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Abstract The therapeutic potential of adult stem

cells may become a relevant option in clinical care in

the future. In hand and plastic surgery, cell therapy

might be used to enhance nerve regeneration and help

surgeons and clinicians to repair debilitating nerve

injuries. Adipose-derived stem cells (ASCs) are found

in abundant quantities and can be harvested with a low

morbidity. In order to define the optimal fat harvest

location and detect any potential differences in ASC

proliferation properties, we compared biopsies from

different anatomical sites (inguinal, flank, pericardiac,

omentum, neck) in Sprague–Dawley rats. ASCs were

expanded from each biopsy and a proliferation assay

using different mitogenic factors, basic fibroblast

growth factor (bFGF) and platelet-derived growth

factor (PDGF) was performed. Our results show that

when compared with the pericardiac region, cells

isolated from the inguinal, flank, omental and neck

regions grow significantly better in growth medium

alone. bFGF significantly enhanced the growth rate of

ASCs isolated from all regions except the omentum.

PDGF had minimal effect on ASC proliferation rate

but increases the growth of ASCs from the neck

region. Analysis of all the data suggests that ASCs

from the neck region may be the ideal stem cell

sources for tissue engineering approaches for the

regeneration of nervous tissue.

Keywords Growth factor � ASC � Proliferation �
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Introduction

Bone marrow stromal cells are known as multipotent

stem cells under specific conditions (Prockop 1997)

and are an attractive cell source for tissue engineering

(Dezawa et al. 2001). However, the isolation of these

stem cells is associated with a considerable morbidity.

In general, the site of biopsy should be easily

accessible, show minimal donor site morbidity and

have the option of repeated biopsies if needed.
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Adipose-derived stem cells (ASCs) are found in

abundant quantities, have high proliferation rates, can

be harvested by minimally invasive procedures and

are multi-potent cells capable of becoming bone,

cartilage, muscle, endovascular, neuronal, and other

cells (Liang et al. 2011; Strem et al. 2005; Taha and

Hedayati 2010; Witkowska-Zimny and Walenko

2011). The characteristics of ASCs are closely similar

to those of other types of mesenchymal stem cells

(MSCs) (Dhanasekaran et al. 2012; Zuk et al. 2002).

They have been successfully tested in preclinical

models, which opens a wide field of clinical applica-

tions (Wu et al. 2011; Zhang et al. 2012). Remarkable

is that the frequency of ASCs in adipose tissue far

exceeds the MSCs frequency in bone marrow, which is

only 0.01–0.001 % (Strem et al. 2005). This makes

ASCs a promising alternative source of MSCs for

tissue engineering (Strioga et al. 2012).

The harvested fat sample should have a high density

of expandable ASCs with minimal contamination of

fascial tissues. Knowing the ideal biopsy location

might allow the surgeon to take a smaller biopsy

without restricting the proliferation rate of ASCs.

Recently we showed that human ASCs isolated

from the superficial layer of abdominal fat tissue

proliferate significantly faster than those from the

deeper layer (Kalbermatten et al. 2011). In the

superficial and deep layer, pluripotent stem cell

markers oct4, nanog and also the stro-1 cell surface

antigen were expressed (Kalbermatten et al. 2011).

Other factors such as the type of surgical procedure

may also affect growth characteristics and the yield of

ASCs. Oedayrajsingh-Varma et al. (2006) suggested

that adipose tissue derived from both abdomen and

hips harvested by resection or tumescent liposuction

can be used for tissue-engineering purposes. It has also

been shown that adipose tissue harvested from the

breasts, because of presence of glandular cells, may

lead to extensive variations in cell counts. Moreover it

cannot be excluded that differentiated glandular cells

affect ASC proliferation and differentiation (Oed-

ayrajsingh-Varma et al. 2006).

In this research we hypothesized that harvest

location is a key factor for the quality of ASCs for

nerve regeneration. In order to define the optimal

adipose tissue from which to harvest the ASCs, we

compared fat tissue from different origins and eval-

uated the expansion potential with different mitogenic

factors.

Materials and methods

Harvest and culture of ASCs

All studies were approved by the local veterinary

physician. ASCs were harvested as described previ-

ously by our group (di Summa et al. 2010). One gram of

adipose tissue was harvested from the most represen-

tative sources according to the literature (Aguena et al.

