 9.6 and never wait in line 9.9
anymore.

Suppose some process pi ∈ V , i = l, never permanently
elects pl as its leader. As pl is permanently increasing its reg-
ister A[l] after time t ′, process pi has to observe infinitely
many times in line 9.4 that A[l] has changed, elect pl a leader
and wait for timeouti steps in line 9.9. Process pi also infi-
nitely many times elects other process as its leader, and so pi

has to increment the value of timeouti infinitely many times
in line 9.8.

Process pl , after time t ′, executes a constant (for a given
number of processes) number of steps between two incre-
ments of A[l] in line 9.6. As the system is eventually syn-
chronous, there is an upper bound tmax on the time between
any two increments of A[l] by process pl . There is also (even-
tually) a lower bound, tmin, on the time in which process pi

can execute a single step in line 9.9. Therefore, there exists
such a value of timeouti that tmin · timeouti > tmax. Thus,
eventually process pi will have to wait in line 9.9 longer
than it may take for pl to increment A[l]. This means that
eventually pi will observe that A[l] > lasti [l] in every exe-
cution of line 9.4 and so pi will eventually permanently elect
pl as a leader—a contradiction. 
�

Algorithms 8 and 9 use an array A of n unbounded reg-
isters for simplicity. In fact, A can be replaced by an array
of 2n2 single-bit registers sendi j , i, j = 1, . . . , n. Instead of
incrementing A[i], a process pi would set sendi j to true for
all j = 1, . . . , n, and instead of comparing A[i] to prev j [i],
process p j would check whether sendi j is true and reset
sendi j to false. Such an optimized implementation of I♦P

or IΩ∗ uses O(n2) memory.

8 Overhead of contention management

We discuss now the inherent overhead of contention manage-
ment. In general, a process that executes operations imple-
mented by an obstruction-free object implementation
without any contention should call try only few times—
ideally, once per operation. In fact, in executions without
contention, obstruction-freedom is strong enough a liveness
guarantee and a contention manager is not needed. Thus, it
seems desirable to minimize the number of steps of a conten-
tion manager that a process executes within any operation,
during which try has been invoked only once, at the begin-
ning of the operation.

It is easy to see that when try is invoked for the first time
within a given operation (if maxTries > 0), contention man-
ager CMnb makes no process access the intermittent failure
detector or a shared object. On the contrary, a process call-
ing try implemented by contention manager CMwf always
performs at least one step, accessing shared register S. Thus,
CMnb guarantees that no process will execute a step of the
contention manager (in a call try or resign) in an operation,
during which try is called only once. Contention manager
CMwf , however, will always make processes access shared
objects (execute steps) inside every call try, even in execu-
tions with no contention. The following theorem states that
this is inherent to any wait-free contention managers.

Theorem 14 Let A be any OF algorithm. There is no wait-
free contention manager CM that guarantees the following:
For every execution e of A combined with CM, every process
pi , and every operation invoked at a time t and completed at
a time t ′ in e by process pi , if there is only one event tryinv

i
in period (t, t ′) in e|i , then there is no step of CM in period
(t, t ′) in e|i .
Proof Assume, by contradiction, that such a contention man-
ager CM exists. Consider two correct processes: p1 and p2,
executing an OF algorithm A presented in Algorithm 1 (in
Sect. 2.3). It is easy to verify that A is an OF algorithm.

To establish a contradiction, we construct an execution of
A combined with CM in which correct process p1 can never
complete its operation, i.e., wait-freedom is violated. Let p1

and p2 be correct processes and consider the following exe-
cution e:

123



432 R. Guerraoui et al.

1. Process p1 starts executing operation of-getTimestamp
and reaches line 1.5.

2. Process p1 executes, then, steps in lines 1.5–1.6 for some
value of j and suspends its execution for some time.

3. Then process p2 starts executing operation of-getTime-
stamp, completes the operation and resigns. Clearly, p2,
while executing the operation, is obstruction-free and
thus eventually has to complete the operation.

4. Next, p1 continues executing steps and observes in
line 1.8 that A[ j] = 2. Thus, p1 is not able to com-
plete the operation and has to start the next iteration of
the “while” loop.

