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Abstract We survey the use and limitations of some numerical methods for pricing
derivative contracts in multidimensional geometric Lévy models.
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1 Introduction

Over the last years financial models with jumps and especially Lévy models have seen
a tremendous increase in popularity. By now it is well established that Lévy models
are more suitable for capturing market fluctuations than the classical Black–Scholes
model [18], see e.g. Cont and Tankov [38] and Schoutens [114] for an overview
and empirical justification. The number of financial models with jumps is growing
steadily; for the most popular and some recent examples we refer to [12, 32, 33, 49,
74, 86, 87, 114, 116]. However, even in the Black–Scholes setting, analytic solutions
to derivative pricing problems are often unavailable or not easily computable, e.g.
for American or path-dependent options. Furthermore, in models with jumps one
usually cannot even construct analytic solutions for the pricing of plain European
vanilla options. Therefore, numerical methods for option pricing have been studied by
many authors and several techniques have been developed to obtain efficient pricing
algorithms. In particular, models with jumps give rise to previously unconsidered
numerical challenges which have led to a number of innovative numerical tools.
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In this survey we shall focus on the use and limitations of numerical methods in
multidimensional Lévy models for asset pricing. Naturally, there are many other areas
where numerical tools can be applied to Lévy processes, e.g. portfolio optimization,
but these will be considered elsewhere. In Sects. 2–4 we describe the basic ideas and
mathematical background of the most important numerical pricing techniques and
further illustrate some of their recent developments. In Sect. 5 we give a qualitative
comparison of the described methods and discuss their advantages and shortcomings.
For a comprehensive introduction to Lévy models and numerical methods (mainly in
dimension d = 1) we refer to Cont and Tankov [38].

Throughout this survey, we focus on the pricing of European and American op-
tions on d ≥ 1 assets with maturity T < ∞ and Lipschitz-continuous payoff g(S).
Unless stated otherwise, we shall assume that the d-dimensional underlying is mod-
eled by an exponential Lévy process S with state space R

d
>0. The risk-neutral dynam-

ics of S = (S1, . . . , Sd) are given by

Si
t = Si

0e
rt+Xi

t , i = 1, . . . , d, (1.1)

where X is an R
d -valued Lévy process with characteristic triplet (γ,Q,ν) under a

(non-unique) risk-neutral measure P such that (eX1
, . . . , eXd

) is a martingale with
respect to the canonical filtration F 0

t := σ(Xs, s ≤ t), t ≥ 0, of the multivariate
process X. By the fundamental theorem of asset pricing (see [46]), an arbitrage-free
price V (t, S) of the European option is given by

V (t, S) = E
[
e−r(T −t)g(ST )

∣
∣St = S

]
, (1.2)

where the expectation is taken with respect to the risk-neutral measure introduced
above.

An arbitrage-free price of the corresponding American-type contract is given by
an optimal stopping, free boundary problem, namely

V (t, S) = ess sup
t≤τ≤T

E
[
e−r(T −τ)g(Sτ )

∣∣St = S
]
, (1.3)

with τ ranging over stopping times. Note that the martingale condition implies
∫

|z|>1
ezi ν(dz) < ∞, i = 1, . . . , d.

We therefore assume that the Lévy measure ν of X admits semiheavy tails in the
following sense. Let νi, i = 1, . . . , d denote the marginal Lévy measures of the
Lévy measure ν of X. Then we assume that there are constants β−

i > 0, β+
i > 0,

i = 1, . . . , d such that

∫ ∞

1
eβ+

i zνi(dz) < ∞, and
∫ −1

−∞
e−β−

i zνi(dz) < ∞. (1.4)

Note that this assumption is satisfied by a wide range of Lévy models, cf. e.g. [91].
By [104, Proposition 3.2], it carries over to the multidimensional case:
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Lemma 1.1 Let X be a Lévy process with state space R
d and Lévy measure ν such

that the marginal measures νi satisfy (1.4). Then the Lévy measure ν also decays
exponentially, i.e.,

∫

|z|>1
eη(z)ν(dz) < ∞, with η(z) =

d∑

i=1

(
μ+

i 1{zi>0} + μ−
i 1{zi<0}

)|zi |,

and 0 < μ−
i <

β−
i

d
and 0 < μ+

i <
β+

i

d
, i = 1, . . . , d .

To fix notation, we recall some essential definitions and properties of Lévy
processes. For an extensive description we refer to the monographs [16, 112].

A càdlàg stochastic process {Xt : t ≥ 0} on R
d such that X0 = 0 a.s. is called a

Lévy process if it has independent and stationary increments and is stochastically
continuous. For the characteristic function Φt(·) of X at time t ≥ 0 we have the
Lévy–Khinchin representation (cf. [112]),

Φt(ξ) := E
[
ei〈ξ,Xt 〉] = etψ(ξ), ξ ∈ R

d,

with ψ(ξ) = i〈γ, ξ 〉 − 1

2
〈ξ,Qξ 〉 +

∫

Rd

(
ei〈ξ,z〉 − 1 − i〈ξ, z〉1{|z|≤1}

)
ν(dz), (1.5)

where Q ∈ R
d×d denotes the covariance matrix, γ ∈ R

d the drift vector and ν is the
Lévy measure which satisfies

∫

Rd

(
1 ∧ |z|2)ν(dz) < ∞. (1.6)

The triplet (γ,Q,ν) is called characteristic triplet of the process X and ψ the char-
acteristic exponent.

Also note that the dependence structure of the jump part of a Lévy process X

can be described by a Lévy copula F . These were introduced in Tankov [116] and
developed in Kallsen and Tankov [71]. Lévy copulas are functions F : R̄

d → R̄ which
are finite (except at infinity), grounded, d-increasing and preserve the margins. There
is a Lévy copula associated to each process X and it satisfies the relationship

U(x1, . . . , xd) = F
(
U1(x1), . . . ,Ud(xd)

)
, (1.7)

where U denotes the tail integral and Ui , i = 1, . . . , d are the marginal tail integrals
of the Lévy process X. Therefore, the jump part of a Lévy process is always uniquely
defined by its d univariate marginal processes together with the Lévy copula.

2 Monte Carlo methods

One does not make a mistake by saying that the Monte Carlo method is the most
used simulation tool in financial engineering practice. The popularity of Monte Carlo
stems mainly from its simplicity, the applicability for parallel computing and the
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independence of the convergence rate with respect to the dimension of the underlying
problem. In the context of derivative pricing under diffusion driven market models,
the Monte Carlo method is especially attractive since it is very simple to simulate
Brownian motions. However, when market models are extended to Lévy processes,
Monte Carlo simulation becomes more subtle since the laws of the increments of
Lévy processes are in general not known explicitly. This fact becomes even more
pronounced in d > 1 dimensions. As a consequence, the paths of most Lévy processes
can only be simulated approximately, see e.g. [9, 38, 114].

A Monte Carlo approximation V̄ of the price V of a European option in (1.2) with
t = 0 consists of the following three steps:

1. Let N ∈ N. For j = 1, . . . ,N simulate the realizations X̃T ,j of the log-stock price
process X at maturity.

2. For each realization X̃T ,j , evaluate the payoff

gj := g
(
S1

0e
rT +X̃1

T ,j , . . . , Sd
0 e

rT +X̃d
T ,j

)
.

3. Take the discounted mean of g1, . . . , gN to obtain V̄ = e−rT N−1 ∑N
j=1 gj .

The key in the above algorithm is the first step. The simulation of X̃T ,j is an easy task
as long as the law of the increments of X is known explicitly. However in dimension
d > 1, except for subordinated Brownian motion, explicit formulas to simulate the
increments of multidimensional processes are not available in general and one has
to rely on approximation methods. We discuss Gaussian approximation, where the
small jumps of the Lévy process are approximated by a Brownian motion, as well as
series expansions.

Subordinated Brownian motion A popular class of processes is obtained by subor-
dinating a Brownian motion with drift with an independent positive Lévy process G.
Then the resulting process is given by

Xt = ΣWGt + γGt , Σ ∈ R
d×d
≥0 , γ ∈ R

d, t ∈ [0, T ],

where W = (W 1, . . . ,Wd) is a vector of d independent Brownian motions. If the
subordinator is a gamma or a generalized inverse Gaussian process we obtain a mul-
tidimensional variance gamma [86] or generalized hyperbolic [49] process.

Such processes can directly be simulated at fixed times t0, . . . , tM . To do so,
generate the increments of the subordinator �Gm = Gtm − Gtm−1 , m = 1, . . . ,M

with Gt0 = 0. These can be obtained easily as described in e.g. [114]. After that,
draw independent random variables Ni

m ∼ N (0,1), m = 1, . . . ,M , i = 1, . . . , d

and set �Xm = ΣNm

√
�Gm + γ�Gm. The discretized path of X is then given by

X(tm) = ∑m
j=1 �Xm. In particular, to obtain the realizations X̃T ,j of X at maturity

one may set M = 1 and tM = T .