2012; Bayes-Genis et al. 2012; Mohammadi et al. 2012;

Padoin et al. 2008; Yuan et al. 2010) (inguinal, flank,

pericardiac, neck and omentum) in four male Sprague–

Dawley (SD) rats aged 8 weeks weighing approxi-

mately 250 g. SD rats were selected because they are

widely used in the field of tissue engineering and

peripheral nerve repair (di Summa et al. 2010). The

adipose tissue was carefully dissected, minced by using

a sterile razor blade and placed for 2 h at 37 �C in 15 ml

Hank’s balanced salt solution (HBSS) containing 0.2 %

(w/v) collagenase type 1 and 20 ll penicillin/strepto-

mycin for enzymatic digestion. Next, the enzyme was

neutralized by adding growth medium (GM) containing

Modified Eagle’s Medium (a-MEM; Invitrogen, Pais-

ley, UK), 10 % (v/v) fetal bovine serum (FBS) and 1 %

(v/v) penicillin/streptomycin (Gibco, Grand Island,

NY, USA). The samples were centrifuged at 1,200g for

5 min and the resultant stromal cell pellet was resus-

pended in GM. Subsequently, the solution was passed

through a 70-lm filter to remove remaining undissoci-

ated tissue, centrifuged at 1,000g for 5 min and the

pellet resuspended in GM. The ASCs were propagated

and plated in a 75 cm2 tissue culture flask. Cells were

incubated at 37 �C with 5 % CO2 and were maintained

at sub-confluent levels with passage by trypsin/EDTA

(Invitrogen, UK) when required.

Cell proliferation

The proliferation of the ASCs isolated from different

origins were assessed for 96 h using the CellTiter 96�

Aqueous non-radioactive cell proliferation assay (Pro-

mega, Madison, WI, USA). At passage 2, 1 9 103 cells

were plated in a 96-well plate using either 200 ll of GM

alone, or supplemented with basic fibroblast growth

factor bFGF (10 ng/ml) or platelet-derived growth

factor PDGF (5 ng/ml). At the time of seeding the

signal was assessed for all sources and normalized. At

regular intervals (24, 48, 72, 96 h), 20 ll of Cell Titer

96� Aqueous Assay Reagents (Promega, USA) were
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added and incubated for 4 h at 37 �C and 5 % CO2. The

absorbance was recorded at 490 nm using a spectro-

photometric plate reader and measurements were cal-

culated by subtracting the average control absorbance

(medium only) from the average cell absorbance. The

different patterns of proliferation among different time-

points were performed in the same groups along the 96 h

and compared with the 24 h time-point.

Based on the fact that the number of cells is

proportional to the absorbance recorded by the Cell

Titer Assay we were able to calculate population

doubling (PD) times using exponential curve fitting

software (Mohamet et al. 2010).

Immunocytochemistry

ASCs (2 9 104 cells) at passage 2 were plated on Lab-

Tek 4-well chamber slides (Thermo Scientific, Nunc,

Fisher Scientific AG, Wohlen, Switzerland), cultured

for 3 days until confluence of 60 % was reached,

washed with phosphate buffered saline (PBS) and

fixed for 20 min in 4 % paraformaldehyde. The cells

were washed for 2 min in PBS and blocked for 1 h in

immunofluorescence blocking buffer (IBB) contain-

ing 1 % bovine serum albumin (BSA, Invitrogen,

15561-020), 19 PBS and 0.1 % Triton X-100 (Sigma-

Aldrich, Munich, Germany). After washing three

times with PBS the cells were subsequently incubated

over night at 4� in PBS with 0.1 % (v/v) Triton

containing the following antibodies: S100 (Z0311,

Dako, Baar, Switzerland) (1:500), Nestin (MAB353,

Chemicon, Temecula, CA, USA) (1:200) and GFAP

(Neomarkers Ab-1, Clone GA-5, Lab Vision/Thermo

Fisher Scientific) (1:400). The cells were washed three

times with PBS and incubated for 40 min under light

protection in PBS containing Alexa Fluor� 488 goat

anti-rabbit IgG (Invitrogen, A-11008) (1:500), Alexa

Fluor� 594 goat anti-mouse IgG (Invitrogen,

A-11005) (1:500) or Alexa Fluor� 488 goat anti-

mouse IgG (Invitrogen, A-11001) (1:500). Cell nuclei

were stained with 40,6-diamidino-2-phenylindole

(Sigma, D9542) (1:500).