5. Steps 2–5 are repeated forever.

To see why steps 2–5 can be repeated infinitely many times
in execution e, notice that process p2 invokes try2 only once
per each operation p2 executes in e. That is, p2 invokes try2
only when p2 is idle. This means that, by our assumptions
about CM, p2 does not execute any step on behalf of CM
in execution e. Therefore, HOF(e)|2 = e|2, and so for the
module of contention manager CM executed at process p2

execution e is indistinguishable from an execution e′ = e|2
(in which only process p2 is ever active). Thus, there is such
an execution e′ = e|2, in which process p2 is never delayed
by CM for sufficiently long time, so that p1 could complete
its operation and resign. Therefore, execution e of an OF
algorithm combined with CM, in which wait-freedom is vio-
lated, exists—a contradiction with the assumption that CM
is wait-free. 
�

9 Concluding remarks

It is often argued that contention is rare in many practical
settings. Therefore, it is very appealing to design algorithms
that are optimized for the case when processes do not obstruct
each other. Ensuring progress in the worst-case scenarios is
still important, though, but can be delegated to specialized
contention management oracles that, once devised, may be
reused for various object implementations. This approach
reduces the programmer’s problem of designing a wait-free
(resp. non-blocking) algorithm to guaranteeing obstruction-
freedom, which is commonly perceived as being easier.

In this paper, we determined the minimal failure informa-
tion to implement contention managers that provide strong
progress guarantees (non-blockingness or wait-freedom) for
all obstruction-free algorithms. Namely, we proved that fail-
ure detectors Ω∗ and ♦P are the weakest to implement
any non-blocking and wait-free contention manager, respec-
tively. The proofs include concrete contention manager
implementations that use these failure detectors. These imple-
mentations are interesting in their own right.

We argued, however, that there is a drawback in building
contention managers that use failure detectors. Namely, the
very notion of a failure detector induces a systematic cost of
detecting process crashes, even when no information about
failures is needed, e.g., in executions with low contention,
in which obstruction-freedom is strong enough to guarantee
progress. Our solution to this problem is the abstraction of an
intermittent failure detector, which is of independent interest.
This abstraction encapsulates a failure detection mechanism
that knows of, and responds to, contention manager demands,
yet can still be described with axiomatic properties and com-
pared precisely to a failure detector. We showed that two
intermittent failure detectors described in this paper, which
are equivalent to failure detectors Ω∗ and ♦P , can be indeed
used in an implementation of a, respectively, non-blocking
and wait-free contention manager.

The contention managers we present in this paper do not,
by default, exhibit good average-case performance. In most
cases, they would simply serialize all concurrent operations,
including those that concern disjoint sets of memory loca-
tions. This does not exploit situations when such operations
can be safely run in parallel. Fortunately, as we show through
Algorithm 6 and 7, our contention managers can be easily
composed with contention management strategies that per-
form well in the average case but do not ensure any worst-case
guarantees (namely non-blockingness or wait-freedom) [27,
28].

Acknowledgments We are very grateful to Hagit Attiya, Maurice
Herlihy, Bastian Pochon, Faith Fich, Victor Luchangco, Mark Moir and
Nir Shavit for interesting discussions on the topic of this paper. We
would also like to thank the anonymous reviewers for helpful com-
ments.

References

1. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.:
Stable leader election. In: Proceedings of the International Sympo-
sium on Distributed Computing (DISC) (2001)

2. Attiya, H., Guerraoui, R., Kouznetsov, P.: Computing with reads
and writes in the absence of step contention. In: Proceedings of the
19th International Symposium on Distributed Computing (DISC)
(2005)

3. Attiya, H., Welch, J.L.: Distributed Computing: Fundamen-
tals, Simulations and Advanced Topics, 2nd edn. Wiley, New
York (2004)

4. Bershad, B.N.: Practical considerations for non-blocking concur-
rent objects. In: Proceedings of the 14th IEEE International Con-
ference on Distributed Computing Systems (ICDCS), pp. 264–273
(1993)

5. Boichat, R., Dutta, P., Frølund, S., Guerraoui, R.: Deconstruct-
ing Paxos. ACM SIGACT News Distributed Computing Column
34(1), 47–67 (2003). Revised version of EPFL Technical Report
200106, January 2001

6. Chandra, T.D., Hadzilacos, V., Toueg, S.: The weakest failure
detector for solving consensus. J. ACM 43(4), 685–722 (1996)

123



The weakest failure detectors to boost obstruction-freedom 433

7. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable
distributed systems. J. ACM 43(2), 225–267 (1996)

8. Dwork, C., Lynch, N.A., Stockmeyer, L.J.: Consensus in the pres-
ence of partial synchrony. J. ACM 35(2), 288–323 (1988)

9. Fetzer, C., Raynal, M., Tronel, F.: An adaptive failure detection
protocol. In: Proceedings of the 2001 Pacific Rim International
Symposium on Dependable Computing (2001)