Gaussian approximation Let X be an R
d -valued Lévy process with characteristic

triplet (γ,0, ν). For ε ∈ (0,1] let νε ≤ ν be a measure such that νε := ν −νε is a finite
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measure and
∫

Rd |x|2νε(dx) < ∞. Decompose X correspondingly into its small and
large jump parts as X = Xε + Xε. The process Xε can be written as

Xε
t = γεt + Nε

t , (2.1)

where γε := γ + ∫
|z|>1 zνε(dz) − ∫

|z|≤1 zνε(dz) and Nε is a compound Poisson
process. A first approximation of Xt is Xt ≈ γεt + Nε

t where jumps of magnitude
smaller than ε are neglected or replaced by their expected values in the finite activity
case. This approximation is reasonable when the intensity of small jumps is low. If
this is not the case, the small jump part Xε can be approximated by an R

d -valued
standard Brownian motion W independent of Nε . It is shown in [10, 109] that, un-
der certain assumptions on the covariance matrix Qε := ∫

Rd zzνε(dz), the process

Q
−1/2
ε Xε converges in distribution to W as ε → 0. Then, by [37], there holds

Theorem 2.1 Let X be an R
d -valued Lévy process with characteristic triplet

(γ,0, ν). Assume that Qε is non-singular for every ε ∈ (0,1] and that for every δ > 0
there holds

∫

〈Q−1
ε z,z〉>δ

〈
Q−1

ε z, z
〉
νε(dz) → 0, as ε → 0.

Assume further that for some family of non-singular matrices {Σε}ε∈(0,1] there holds

Σ−1
ε QεΣ

−
ε → Id, as ε → 0,

where Id denotes the identity matrix in R
d . Then for all ε ∈ (0,1] there exists a càdlàg

process Y ε such that (in the sense of finite dimensional distributions)

Xt
(d)= γεt + ΣεWt + Nε

t + Y ε
t , (2.2)

and such that for all T > 0, supt∈[0,T ] |Σ−1
ε Y ε

t | (P)−→ 0, as ε → 0. Here, γε , Nε are
given in (2.1), and W is an R

d -valued standard Brownian motion independent of Nε .

Thus, a more refined approximation of Xt is given by Xt ≈ ΣεWt + γεt + Nε
t .

The compound Poisson process Nε
t can be simulated using a series representation.

For X being a tempered α-stable process, α ∈ (0,2), it is shown in [37] that the
remainder process Y ε in (2.2) satisfies εα/2−1 supt∈[0,T ] |Y ε

t | → 0 as ε → 0. Hence,
the convergence rate of the Monte Carlo method may be rather low as α is close to 2.

Series representations In this subsection, we briefly discuss the representation of an
R

d -valued pure jump Lévy process with characteristic triplet (0,0, ν) by an (infinite)
series of random variables. Truncating such a series gives the possibility to simulate
the process. In particular, truncated series become useful in connection with Lévy
copulas. We closely follow [108] and set T = 1 for simplicity.

In order to illustrate the basic idea of series approximation we begin by construct-
ing an infinite series representation for the Poisson process. This representation can
then be generalized to more complex processes. Let Γ1,Γ2, . . . be the jumping times
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of a Poisson process with unit rate and V1,V2, . . . i.i.d. uniform random variables
independent of the Γm. Then, a Poisson process with intensity λ can be written as

Xt =
∞∑

m=1

1{Γm≤λ}1{Vm<t} =
∞∑

m=1

U(−1)(Γm)1{Vm<t},

since the tail integral U(·) of a Poisson process is given by U(z) = λ1{z≤1}. Here, Vm

can be interpreted as the jump times and U(−1)(Γm) as the jump sizes of X. To get an
implementable algorithm, the series expansion has of course to be truncated. The two
most obvious possibilities are either to fix a number M and only consider M jumps
or to fix a tolerance ε and only consider Mε = inf{m : U−1(Γm) > ε} jumps. In the
latter case jumps with jump size smaller than ε are omitted. Both approaches yield a
compound Poisson approximation of the Lévy process X.

In general, split X into X = Xε + Xε as above and consider the Lévy–Itô decom-
position

Xε
t =

∫ t

0

∫

|z|>1
zJ (ds,dz) +

∫ t

0

∫

ε≤|z|≤1
z
(
J (ds,dz) − ν(dz)ds

)
.

The Poisson random measure J can be represented in the form J = ∑∞
m=1 δ(Vm,Gm)

as in [70, Proposition II.1.14], where {Gi} is a sequence of random variables indepen-
dent of the i.i.d. sequence {Vi} ∼ U(0,1). Using this representation of J , the process
Xε can be rewritten as

Xε
t =

∑

m∈�ε(ω)

Gm1{Vm≤t} − tγε, t ∈ [0, T ],

where �ε(ω) := {m ≥ 1 : |Gm(ω)| ≥ ε|} and γε := ∫
ε≤|z|≤1 zν(dz). As ε → 0,

Xε a.s.−→ X. One obtains a series representation of X as

Xt =
∞∑

m=1

Gm1{Vm≤t} − tγm, (2.3)

with a suitable sequence of centers {γm}. Note that the sequences {Gm} and {γm}
in (2.3) are not unique. There are several methods to represent them, e.g. LePage’s
method, Bondesson’s method, the rejection method and the shot noise method. For
details we refer to [108]. Here, for the sake of brevity, we only illustrate LePage’s
series representation (see [38, 108]) and focus on the representation of Gm.

LePage’s method is based on the radial decomposition of the Lévy measure as

ν(A) =
∫

Sd−1

∫ ∞

0
1A(zs)μ(dz, s)λ(ds), A ∈ B(Rd \ {0}), (2.4)

where λ is a probability measure on the unit sphere S
d−1 and μ(·, s) is a Lévy mea-

sure on (0,∞) for each s ∈ S
d−1. Define the generalized inverse tail integral

U(−1)(x, s) := inf
{
z > 0 : U(z, s) < x

}
, where U(z, s) :=

∫ ∞

z

μ(dx, s).
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With this notation, the Gm in (2.3) are given by Gm = U(−1)(Γm,Ym)Ym, where {Γm}
is a sequence of jumping times of some standard Poisson process and {Ym} is an
independent sequence of i.i.d. random vectors taking values in S

d−1 with distribution
λ given by (2.4). There are two difficulties arising in the practical simulation of Gm.
Firstly, it may be hard to draw the random vectors Ym in S

d−1 with distribution λ.
Secondly, one needs a closed form expression (or a reasonable method to compute it
numerically) for the inverse tail integral U(−1) of the measure μ(·, s), for each s.

It is also possible to use the series representation (2.3) to simulate Lévy processes
given by Lévy copulas [38, 117]. Here, the jump sizes G

j
m of each component

j = 1, . . . , d are calculated conditionally on the components i = 1, . . . , j − 1. For
the sake of simplicity, we discuss the method for R

2-valued Lévy processes having
positive jumps, following [38]. For a more general treatment, we refer to [117]. Let
F be the Lévy copula associated to X as given in (1.7) with marginal tail integrals
U1, U2. Assume F is continuous on [0,∞]2. We again let Γ 1

1 ,Γ 1
2 , . . . be the jump-

ing times of a Poisson process with unit rate and V1,V2, . . . i.i.d. uniform random
variables independent of Γ 1

m, m ∈ N. Now, additionally consider Γ 2
1 ,Γ 2

2 , . . . , which
are independent of all other variables and distributed according to ∂uF (u, v) |u=Γ 1

m
.

Then, in law there holds

X
j
t =

∞∑

m=1

U
(−1)
j

(
Γ

j
m

)
1{Vm≤t}.

To simulate X1,X2 we start as explained above. We fix a tolerance ε and only con-
sider Mε = inf{m : U−1

1 (Γm) > ε} jumps. Then, for the m-th jump, m ∈ {1, . . . ,Mε},
compute the jump time of the Poisson process, Γ 1

m = ∑m
j=1 Tj , where Tj are standard

exponentially distributed random variables. Then, compute Γ 2
m ∼ ∂uF (u, v) |u=Γ 1

m

and the jump time Vm ∼ U(0,1). The discretized path is given by

X
j
t =

Mε∑

m=1

U
(−1)
j

(
Γ

j
m

)
1{Vm≤t}.