Statistical analysis

Data are presented as mean ± SEM from four

animals. All experimental samples were conducted

in triplicate and the four rats were used as independent

biological replicates. Where appropriate t-tests or

one-way ANOVA with Bonferoni post hoc test for

multiple comparisons were used to determine the

statistically significant differences between groups.

The following convention was used in the figures:

*p \ 0.05; **p \ 0.01; ***p \ 0.0001.

Results

One gram of adipose tissue biopsy was harvested from

different origins (inguinal, flank, pericardiac, neck and

omentum) (Fig. 1) in rats. After enzymatic digestion

and centrifugation the stromal cell fraction was

isolated from mature adipocytes and plated in a

75-cm2 flask. After 3 weeks in culture, upon reaching

confluence, cells were trypsinized and counted. ASCs

were plastic-adherent and expressed basal levels of

S100 with a high expression in ASCs from the neck

and flank regions (Fig. 2b–f). A small fraction of cells

was found to be nestin positive (Fig. 2a). Undifferen-

tiated ASCs were negative for expression of GFAP

(data not shown). We compared the proliferation of

the ASCs (passage 2) isolated from over a 96 h period.

Within 96 h the cells were still proliferating and

importantly did not show a saturating signal in the

assay. The cells were incubated with either GM alone

or GM with bFGF or PDGF.

As shown in Fig. 3a, ASCs isolated from the

inguinal, flank and omental region grow significantly

better after 96 h in GM alone versus after 24 h. ASCs

from the neck region grow least in GM. However,

bFGF significantly enhanced the growth rate of all

types within 48 h, with the greatest effect on neck

ASCs. On the other hand, ASCs from the pericardiac

and omental regions responded least (Fig. 3b). Similar

results were observed with PDGF; PDGF speeded the

proliferation of ASCs from the neck region signifi-

cantly better within 72 h but had no effect on ASCs

from the pericardiac region (Fig. 3c). From prolifer-

ation assays, PD times were calculated for the cells at

passage 2. Cells isolated from the inguinal, flank,

omental and neck regions all showed similar PD times

whereas ASCs extracted from pericardiac tissue had a

significantly longer PD time (Fig. 4). Treatment with

bFGF reduced PD time for all the cultures except the

cells isolated from the omentum (Fig. 4). In contrast,

application of PDGF only reduced the PD time of

ASCs taken from the neck region (Fig. 4).
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Discussion

Nerve injury is very common and often affecting

young patients (mean age 30). In spite of advanced

treatment options involving microsurgery, almost all

patients are left with lifelong disabilities involving

loss of sensation and motor function (Lundborg 2000).

New tissue-engineering approaches might facilitate

the process of nerve repair and regeneration and would

certainly represent a tremendous medical break-

through. An advantageous approach for clinical

practice would be to harvest ASCs and immediately

Fig. 1 Different harvest locations with harvest tissue aside A neck, B flank, C inguinal, D pericardiac, E omentum
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give them back to the patient within the same

operation, the so called ‘‘one-step surgical procedure’’

(Helder et al. 2007).

As ASCs from different origins might have differ-

ent utility for the treatment of nerve injury, we

investigated whether cell proliferation differs among

different origins. For this purpose we used a model

system which keeps other environmental factors

stable, including age and donor gender.

Our results showed that pericardiac ASCs grew

significantly slower than the cells isolated from other

regions. The growth rate was enhanced for all types

except omental ASCs with bFGF. PDGF had minimal

effect on ASCs proliferation rate, only enhancing the

Fig. 2 Representative

immunofluorescent staining

of ASCs from different

harvest locations. The cells

were stained with nestin

(red) and S100 (green),

respectively. The nuclei are

stained with DAPI (40-6-

diamidino-2-phenylindole,

blue). Scale bar 100 lm.

(Color figure online)
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growth of ASCs from the neck region. This goes in line

with our immunohistochemical analysis where high

levels of S100 expression were found in ASCs from

the flank and neck regions. Furthermore, a basal

expression of nestin but no expression of GFAP was

found. This is consistent with the literature where

undifferentiated ASCs have been found to constitu-

tively express neural specific proteins (Deng et al.