10. Fich, F., Luchangco, V., Moir, M., Shavit, N.: Obstruction-free
algorithms can be practically wait-free. In: Proceedings of the
19th International Symposium on Distributed Computing (DISC)
(2005)

11. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of dis-
tributed consensus with one faulty process. J. ACM 32(3), 374–
382 (1985)

12. Gafni, E., Lamport, L.: Disk Paxos. Distrib. Comput. 1(16), 1–
20 (2003)

13. Guerraoui, R.: Indulgent algorithms. In: Proceedings of the 19th
Annual ACM Symposium on Principles of Distributed Computing
(PODC) (2000)

14. Guerraoui, R., Herlihy, M., Kapałka, M., Pochon, B.: Robust con-
tention management in software transactional memory. In: Pro-
ceedings of the Workshop on Synchronization and Concurrency
in Object-Oriented Languages (SCOOL); in conjunction with the
ACM Conference on Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA) (2005)

15. Guerraoui, R., Herlihy, M., Pochon, B.: Polymorphic contention
management. In: Proceedings of the 19th International Symposium
on Distributed Computing (DISC). LNCS, pp. 303–323. Springer,
Heidelberg (2005)

16. Guerraoui, R., Herlihy, M., Pochon, B.: Toward a theory of trans-
actional contention managers. In: Proceedings of the 24th Annual
ACM Symposium on Principles of Distributed Computing (PODC)
(2005)

17. Guerraoui, R., Schiper, A.: “Γ -accurate” failure detectors. In: Pro-
ceedings of the 10th International Workshop on Distributed Algo-
rithms (WDAG). Springer, Heidelberg (1996)

18. Herlihy, M.: Wait-free synchronization. ACM Trans. Program.
Lang. Syst. 13(1), 124–149 (1991)

19. Herlihy, M., Luchangco, V., Moir, M., Scherer III, W.N.: Software
transactional memory for dynamic-sized data structures. In: Pro-
ceedings of the 22nd Annual ACM Symposium on Principles of
Distributed Computing (PODC), pp. 92–101 (2003)

20. Herlihy, M., Luchango, V., Moir, M.: Obstruction-free synchro-
nization: Double-ended queues as an example. In: Proceedings of
the 23rd IEEE International Conference on Distributed Computing
Systems (ICDCS), pp. 522–529 (2003)

21. Herlihy, M., Wing, J.M.: Linearizability: a correctness con-
dition for concurrent objects. ACM Trans. Program. Lang.
Syst. 12(3), 463–492 (1990)

22. Jayanti, P.: Robust wait-free hierarchies. J. ACM 44(4), 592–
614 (1997)

23. LaMarca, A.: A performance evaluation of lock-free synchroniza-
tion protocols. In: Proceedings of the 13th Annual ACM Sympo-
sium on Principles of Distributed Computing (PODC), pp. 130–140
(1994)

24. Lamport, L.: The part-time parliament. ACM Trans. Comput.
Syst. 16(2), 133–169 (1998)

25. Larrea, M., Fernández, A., Arévalo, S.: On the implementation of
unreliable failure detectors in partially synchronous systems. IEEE
Trans. Comput. 53(7), 815–828 (2004)

26. Moir, M., Anderson, J.H.: Wait-free algorithms for fast, long-lived
renaming. Sci. Comput. Program. 25 (1995)

27. Scherer III, W.N., Scott, M.L.: Contention management in dynamic
software transactional memory. In: Proceedings of the Workshop
on Concurrency and Synchronization in Java Programs; in con-
junction with the 23th Annual ACM Symposium on Principles of
Distributed Computing (PODC) (2004)

28. Scherer III, W.N., Scott, M.L.: Advanced contention management
for dynamic software transactional memory. In: Proceedings of the
24th Annual ACM Symposium on Principles of Distributed Com-
puting (PODC) (2005)

123


	The weakest failure detectors to boost obstruction-freedom
	Abstract 
	Introduction
	Obstruction-freedom and contention managers
	Contention management and failure detectors
	Minimal failure detectors to boost obstruction-freedom
	Reducing the cost of contention management
	Related work
	Roadmap
	Preliminaries
	Processes and failure detectors
	Base and high-level objects
	Interaction between modules
	Executions and histories
	Well-formed executions
	Non-blocking contention manager
	Wait-free contention manager
	Non-blocking contention managers
	Failure detector *
	The necessity part
	The sufficiency part
	Wait-free contention managers
	The necessity part
	The sufficiency part
	Intermittent failure detectors
	Contention managers CMnb and CMwf
	Implementation of IFDs I* and IP
	Overhead of contention management
	Concluding remarks
	Acknowledgments


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