Remark 2.2 Suppose the underlying stochastic process S is not modeled explicitly as
in (1.1), but as the solution of a stochastic differential equation (SDE) of the form

St = S0 +
∫ t

0
f (Ss−)dXs, t ∈ [0, T ], (2.5)

where f is some suitable given function and X is an R
d -valued Lévy process. The

process S might for instance arise from a local or stochastic volatility model. In gen-
eral, it is no longer a Lévy process. To solve the pricing equation (1.2) in such mod-
els, one may use the well-known Euler–Maruyama scheme [89] to approximate the
solution of (2.5). This allows to use Monte Carlo methods also in this setting. To im-
plement the Euler–Maruyama scheme, one has to simulate increments of the driving
Lévy process. As discussed above, in general this can be done only approximately,
so that the approximation of the solution of the SDE bears two errors, one stemming
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from the discretization through the Euler–Maruyama scheme, and one coming from
the approximation of the underlying Lévy process, see e.g. [68, 69, 110] and the
references therein.

In the Black–Scholes setting this approach has been widely studied; for an intro-
ductory overview we refer to [73].

Remark 2.3 Quasi-Monte Carlo as well as randomized Quasi-Monte Carlo methods
have gained a lot of interest over the last decade; see e.g. [58, 79] and the references
therein. A recent survey by L’Ecuyer can be found in [76]. These methods rely on
a careful choice of random numbers that drive the simulation and can improve the
O(N−1/2) convergence rate of ordinary Monte Carlo methods. Recently, they have
been applied in the context of Lévy processes in [11, 80].

Variance reduction In order to obtain more precise estimates, an alternative to sim-
ply increasing the number of simulations N is to use variance reduction techniques.
For a description of the most relevant variance reduction techniques like control vari-
ates technique, antithetic sampling, importance sampling, stratified and bridge sam-
pling, moment matching and low-discrepancy sequences we refer to the monographs
[9, 58] as well as [120].

Here, we only illustrate the basic idea of control variates. Let V̄ = N−1 ∑N
m=1 Xm

be a Monte Carlo estimator of the expectation V = E[X] of a random variable X.
The basic idea of the control variates technique is to look for a random variable Y

which is highly correlated with X and has known mean E[Y ]. Then one may use the
empirical means V̄ , Ȳ to obtain an estimator with lower variance. To do so, for α ∈ R

consider the random variable

Xα := X + α
(
Y − E[Y ]).

Its variance is Var[Xα] = Var[X] + α2Var[Y ] + 2αCov(X,Y ), which is minimized
by the value α∗ := −Cov(X,Y )

Var[Y ] . In this case there holds Var[Xα∗ ] = (1 − ρ2)Var[X],
where ρ denotes the correlation between X and Y . Thus, the variance of X is reduced
by a factor of 1 − ρ2 and the variance reduction performs well if ρ is close to ±1.
The unbiased control variate estimator V̄α for V = E[X] is hence defined by

V̄α := V̄ + α
(
Ȳ − E[Y ]).

In practice, α∗ is usually not known and is therefore replaced by its sample counter-
part

ᾱ∗ := −
∑N

m=1(Xm − X̄)(Ym − Ȳ )
∑N

m=1(Ym − Ȳ )2
.

In the context of option pricing, the control variate Y may, for example, be chosen to
be lower and/or upper bounds for the option price itself (see e.g. [38]) or the price of
the underlying asset at maturity ST (see e.g. [58]). A combination of control variates
and importance sampling for Lévy processes has been applied in [72].
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American options Monte Carlo evaluation of American options has a “Monte Carlo
on Monte Carlo” feature, since the determination of the optimal exercise time de-
pends on an average over future events. To see this, consider a point (Xt , t) on a
single simulated path X. In order to decide whether to exercise at this point, one has
to evaluate the expectation (1.3). This requires continuation from (Xt , t) on many
branching paths, and makes this direct approach infeasible.

In the Black–Scholes setting several methods have been suggested to overcome
this difficulty. For a comparison of the main approaches we refer to [55]. The fol-
lowing have been introduced. The path-bundling technique provides lower and upper
bounds for the true price of an American contract; see e.g. [26, 27]. The martingale
optimization approach replaces the maximization over stopping times by minimizing
over martingales and provides also an upper bound, see [35, 62, 107]. In [84], the
future expectation is replaced by a least square interpolation. This method has been
applied to value an American option with S in (1.1) following the Merton model
(d = 1). Furthermore, in [107] some Monte Carlo results for the valuation of Ameri-
can options under spectrally one-sided Lévy processes are presented.

3 Fast Fourier methods

Contrary to the classical Black–Scholes case in Lévy models there are usually no
closed form option prices since the probability density of a Lévy process is typically
not known in closed form. However, the characteristic function of this density can be
expressed in terms of elementary functions for the majority of one-dimensional Lévy
processes discussed in the literature. This has led to the development of Fourier-based
option pricing methods where the Fourier transform and its inverse,

F
[
g(x)

]
(z) = (2π)−d

∫

Rd

ei〈z,x〉g(x)dx, z ∈ R
d ,

F −1[g(z)
]
(x) =

∫

Rd

e−i〈x,z〉g(z)dz, x ∈ R
d,

are efficiently evaluated numerically by using the FFT algorithm, see [19, 20, 34, 47,
67, 78, 83, 85, 95, 100]. We present two approaches here. First, following the line
of [20, 34, 47, 78] we transform the option value with respect to the log strike price.
Secondly, it is also possible to transform the option value with respect to the log spot
price as in [67, 83, 100]. For simplicity we set the interest rate r = 0.

Transformation with respect to the log strike price Consider an option with strike
K = ek , payoff g(k) = (e〈a,XT 〉 − ek)+ with a ∈ [0,1]d and maturity T . For the sake
of notational simplicity suppose t = 0. The option price is given by

V (0, k) =
∫

Rd

(
e〈a,s〉 − ek

)+
pT (s)ds, k ∈ R,

where pT (s) denotes the corresponding joint density of X1, . . . ,Xd at T .
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Since the payoff g(k) tends to a positive constant as k → −∞, the Fourier trans-
formation of g(k) does not exist in general. Therefore, instead of g(k) one has to
consider the damped payoff eαkg(k) with a damping constant α > 0. The Fourier
transformation of the damped option price can then be written as

F
[
eαkV (0, k)

]
(z) = (2π)−1

∫

R

e(α+iz)kV (0, k)dk

= (2π)−1
∫

Rd

pT (s)

∫ 〈a,s〉

−∞
e(α+iz)k

(
e〈a,s〉 − ek

)
dk ds

= (2π)−1
∫

Rd

pT (s)
e(1+α+iz)〈a,s〉

(α + iz)(1 + α + iz)
ds

= (2π)−1 ΦT ((1 + α + iz)a)

(α + iz)(1 + α + iz)

and therefore

V (0, k) = e−αk

2π
F −1

[
ΦT −t ((1 + α + iz)a)

(α + iz)(1 + α + iz)

]
, k ∈ R.

Note that, by Lemma 1.1, for β−
i > (1 + α)d , i = 1, . . . , d the characteristic function

ΦT ((1 + α + iz)a) exists.

Transformation with respect to the log spot price We now consider a general Euro-
pean option with maturity T and payoff g(x) in log spot price x. The option price is
then given by

V (t, x) = E
[
g(XT )

∣∣Xt = x
] =

∫

Rd

g(x + s)pT −t (s)ds, x ∈ R
d, t ≥ 0.

Now, if F [g] exists, the Fourier transform of the option price can be written as

F
[
V (t, x)

]
(z) = (2π)−d

∫

Rd

ei〈z,x〉V (t, x)dx

= (2π)−d

∫

Rd

ei〈z,y〉g(y)dy

∫

Rd

e−i〈z,s〉pT −t (s)ds

= F
[
g(y)

]
(z) · ΦT −t (−z),

where y = x + s. Therefore

V (t, x) = F −1[F
[
g(y)

]
(z) · ΦT −t (−z)

]
, x ∈ R

d , t ≥ 0. (3.1)

The restriction for the Fourier transformation of the payoff to exist is quite strong,
since it is not even satisfied for a simple basket option. To weaken this assumption
one may again try to dampen the payoff. But this approach is only practicable in
dimension d = 1, since for most multivariate payoff functions there exist some co-
ordinate directions j ∈ {1, . . . , d} such that limyj →±∞ g(y) > 0, e.g. for basket op-
tions. Therefore, in the d-dimensional case one usually has to localize the payoff to
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a bounded domain. One strategy of doing so with an explicit error analysis is de-
scribed in Sect. 4 below. Thereafter, in most cases the Fourier transformation of g(y)

must be evaluated numerically and one hence has to calculate both F and F −1 in
(3.1) numerically. The computational cost is doubled. In dimension d = 1 however
the Fourier transformation of most payoffs can be obtained analytically and only one
Fourier transformation, i.e., F −1 in (3.1), has to be evaluated numerically.