Fig. 3 Proliferation rate of ASC from different origins (ing
inguinal, flk flank, peri pericardiac, om omental, and neck) with

GM alone (a), or addition of bFGF (b) and PDGF (c). *p \ 0.05,

**p \ 0.01, ***p \ 0.001 significantly different from respec-

tive samples at 24 h and #p \ 0.05 significantly different at 96 h

compared with ASCs from inguinal, flank or neck regions
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2006; Kaewkhaw et al. 2011; Lattanzi et al. 2011). It is

suggested that nestin expression is an essential

prerequisite for MSCs to progress toward a neural

lineage (Wislet-Gendebien et al. 2003).

Controversy exists about the capacity of MSCs to

transdifferentiate into lineages derived from the neu-

roectoderm (Phinney and Prockop 2007). New find-

ings suggest that the ability of MSCs to alter the tissue

microenvironment via secretion of soluble factors may

contribute more significantly than their capacity for

transdifferentiation in tissue repair (Phinney and

Prockop 2007). In addition, stromal cells have been

shown to express neurotrophic receptor proteins

(Labouyrie et al. 1999). Thus, our results could be

attributed to the fact that the various populations of

ASCs could express different levels of basic FGF

receptor or contain CD271-expressing cells, which

have been shown to co-express CD140b (platelet-

derived growth factor receptor b (Buhring et al. 2007).

In this study we decided to use bFGF and PDGF as

they are potent mitogens for glial cells and have a

potential effect on nerve repair (Lutton et al. 2012;

Yun et al. 2010). Fibroblast growth factors (FGFs)

have shown potential effects on the repair and

regeneration of a wide spectrum of tissues, including

skin, blood vessel, muscle (Tassi et al. 2011), de novo

adipogenesis (Tabata et al. 2000), tendon/ligament

(Hankemeier et al. 2005), cartilage (Martin et al.

2001), bone (Kimura et al. 2008), tooth (Kitamura

et al. 2011), and nerve tissues (Yun et al. 2010).

PDGF was first identified as a factor in platelets

which allowed the growth of fibroblasts in vitro

(Kohler and Lipton 1974). Further characterization of

this factor demonstrated that it is a potent mitogen for

all cells of mesenchymal origin, including vascular

smooth muscle cells and glial cells (Ross et al. 1986).

PDGF is, as FGF, an angiogenic growth factor that

accelerates capillary formation (Sato et al. 1993).

Adipose tissue growth seems to be regulated through

angiogenesis (Hausman and Richardson 2004) and

PDGF itself stimulates pre-adipocyte proliferation

(Hauner et al. 1995). Furthermore, it has been reported

that a mixture of glial growth factors (containing

heregulin, forskolin, PDGF and bFGF) can induce

ASCs into cells which are spindle-like in shape and

express GFAP, S100 and p75, similar to genuine

Schwann cells (SCs) (Jiang et al. 2008; Kingham et al.

2007). In response to forskolin, cultured primary SCs

increase cAMP and hence myelin protein p0 can be

induced (Morgan et al. 1991). Expression of p0 in

response to forskolin is a very important feature of

SCs, which indicates that SCs may have myelin-

forming ability (Morgan et al. 1991). In addition,

cAMP elevation is reported to enhance the respon-

siveness of cells to trophic factors (Meyer-Franke et al.

1998). Different mitogenic factors, amongst others

bFGF and PDGF could have a synergistic effect in

enhancement of these factors to MSCs (Dezawa et al.

2001).

Finally, our study has some limitations since the

cells we investigated were isolated from experimental

animals. Thus, due to potential differences between

human and rodent MSCs direct comparisons cannot be

drawn. Nevertheless, our results have identified that

ASCs isolated from the neck region proliferate rapidly

in response to bFGF and show enhanced growth with

Fig. 4 Population doubling

(PD) times for ASCs

isolated from the different

harvest locations and

cultured in growth medium

alone (GM) or in the

presence of bFGF or PDGF.

*p \ 0.05, **p \ 0.01

significantly different from

pericardiac ASCs. #p \ 0.05

significantly decreased PD

time in the presence of bFGF
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PDGF treatment. Future studies will utilise these cells

in experimental in vivo models to assess their func-

tional effects within the injured nervous system.

Conflict of interest No competing financial interests exist.
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