Discretization The multidimensional discrete Fourier transform of a given series of
data points fj is given by the collection

f̂k =
N−1∑

j1=0

· · ·
N−1∑

jd=0

e2πi〈k,j〉/Nfj , kn = 0, . . . ,N − 1, n = 1, . . . , d.

To compute f̂k , kn = 0, . . . ,N − 1, n = 1, . . . , d one a priori needs O(N2d) opera-
tions. Utilizing the so-called fast Fourier transform [41, 98] this computational cost
can be reduced to O(Nd logN). For instance, suppose we want to approximate the
inverse Fourier transform of a function f (z) with a discrete Fourier transform (to
solve (3.1) one may choose f (z) = F [g(y)](z) · ΦT −t (−z)). Then, the integral can
be truncated and discretized using the trapezoidal rule, to give

F −1[f (z)
]
(x) =

∫

Rd

e−i〈x,z〉f (z)dz ≈
∫

[−R,R]d
e−i〈x,z〉f (z)dz

≈
N−1∑

j1=0

· · ·
N−1∑

jd=0

ωjf (zj )e
−i〈x,zj 〉

,

with discretization step �z = 2R
N−1 , zn

jn
= −R + jn�z in Fourier space and suitable

weights wj ; see e.g. [67].
Herewith, in order to obtain an approximate value of V (t, x) in (3.1) for any

x ∈ R
d , we also have to discretize the spot price or x-domain R

d . For this, we define
an additional grid by setting xn

jn
= −R2 + kn�x with step size �x = 2R2

N−1 and given
R2 > 0. With the relation

�z · �x = 2π

N
(3.2)

we then find

F −1[f (z)
]
(xk) ≈ eiR〈xk,1〉

N−1∑

j1=0

· · ·
N−1∑

jd=0

e−i2π〈k,j〉/Nωjf (zj )e
iR2�z〈1,j 〉

= eiR〈xk,1〉f̂k.

This expression can now be evaluated very efficiently using the fast Fourier trans-
form as mentioned above. Also note that by (3.2) the discretization of the Fourier
space and the spot price (or strike price) space are related and cannot be chosen in-
dependently. No time stepping is required and for d = 1 dimension only O(N logN)
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work is needed to obtain the price at N spot (or strike) prices. For convergence rates
and error analysis see [78].

American options In order to compute American option prices, one can approxi-
mate them by a sequence of Bermudan options with increasing number of exercise
dates (as introduced in [56]).

For this, let t = t0 < · · · < tM = T be a time discretization which can be thought
of as exercise times of a Bermudan option. Its price can be computed by backward
induction as

V
(
tM, x

) = g(x),

V
(
tm, x

) = max
(
E

[
V

(
tm+1,Xtm+1

)∣∣Xtm = x
]
, g(x)

)
, m = M − 1, . . . ,0,

(3.3)

where at each time point equation (3.1) is solved with time step tm+1 − tm as in [67,
85]. The overall computational cost for this approximation then is O(MNd logN).
In [19] the Wiener–Hopf factorization is used to compute the values of perpetual
American options.

4 PIDE-based methods

In the Black–Scholes setting, when the underlying process S is a geometric Brownian
motion, it is well known that the solution V (t, S) of the pricing equation (1.2) can
be described as the solution of a parabolic partial differential equation (PDE) also
known as the Black–Scholes equation, namely

∂V

∂t
(t, S) + 1

2

d∑

i,j=1

SiSjQij

∂2V

∂Si∂Sj

+ r

d∑

i=1

Si

∂V

∂Si

(t, S) − rV (t, S) = 0, (4.1)

with suitable boundary conditions depending on the payoff function g(·). Since PDEs
of the form (4.1) are well studied objects in engineering and numerical mathematics,
there exists a whole zoo of sophisticated and very general so-called finite difference
and finite element methods for their numerical solution (at least in dimension d ≤ 3).
For an introduction see e.g. [23] or for a more finance-related perspective [2, 48, 115].
Over the last years many authors have developed several variants of these meth-
ods, especially for the efficient treatment of linear and non-linear problems arising
in diffusion-driven markets, see e.g. [1, 2, 51, 52, 97, 111, 118] and the references
therein.

In this survey article we focus on markets driven by general Lévy processes.
Therefore, we illustrate in this section how numerical methods to solve (4.1) can
be modified and extended in order to yield a general and efficient pricing technique
which can be applied to general Lévy models also in moderate dimension d > 3. The
main difference is that corresponding to the existence of jumps in a Lévy model an
additional integral term has to be introduced to (4.1) resulting in a partial integro-
differential equation (PIDE). More precisely, if S is driven by an exponential Lévy
process X as in (1.1) then, by [104, Theorem 4.2], the solution V (t, S) of (1.2) can
be characterized by
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Theorem 4.1 Let X be a Lévy process with state space R
d and characteristic triplet

(γ,Q,ν). Assume that the function V (t, S) in (1.2) satisfies

V (t, S) ∈ C1,2((0, T ) × R
d
>0

) ∩ C0([0, T ] × R
d
≥0

)
.

Then V (t, S) satisfies the PIDE

∂V

∂t
(t, S) + 1

2

d∑

i,j=1

SiSjQij

∂2V

∂Si∂Sj

+ r

d∑

i=1

Si

∂V

∂Si

(t, S) − rV (t, S)

+
∫

Rd

(

V
(
t, Sez

) − V (t, S) −
d∑

i=1

Si

(
ezi − 1

) ∂V

∂Si

(t, S)

)

ν(dz) = 0 (4.2)

in (0, T ) × R
d
≥0 where V (t, Sez) := V (t, S1e

z1, . . . , Sdezd ), and the terminal condi-
tion is given by

V (T ,S) = g(S) ∀S ∈ R
d
≥0.

For its numerical solution, by [104, Corollary 4.3], the PIDE (4.2) can be trans-
formed into a simpler form.

Corollary 4.2 Let X be a Lévy process with state space R
d and characteristic triplet

(γ,Q,ν) and marginal Lévy measures νi , i = 1, . . . , d satisfying (1.4) with β+
i > 1,

β−
i > 0, i = 1, . . . , d . Furthermore, let

u(τ, x) = erτV
(
T − τ, ex1+(γ1−r)τ , . . . , exd+(γd−r)τ

)
, (4.3)

where

γi = Qii

2
+

∫

R

(
ezi − 1 − zi

)
νi(dzi).

Then u satisfies the PIDE

∂u

∂τ
+ ABS[u] + AJ[u] = 0 (4.4)

in (0, T )×R
d with initial condition u(0, x) := u0. The differential operator is defined

for ϕ ∈ C2
0(Rd) by

ABS[ϕ] = −1

2

d∑

i,j=1

Qij

∂2ϕ

∂xi∂xj

, (4.5)

and the integro-differential operator by

AJ[ϕ] = −
∫

Rd

(

ϕ(x + z) − ϕ(x) −
d∑

i=1

zi

∂ϕ

∂xi

(x)

)

ν(dz). (4.6)
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The initial condition is given by

u0 = g
(
ex

) := g
(
ex1, . . . , exd

)
. (4.7)

Furthermore, for American options instead of a PIDE-based characterization one
obtains an inequality representation provided the price u(·, ·) solves a partial integro-
differential inequality, i.e.,

∂u

∂τ
+ (ABS + AJ)[u] ≤ 0,

u(τ, ·) ≥ g̃τ ,

(u − g̃τ )

(
∂u

∂τ
+ (ABS + AJ)[u]

)
= 0,

(4.8)

with ABS and AJ as in (4.4), where g̃τ denotes the payoff function g transformed
according to (4.3), i.e.,

g̃τ (x) = erτ g
(
ex1+(γ1−r)τ , . . . , exd+(γd−r)τ

)
, x ∈ R

d . (4.9)

For the derivation of (4.8) see e.g. [90] and [38, Sect. 12.1.3] based on the methodol-
ogy of [14, 15].

The implementation of any finite difference or finite element scheme for (4.4),
(4.8) requires the localization of the log price domain R

d to a bounded domain
BR := [−R,R]d , R > 0. For this, we find that in finance truncation of R

d to BR cor-
responds to approximating the solution u of (4.4) by the price uR of a corresponding
barrier option on BR . In log-prices uR is given by

uR(t, x) = E
[
g
(
eXT

)
1{T <τBR,t }

∣∣Xt = x
]
,

where τBR,t = inf{s ≥ t |Xs /∈ BR} denotes the first exit time of X from BR after
time t . In case the underlying stochastic process X admits semiheavy tails (1.4),
the solution uR of the localized problem converges pointwise exponentially to the
solution u of (4.4), i.e., there exist constants c1, c2 > 0 such that

∣∣u(t, x) − uR(t, x)
∣∣ � e−c1R+c2‖x‖∞ .

It therefore indeed suffices to replace the original price space domain R
d by BR with

sufficiently large R > 0. For details we refer to [104]. Furthermore, note that for a
barrier option on BR there is no localization error.

4.1 Finite difference methods

After localization of the original space domain R
d to BR as described above, the

numerical solution of (4.4) by finite differences is obtained in three main steps:

1. The integration domain R
d in (4.6) must also be localized to a bounded domain.

2. The small jumps must be approximated by a Brownian motion.
3. The solution is computed at discrete grid points and the derivatives in (4.4)–(4.6)

are replaced by finite differences.
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Localization of the integration domain The integration domain R
d in (4.6) is trun-

cated to a bounded domain �Z = [−Z,Z]d , Z > 0. Similarly to the localization of
the spatial domain it can be shown that the error decays exponentially with respect
to Z; see [39, 104].

Approximation of small jumps In order to numerically integrate the jump mea-
sure in the finite difference discretization described below, the small jumps of the
Lévy process need to be truncated. By doing this, the Lévy measure becomes fi-
nite. More precisely, we introduce a truncation parameter ε ∈ (0,1] and split the
process X into X = Xε + Xε as defined in Sect. 2. The process Xε is approximated
by a Brownian motion and for the remainder process Xε we then obtain the triplet
(γ + γε,Q + Qε,ν

ε), where the Lévy measure νε is now a finite measure, i.e.,
νε(Rd) < ∞.

Note that the truncation of the small jumps based on the non-financial parameter
ε > 0 introduces an additional error to the discretization which can have a significant
impact on the accuracy and stability of the numerical scheme. For examples, such as
barrier contracts under pure jump Lévy models, we refer to [82, Sects. 6.2, 8.3].

Discretization Consider a uniform grid on [0, T ] × [−R,R]d with time step
�t = T

M
and mesh width �x = 2R

N
for N,M ∈ N. Then, the time and space points

are given by tm = m�t and x
j
nj

= −R + nj�x where m = 0, . . . ,M , nj = 0, . . . ,N

and j = 1, . . . , d . Let um
n = u(tm, x1

n1
, . . . , xd

nd
) be the solution on the grid which is

zero outside of [−R,R]d . The spatial derivatives in (4.5) can be approximated using
finite differences by

∂2u

∂xj ∂xj

(
xj

) ≈
unj +1 − 2unj

+ unj −1

(�x)2
,

∂2u

∂xj ∂xi

(
xj , xi

) ≈
u(nj +1,ni+1) − u(nj +1,ni−1) − u(nj −1,ni+1) + u(nj −1,ni−1)

4(�x)2
,

and the integral in (4.6) is numerically integrated using a trapezoidal quadrature rule
with the same grid resolution �x. Using this, the jump operator (4.6) reads

−
∫

�Z

(
u(xn + z) − u(xn)

)
νε(dz) ≈ −

∑

�1

· · ·
∑

�d

(un+� − un)ν�,

where ν� = ∫ (�1+1/2)�x

(�1−1/2)�x
· · · ∫ (�d+1/2)�x

(�d−1/2)�x
νε(dz). Note that un+� = 0 for

nj + �j /∈ {0, . . . ,N}. Non-zero boundary conditions are treated in [39]. Denoting
by ABS and AJ the discretization matrices representing the differential and jump part,
we can write a θ -time stepping scheme as

um+1 − um

�t
+ θ1ABSum+1 + (1 − θ1)ABSum + θ2AJu

m+1 + (1 − θ2)AJu
m = 0.

(4.10)
Note that the matrix ABS is sparse whereas the matrix AJ is densely populated. For
θ1 = θ2 = 0 the scheme is explicit but not unconditionally stable. Therefore, to ob-
tain stability small time steps are required. For θ1 = θ2 = 1 the scheme is implicit and
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there are no stability constrains. However, at each time step a linear system with a full
matrix has to be solved. Therefore, Cont and Voltchkova [39] propose an explicit-
implicit scheme with θ1 = 1, θ2 = 0 in dimension d = 1 and prove convergence of
the fully discrete scheme. In particular, they show that under certain smoothness as-
sumptions on the payoff function g(·) one obtains first order convergence in �x.

Similar techniques for d = 1 and d = 2 are also shown in [24]. In dimension d = 1,
it is also possible to use the fast Fourier transform and exploit the Toeplitz structure
of the matrix AJ, cf. [3, 7].

However, the described discretization suffers from the so-called “curse of dimen-
sion,” i.e., the number of grid points grows like O(Nd). Therefore, high-dimensional
problems with d > 3 cannot be solved. To break this curse, for the Black–Scholes
equation Reisinger and Wittum [105] employed so-called sparse grids (see [30, 125])
based on the combination technique (see e.g. [31]). Here, the number of grid points
only grows like O(N(logN)d−1). To our knowledge, no finite difference schemes for
Lévy models of dimension d > 2 have been considered in the literature up to now.

Remark 4.3 (Multinomial tree methods) Among the most popular and intuitive nu-
merical pricing techniques in the Black–Scholes setting are the so-called multinomial
tree or Markov chain methods. The tree method originally dates back to Cox et al.
[42] and was subsequently extended to finite activity jump diffusion models [5, 93].
The pricing of European and American options with multinomial approximation has
thereafter been considered by several authors, see e.g. [6, 63, 88]. For multidimen-
sional models however the method fails due to a rapid, exponential growth of com-
plexity with the dimension. An overview can be found in e.g. [75]. The basic idea
reads as follows. For the exponential Lévy process S one can construct a discrete-
time Markov chain s by setting

sn+1 = S
�t,�x
t+�t = S

�t,�x
t exp

(
εn

) = sn exp
(
εn

)
,

where εn denotes an i.i.d. family of random variables taking k ∈ N values. Usually,
the values of εn are chosen to be multiples of the given step size �x,

εn ∈ {−k1�x, . . . ,−�x,0,�x, . . . , k2�x}.
Then there holds k = k1 + k2 + 1. The numbers k1, k2 ∈ N are allowed to differ to
account for asymmetry of jumps. The paths of the Markov chain ln s fall on a lattice
with step size (�t,�x). They can therefore be seen as an explicit finite difference
scheme in (t, lnS)-space. The values of k1, k2 and the transition probabilities have to
be chosen in such a way that absence of arbitrage is guaranteed, cf. [5]. For example,
if we denote quantities on the lattice by An

j , where n denotes the time index of a node
and j the price space index, the approximate value V of a European option can be
computed by backward induction; starting at maturity from the final node N�t = T ,
at each node in the tree the option value is given by the discounted expectation of the
values on the branches, i.e.,

V n
j = e−r�t

k2∑

i=−k1

qiV
n+1
j+i ,



Numerical methods for Lévy processes 487

where qi , i = −k1, . . . , k2, denote the transition probabilities qi = P[εn = i�x]. For
American options this backward step has to be replaced by taking the maximum of
V n

j and the corresponding payoff from exercising at the current time. See also [93].

If the transition probabilities are chosen such that S�t,�x converges weakly to S

as (�t,�x) → 0, convergence of the discrete time European and American option
prices to their continuous time counterparts can be shown to hold, cf. [75, 99].

4.2 Finite element methods

Instead of solving the PIDE (4.4) directly, the finite element method is based on the
reformulation of (4.4) into the corresponding variational Galerkin equation. To this
end, for u,v ∈ C∞

0 (Rd) we associate with ABS in (4.5) the bilinear form

EBS(u, v) = 1

2

d∑

i,j=1

Qij

∫

Rd

∂u

∂xi

∂v

∂xj

dx.

To the jump part AJ in (4.6) we associate the bilinear jump form

EJ(u, v) = −
∫

Rd

∫

Rd

(

u(x + z) − u(x) −
d∑

i=1

zi

∂u

∂xi

(x)

)

v(x)dx ν(dz), (4.11)

and set

E (u, v) = EBS(u, v) + EJ(u, v).

Denoting by D(E ) the domain of E (·, ·), the variational problem associated to (4.4)
reads

Find u ∈ L2
(
(0, T ); D(E )

) ∩ H 1
(
(0, T ); D(E )∗

)
such that

〈
∂u

∂τ
, v

〉

D(E )∗,D(E )

+ E (u, v) = 0, a.e. τ ∈ (0, T ), ∀v ∈ D(E ), (4.12)

u(0) = u0,

where u0 is defined as in (4.7). For the well-posedness of (4.12) we refer to [91] for
one-dimensional and to [50, 104] for certain multidimensional Lévy models. For in-
stance, if Q > 0 in (1.5) the domain D(E ) coincides with the Sobolev space H 1(Rd),
and for Q = 0 and tempered stable margins D(E ) can be seen to be some anisotropic
Sobolev space.

Remark 4.4 One key advantage of the variational formulation (4.12) is that the bilin-
ear form E (·, ·) allows for a naturally singularity free discretization of general Lévy
measures, i.e., the small jumps of the process do not need to be approximated by a
Brownian motion. In contrast to Sect. 4.1, no additional truncation error is introduced.
Consider, for example, a symmetric Lévy measure ν. Then, by [50, Proposition 4.1],
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the bilinear form EJ(·, ·) in (4.11) can be rewritten as

EJ(u, v) = −
∫

Rd

∫

Rd

(
u(x + z) − u(x)

)(
v(x + z) − v(x)

)
ν(dz)dx. (4.13)

Using (1.6), one readily infers that merely Lipschitz-continuous functions u,v are
sufficient for the integrals in (4.13) to exist in the Lebesgue sense. In addition, in
[104, Proposition 4.11] it is shown that the original bilinear form (4.11) exists for all
standard, continuous finite element basis functions and general non-symmetric Lévy
measures.

The finite element method for solving the pricing equations (4.4) and (4.12) has been
studied by Achdou and Pironneau using adaptive mesh refinement techniques, see [2,
Chaps. 4 and 5]. In one dimension, Matache et al. [91, 92] have introduced a very gen-
eral wavelet-based finite element scheme to solve (4.12). This was subsequently ap-
plied to American-type contracts (cf. [90, 121]) as well as stochastic volatility models
(cf. [64]). In [50, 101, 104] the wavelet-based approach was extended to multidimen-
sional models based on sparse tensor products and wavelet compression techniques
as described in [96, 101] and the references therein.

In the following we explain the basic finite element approach (cf. [2, 115]) and
further illustrate the use of wavelet basis functions in this context. After localization
of the original space domain R

d to BR as described above, the numerical solution of
(4.12) by the finite element method is obtained in two main steps:

1. The infinite dimensional space D(E ) needs to be discretized by finite dimensional
subspaces VN ⊂ D(E ) corresponding to a finite element mesh with N degrees of
freedom.

2. A time stepping scheme has to be applied to discretize in time.

Space discretization Let VN ⊂ D(E ) be a subspace of dimension Nd := dimVN

generated by a finite element basis Φ := {φj : j = 1, . . . ,Nd} on a tensor product
mesh of width �x = 2R

N
on BR . For classical examples of basis functions see e.g.

[115, Chapter 5] or [23]. We use the Galerkin approach and approximate the solution

u by a function uN(t, x) = ∑Nd

j=1 uj (t)φj (x) ∈ VN . Then, for each time t ∈ [0, T ] the
semidiscrete problem of finding the coefficient vector u(t) is an initial value problem
for Nd ordinary differential equations

M
∂

∂t
u(t) + Au(t) = 0, u(0) = u0, (4.14)

where u0 denotes the coefficient vector of u0, and M,A denote the mass and stiffness
matrices with respect to the basis of VN , i.e.,

M = (
(φi, φj )

)
1≤i,j≤Nd , A = (

E (φi, φj )
)

1≤i,j≤Nd . (4.15)

Time stepping using the θ -scheme As in the finite difference case, for the time dis-
cretization of (4.15) we consider a uniform grid with time step �t = T

M
and time
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points tm = m�t , m = 0, . . . ,M for some M ∈ N. Furthermore, we again use the
θ -scheme with θ = θ1 = θ2 to obtain

um+1 − um

�t
M + θAum+1 + (1 − θ)Aum = 0, m = 0, . . . ,M − 1. (4.16)

For θ = 1/2, the scheme in (4.16) coincides with the popular Crank–Nicholson
scheme. Note that, in contrast to the finite difference methods, also implicit time
stepping schemes are admissible here provided one chooses a suitable (e.g. wavelet)
basis for VN ; see e.g. [91]. Furthermore, one can also use finite elements for the time
discretization as in [64, 113] where an hp-discontinuous Galerkin method is used.
This yields exponential convergence rates instead of only algebraic ones as in the
θ -scheme, and therefore only M = log(Nd) time steps are required.

Wavelet-based finite element methods Wavelet-based finite element methods (or
wavelet methods) provide a very general PIDE-based numerical pricing technique.
The methods owe their name to the choice of a wavelet basis for the spaces VN in
the finite element method. A basic survey of wavelet-based finite element methods in
finance can be found in [65], and we shall follow it here.

The motivation for applying wavelet methods rather than classical finite ele-
ments can be summarized as follows. As for the finite difference method, in high-
dimensional models finite elements suffer from the “curse of dimension,” i.e., the
number of degrees of freedom on a tensor product finite element mesh grows like
O(Nd). For jump models the non-locality of the underlying operator AJ implies that
the standard finite element stiffness matrix A consists of O(N2d) non-zero entries,
which is not practicable even in one dimension with small mesh widths.

For this reason, wavelet basis functions come into play. They can overcome these
issues while still being easy to compute. In addition to great analytical tractability,
choosing a wavelet basis for the discrete space VN has three main advantages in
practice:

– Break the curse of dimension using sparse tensor products (see e.g. [29, 96]) ⇒
Dimension-independent complexity (up to log-factors).

– Multiscale compression of jump measure of X ⇒ Complexity of jump models can
asymptotically be reduced to Black–Scholes complexity.

– Efficient preconditioning.

To illustrate what a wavelet basis is, we introduce the notion of a multiscale basis for
the finite dimensional space VN ⊂ D(E ). In one dimension, suppose the mesh width
�x of VN can be represented by a negative power of two, �x = 2−L, corresponding
to a level index L ∈ N0. To simplify notation, write VL := VN with basis ΦL := Φ .
Then by decreasing the mesh width �x = 2−L one obtains a sequence of spaces

V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ L2(BR),
¯⋃

L∈N0

VL = L2(BR),

generated by bases ΦL, L ∈ N0. Hence, bi-orthogonal complement or wavelet bases
�L = {ψj,L : j ∈ ∇L}, with suitable index sets ∇L, can be constructed from the
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Fig. 1 Schematic of
single-scale space VL and its
decomposition into multiscale
wavelet spaces W�

single-scale bases ΦL; for details see [36, 44, 94]. Denoting by WL the span of �L,
the spaces VL+1 admit a splitting

VL+1 = WL ⊕ VL, L > 0. (4.17)

Each wavelet space WL can be thought of as describing the increment of information
when refining the finite element approximation from VL to VL+1. Furthermore, (4.17)
implies that for any L > 0 the finite element space VL can be written as a direct
multilevel sum of the wavelet spaces W�, � < L. Thus, any uL ∈ VL = VN has the
representation

uL =
L−1∑

�=0

∑

j∈∇�

dj,�ψj,�,

with suitable coefficients dj,� ∈ R. Figure 1 illustrates the decomposition of the fi-
nite element space VL, L = 4, spanned by continuous, piecewise linear (nodal) basis
functions φi,L into its increment spaces W�, � = 0, . . . ,3, spanned by wavelets ψj,�.

In the multidimensional setting we obtain multivariate wavelet basis functions by
using tensor products. The finite element spaces VL can then be characterized by

VL = span
{
ψj1,�1(x1) · · ·ψjd,�d

(xd) : �1, . . . , �d ≤ L, ji ∈ ∇�i

}
.

Since these multivariate wavelet bases consist of products of one-dimensional wave-
lets, they form hierarchical bases as in [61]. Thus, the spaces VL can be replaced by
sparse tensor product spaces

V̂L = span
{
ψj1,�1(x1) · · ·ψjd,�d

(xd) : �1 + · · · + �d ≤ L, ji ∈ ∇�i

}
.
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In [29, 96] it is shown that, under certain smoothness assumptions on the solution u of
(4.12), the sparse tensor product spaces preserve the approximation properties of the
full tensor product spaces while there holds N̂ := dimV̂L = O(N | logN |d−1) � Nd .
Therefore, the complexity of the finite element stiffness matrix can be reduced to
O(N̂2) instead of originally O(N2d) non-zero entries.

Furthermore, wavelet basis functions give rise to certain cancelation properties
and norm equivalences as illustrated in e.g. [21, 36]. One therefore obtains sharp es-
timates for the entries of the corresponding stiffness matrix, cf. [91, 101]. Herewith
a priori compression schemes can be defined that further reduce the complexity of
the stiffness matrix. The compression exploits the fact that the position of large en-
tries in the stiffness matrix arising from a model with jumps resembles the structure
of a Black–Scholes stiffness matrix. The remaining entries can a priori be proved to
be negligible. Therefore, the compression scheme (asymptotically) reduces the com-
plexity of a model with jumps to that of the Black–Scholes model.

Combining the compression scheme with the sparse tensor product spaces results
in a computational complexity of O(N̂) instead of the original O(N2d). It is proved
that these wavelet schemes preserve stability and convergence of the classical finite
element schemes, cf. [101–103].

Since the convergence of finite element methods has been studied intensively for
many decades, sophisticated numerical analysis is available here. For example, in
[50, 101] it is shown that when using piecewise polynomial basis functions of degree
p ≥ 1, the finite element scheme described above converges at rate p + 1 in �x

(provided sufficient smoothness of the solution u of (4.4)). In particular, employing a
piecewise linear basis as illustrated in Fig. 1 one obtains a second order scheme.

American options Similarly to the variational formulation for European contracts,
for finite element implementation the partial integro-differential inequality (4.8) is
reformulated into the corresponding variational inequality

Find u(τ, ·) ∈ Kg̃τ
:= {

v ∈ D(E ) : v ≥ g̃τ a.e.
}

such that
〈
∂u

∂τ
v − u

〉

D(E )∗,D(E )

+ E (u, v − u) ≤ 0 a.e. in [0, T ], for all v ∈ Kg̃τ
,

with g̃τ given by (4.9).
Choosing finite dimensional subspaces VN ⊂ V , as above, to discretize in space

and applying the θ -scheme defined in (4.16) with θ = 1 to discretize in time leads to
a sequence of matrix linear complementary problems (LCPs)

Given u0, find um ∈ K := {
v ∈ R

dimVN : v ≥ g̃t

}
such that for all v ∈ K ,

(4.18)
(
v − um+1)

(M + �tA)um+1 ≥ (
v − um+1)Mum, m = 0, . . . ,M − 1,

with M, A as in (4.15) and where u0 denotes the coefficient vector of u0. As already
described in (3.3) this discretization can be interpreted as approximating the value of
the American option by a sequence of Bermudan option values.
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For a large number N of degrees of freedom, standard solution methods like pro-
jected SOR [43] for the matrix LCP (4.18) are not suitable, since their rate of conver-
gence depends on N . The wavelet-based solution algorithm suggested in [90] relies
on a fixed point iteration where in each iteration step a VL-projection PK onto the
convex cone K has to be realized. Due to norm equivalences of the wavelet basis,
the outer fixed point iteration convergences at a rate independent of the number of
degrees of freedom. The projection PK is based on a wavelet generalization of the
classical Cryer algorithm [43].

5 Comparison

So far we have presented the setup and general methodology of the major numerical
schemes for multidimensional Lévy models. In this final section we explain the main
differences and problem-dependent advantages of these methods.

Admissible exotic contracts The applicability of the different numerical methods to
exotic contracts in Lévy models is essentially subject to the same challenges as in the
classical Black–Scholes model.

As we have already seen in the above sections, nowadays American contracts
can be handled more or less efficiently by all described methods. For Monte Carlo
however this was long thought to be an impossible task, since it is based on simulation
forward in time. In mesh-based methods one employs backward time stepping. With
this, the efficient pricing of American contracts is straightforward. Therefore, Monte
Carlo schemes are still considered inferior to mesh-based methods when applied to
American contracts.

Contracts with discontinuous payoffs such as digital options do not pose any addi-
tional challenges for the finite element method, since it solves the variational problem
(4.12), which is L2-based. Under certain conditions, however, discontinuous payoffs
can result in a decreased rate of convergence for Monte Carlo methods; for details
see e.g. [25].

Pricing of barrier options can be handled very easily with a PIDE-based approach,
since one simply has to restrict the price-space domain of the discretization to that of
the barrier and impose suitable boundary conditions. Here, very complex multidimen-
sional barriers can be handled instantly. If the barrier is monitored continuously, pric-
ing barrier options is somewhat more complicated for Monte Carlo methods, since
we simulate forward in time and one cannot see what happens in between sampling
dates. Therefore, straightforward Monte Carlo methods overestimate the prices of
knock-out options and underestimate those of knock-in contracts. Correction tech-
niques have been considered for several years now; see e.g. [8, 28, 106]. In the case
where the barrier is monitored at discrete days (which is common in practice) one
may choose the sampling dates to coincide with the observation dates and hence the
bias in the Monte Carlo estimates vanishes. For Fourier methods the Wiener–Hopf
factorization can be used; see e.g. [19].

Monte Carlo methods are easily applied to path-dependent derivatives such as
Asian or lookback options, since sample paths are simulated forward in time and



Numerical methods for Lévy processes 493

the history at each time step is known. One only has to take into account that, as
for barrier options, Monte Carlo methods might result in biased estimates if the con-
tract is monitored continuously. Since mesh-based methods solve backward in time,
they are intrinsically not well suited for path-dependent options. However, several
methods have been introduced to provide PIDE-based tools for such contracts. For
example, to price Asian options one may introduce an additional variable, i.e., in-
crease the problem dimension, to handle the averaging of the underlying’s prices; see
e.g. [119, 123].

For all numerical methods, a continuously paid dividend q can simply be handled
by changing the interest rate r �→ r − q . If the dividend is paid at discrete points in
time it can still be handled easily by Monte Carlo methods, since one is proceeding
forward in time and payment of a dividend results in an immediate decrease of the
underlying’s value. For Fourier and PIDE-based techniques the situation of discretely
paid dividends is usually more complicated, since one needs to enforce additional no-
arbitrage conditions; see e.g. [122].

Admissible market models Monte Carlo methods are applicable to any Lévy process
X as long as there is an efficient way of simulating its trajectories. Furthermore, the
simulation techniques illustrated in Sect. 2 provide a very general framework for
Monte Carlo simulations applicable to more exotic models. Such simulations can
however be rather involved for general multidimensional models. They have to be
considered separately for each model.

In contrast to constructing a new simulation scheme for each process, PIDE-based
methods provide a standard approach whenever the PIDE (4.4) admits a unique solu-
tion and the Lévy measure ν of X is available in a suitable form, i.e., if the density
or tail integrals of ν are known explicitly. These requirements have been proved for
all major one-dimensional models (see [40, 91]) and multidimensional Lévy cop-
ula models (see [50, 104]). One major advantage of the PIDE-based methods is that
changing the market model only amounts to changing the stiffness matrix A in (4.15)
and (4.16). The matrix A needs to be assembled only once for each model and can
be re-used for different payoffs. PIDE-based methods are hence well suited for the
analysis of model risk.

As long as the characteristic function is known (see [114] for an overview) Fourier
methods using the fast Fourier transformation provide a very efficient standardized
approach in moderate dimensions. Except for driving processes with independent
marginals or subordinated Brownian motion, however, the characteristic function is
generally not known in Lévy models of dimension d > 1.

Implementation It is well known that in the Black–Scholes setting one advantage of
the Monte Carlo method is its intuitive and rather simple implementation. In fact for
the one-dimensional Black–Scholes model also Fourier, finite difference and classical
finite element methods can be implemented by straightforward standard techniques.
A great amount of fundamental literature is available in this case; see e.g. [2, 22,
115]. However, for (multidimensional) Lévy models more work is required for all
methods. Even though the convergence rate of the Monte Carlo method is dimension-
independent, its implementation in general requires special considerations for differ-
ent techniques; see e.g. [117] for multidimensional simulation based on copulas.
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As illustrated in the previous sections, all naive grid-based techniques such as
standard Fourier and PIDE methods suffer from an exponential growth of complexity
with the dimension. Applying sparse grids (cf. [29, 50]) or the so-called multigrid
technique (cf. [17, 105]) to overcome this issue requires the implementation of a
non-trivial data structure to handle the degrees of freedom efficiently. Furthermore,
being the most general grid-based method, the implementation of wavelet-based finite
elements requires additional handling of the compression techniques. For implemen-
tation details see [124].

Model sensitivities and Greeks Calculating price sensitivities (e.g. the Greeks) is
a central modeling and computational task for risk management and hedging. We
distinguish two classes: Sensitivities of the price V in (1.2) to variations of a model
parameter, like the Greek Vega ∂σ V ; and sensitivities of V to variations of the state
space such as the Greek Delta ∂SV . Mesh-based methods are known to be well suited
for the fast and accurate calculation of sensitivities whereas Monte Carlo methods are
facing a certain challenge in this respect.

For PIDE-based methods, for instance, suppose the market model and hence the
operator A = ABS + AJ in (4.4) depends on some model parameter η. We want to
calculate the sensitivity of the solution u of (4.4) with respect to η. To this end, write
u(η0) for a fixed realization η0 of η in order to emphasize the dependence of u on
η0 in (4.4). Then, as shown in [66], the derivative ũ(δη) of u with respect to η, i.e.,
ũ(δη) := lims→0+ 1

s
(u(η0 + sδη) − u(η0)), is the solution of the PIDE

∂ũ(δη)

∂τ
+ A(η0)ũ(δη) = −Dη Au(η0), ũ(δη)(0, ·) = 0 in R

d ,

where Dη A is the derivative of A with respect to η. Therefore, the derivative of u

with respect to η can be obtained as a solution of the same PIDE as the price u

itself, where now the right hand side depends on u. Thus, sensitivities with respect to
model parameters can be calculated with the same computational effort as the price
itself. Furthermore, it is shown in [66] that all computed sensitivities converge with
the same rate as the original price u. For sensitivities with respect to a variation of
the state space, a finite difference-like differentiation procedure is presented in [66]
which allows to obtain the sensitivities from the finite element forward price with the
same convergence rate but without additional work.

Using a similar approach, also Fourier methods are capable of calculating sensitiv-
ities with respect to state space variation efficiently; see e.g. [4] for some numerical
examples.

For Monte Carlo methods the computing time required for the calculation of sensi-
tivities can be significantly greater than the time needed to calculate the prices them-
selves (to the same accuracy). For example, suppose one wants to estimate the Delta
∂SV (S). Then, one can compute a Monte Carlo estimator for V (0, S + δ) for some
small perturbation δ. With this, the Delta ∂SV (S) may then be approximated by a
forward finite difference estimator (V (0, S + δ) − V (0, S))/δ. In the Black–Scholes
setting, it is proved in [60] that the best possible convergence rate for such an approx-
imation is N−1/4 if the simulations of the two estimators are drawn independently
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(here N denotes the number of sample paths). By replacing the forward finite dif-
ference estimator with a central difference estimator this rate can be improved to
N−1/3. Furthermore, using common random numbers for both Monte Carlo estima-
tors, one can obtain N−1/2; see [59, 60, 77]. However, an important drawback of
using common random numbers is that it may perform very poorly when the payoff
is not sufficiently smooth, e.g. for digital options. For a more sophisticated method
of calculating the Delta we refer to e.g. [57].

Also in the Black–Scholes setting, Malliavin calculus has become a popular tool
for the Monte Carlo calculation of certain Greeks. This approach is based on the
observation that most of the sensitivities of interest can be expressed as E[g(ST )π],
where π is a random variable depending on the sensitivity to be calculated. For details
we refer to [45, 53, 54, 81] and the references therein. In case the probability density
of S is known and differentiable, the likelihood ratio method (see e.g. [58]) may
be used to replace the Malliavin calculus. See also [58, Sect. 7.2] for the pathwise
differentiation technique.

Extension beyond Lévy models Recently, certain market models have been in-
troduced where the driving process is still Markovian but not Lévy anymore. In
[33] for instance, the underlying S is modeled by a time-inhomogeneous so-called
Sato process. Furthermore, in certain stochastic volatility models such as the BNS
model [13] the driving process is not stationary anymore.

Both time-inhomogeneity and non-stationarity can be handled easily by the PIDE-
based methods. Non-stationarity can be treated by efficient evaluation of the entries
of the stiffness matrices A in (4.10) and (4.14). Furthermore, if the stiffness matrix A
in (4.10), (4.14) is time-dependent, then the time stepping scheme (4.16) can still be
applied with A = A(t) evaluated at each time step.

If the characteristic function of a non-stationary process is known explicitly (as
e.g. for certain instances of the BNS model, see [114]), Fourier methods are applica-
ble. Also if the process is time-inhomogeneous, Fourier methods can be applied as in
[33].

Monte Carlo discretization can easily be extended to non-stationary or time-
inhomogeneous processes, e.g. using suitable Markov chain approximations. With
such a rather naive approach, however, the computational complexity grows signifi-
cantly.
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10. Asmussen, S., Rosiński, J.: Approximations of small jumps of Lévy processes with a view towards

simulation. J. Appl. Probab. 38, 482–493 (2001)
11. Avramidis, A., L’Ecuyer, P.: Efficient Monte Carlo and quasi-Monte Carlo option pricing under the

variance gamma model. Manag. Sci. 52(12), 1930–1944 (2006)
12. Barndorff-Nielsen, O.: Normal inverse Gaussian distributions and stochastic volatility modelling.

Scand. J. Stat. 24(1), 1–13 (1997)
13. Barndorff-Nielsen, O., Shephard, N.: Non-Gaussian Ornstein–Uhlenbeck based models and some of

their uses in financial economics. J. R. Stat. Soc. Ser. B Stat. Methodol. 63, 167–241 (2001)
14. Bensoussan, A., Lions, J.L.: Applications of Variational Inequalities in Stochastic Control. Studies

in Mathematics and its Applications, vol. 12. North-Holland, Amsterdam (1982). Translated from
the French

15. Bensoussan, A., Lions, J.L.: Impulse Control and Quasivariational Inequalities. Gauthier-Villars,
Montrouge (1984). Translated from the French by J.M. Cole

16. Bertoin, J.: Lévy Processes. Cambridge University Press, Cambridge (1996)
17. Bin Zubair, H., Oosterlee, C.W., Wienands, R.: Multigrid for high-dimensional elliptic partial differ-

ential equations on non-equidistant grids. SIAM J. Sci. Comput. 29, 1613–1636 (2007) (electronic)
18. Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Polit. Econ. 81, 637–659

(1973)
19. Boyarchenko, S., Levendorskiı̆, S.: Non-Gaussian Merton–Black–Scholes Theory. Advanced Series

on Statistical Science & Applied Probability, vol. 9. World Scientific, River Edge (2002)
20. Boyarchenko, S., Levendorskiı̆, S.: On errors and bias of Fourier transform methods in quadratic

term structure models. Int. J. Theor. Appl. Finance 10, 273–306 (2007)
21. Bramble, J.H., Cohen, A., Dahmen, W.: Multiscale Problems and Methods in Numerical Simula-

tions. Lecture Notes in Mathematics, vol. 1825. Springer, Berlin (2003)
22. Brandimarte, P.: Numerical Methods in Finance and Economics, 2nd edn. Statistics in Practice.

Wiley-Interscience, Hoboken (2006). A MATLAB�-based introduction
23. Brenner, S., Scott, L.: The Mathematical Theory of Finite Element Methods, 2nd edn. Texts in

Applied Mathematics, vol. 15. Springer, New York (2002)
24. Briani, M., Natalini, R., Russo, G.: Implicit-explicit numerical schemes for jump–diffusion

processes. Calcolo 44, 33–57 (2007)
25. Broadie, M., Glasserman, P.: Estimating security price derivatives using simulation. Manag. Sci. 42,

269–285 (1996)
26. Broadie, M., Glasserman, P.: Pricing American-style securities using simulation. J. Econ. Dyn. Con-

trol 21, 1323–1352 (1997)
27. Broadie, M., Glasserman, P., Jain, G.: Enhanced Monte Carlo estimates for American option prices.

J. Deriv. 5, 25–44 (1997)
28. Broadie, M., Glasserman, P., Kou, S.: A continuity correction for discrete barrier options. Math.

Finance 7, 325–349 (1997)
29. Bungartz, H.J., Griebel, M.: A note on the complexity of solving Poisson’s equation for spaces of

bounded mixed derivative. J. Complex. 15, 167–199 (1999)
30. Bungartz, H.J., Griebel, M.: Sparse grids. Acta Numer. 13, 147–269 (2004)
31. Bungartz, H.J., Griebel, M., Röschke, D., Zenger, C.: Two proofs of convergence for the combina-

tion technique for the efficient solution of sparse grid problems. In: Keyes, D., Xu, J. (eds.) Domain
Decomposition Methods in Scientific and Engineering Computing, University Park, PA, 1993. Con-
temp. Math., vol. 180, pp. 15–20. Amer. Math. Soc., Providence (1994)

32. Carr, P., Geman, H., Madan, D., Yor, M.: The fine structure of assets returns: an empirical investiga-
tion. J. Bus. 75, 305–332 (2002)

33. Carr, P., Geman, H., Madan, D., Yor, M.: Self-decomposability and option pricing. Math. Finance
17, 31–57 (2007)

34. Carr, P., Madan, D.: Option valuation and the fast Fourier transform. J. Comput. Finance 2(4), 61–73
(1999)



Numerical methods for Lévy processes 497

35. Chen, N., Glasserman, P.: Additive and multiplicative duals for American option pricing. Finance
Stoch. 11, 153–179 (2007)

36. Cohen, A.: Numerical Analysis of Wavelet Methods. Elsevier, Amsterdam (2003)
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