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Spin-dependent transport in cluster-assembled nanostructures:
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Abstract. Spin-dependent transport in granular metallic nanostructures has been investigated by means
of a thermoelectric measurement. Cobalt clusters of well-defined size (〈n〉 = 15–600) embedded in copper
and silver matrices show magnetic field responses of up to several hundred percent at low temperature.
The experimental observations are attributed to spin mixing. The influence of cluster size and matrix are
discussed.

PACS. 72.25.Rb Spin relaxation and scattering – 73.63.-b Electronic transport in nanoscale materials
and structures – 72.25.Ba Spin polarized transport in metals – 73.50.Jt Galvanomagnetic and other
magnetotransport effects (including thermomagnetic effects)

1 Introduction

The field of spintronics has attracted a lot of attention
in the last few years due to its proposed enhanced device
functionality. Generally, it deals with the interaction be-
tween the magnetization of the sample and the different
conduction electron spin channels. One can roughly dis-
tinguish two approaches: the effect of the magnetic field
on the different spin channels (as in giant and tunnel mag-
netoresistance: GMR [1,2], TMR [3]) and, inversely, the
effect of a polarized current on the local magnetization
as observed in spin transfer torque experiments [4]. In
particular the interest in magnetic nanoparticles has in-
creased in the past few years by virtue of their potential
application in fields such as ultrahigh-density recording
and medicine. The ongoing miniaturization of magnetic
storage devices has reached dimensions of <100 nm, a
regime where intrinsic quantum mechanical effects and
superparamagnetism become important [5]. Granular sys-
tems have already been proven to show spin-dependent
effects like GMR in the early 90’s [6,7], in later years the
deposition of pre-formed clusters in the nm-range in ma-
trices allowed the preparation of better defined samples
and first investigations on the cluster size dependency of
GMR [8].

However, no elastic interaction between the two spin
channels is normally taken account of, albeit its conse-
quence of reducing GMR [9]. We have developed a spe-
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cific thermoelectric measurement protocol that permits
to suppress the dominant part of the resistivity and al-
lows us to extract temperature and spin dependent ef-
fects [10,11]. In order to demonstrate the importance of
spin-mixing processes in nano-structured systems we have
fabricated a series of samples consisting of different well-
defined Cobalt cluster sizes embedded in Copper and Sil-
ver matrices. Thus we show that the high sensitivity of the
thermoelectric signal found with Cu [10] occurs also with
Ag as a matrix. This signal is not directly correlated to
spin-dependent transport properties like GMR and there-
fore must arise from another mechanism of the conduction
electron spin dynamics.

2 Experimental

Samples are prepared according to the strategy of
“cluster-assembled material” [12]. They consist of thin
films of copper or silver in which are dispersed well-
defined cobalt clusters. Narrow distributions of metal clus-
ter ions are prepared and analyzed in the gas phase and co-
deposited with the metal matrix on a substrate of slightly
conductive polyimide (see Fig. 1). This method allows for
the simultaneous control of the cluster size and their con-
centration. The film thickness is 50 nm. We perform our
measurements on stripes <1 mm wide and 10 mm long,
connected with silver paste to the electrodes.

Besides magneto-resistance measurements, we car-
ried out a thermoelectric experiment that measures the
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Fig. 1. Schematic overview of the experimental setup used
to produce the cluster assembled samples. the insert shows a
typical mass spectrum of Co cluster ions.
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Fig. 2. TGV experiment: The voltage over the sample through
which passes a constant current IDC is detected in phase with
the temperature oscillation induced by chopped laser light.

thermogalvanic voltage (TGV) and was initially developed
for multilayer systems [11]. The principle of this experi-
ment is shown in Figure 2: a chopped laser beam irradiates
the film and induces a temperature oscillation of about
1K. The laser irradiates the center of the film and does
not induce a net temperature gradient. The corresponding
voltage across the whole film is measured by lock-in detec-
tion under a constant charge current IDC . Although there
could also be a contribution from the derivative of the re-
sistance with respect to temperature, this effect, however,
is negligible in metals below ∼20K, where the resistance
is temperature independent. Consequently, TGV measure-
ments carried out at 13–14K are independent of the tem-
perature dependence of the resistance. Variation of the
external magnetic field yields the magneto-thermogalvanic
voltage (MTGV).

3 Results and discussion

MTGV measurements were carried out on samples with
two different cluster sizes embedded in two different ma-
trix materials, respectively. Figures 3a and 3b reproduce

Fig. 3. MTGV curves for Co clusters in Cu and Ag matrices.
Mean cluster sizes and atomic percentages are as noted in the
figures. Solid lines are spline fits to guide the eye.

the data for Co clusters in Cu matrices [10], Figures 3c
and 3d show data for Co clusters embedded in Ag. Al-
though the matrix metal is different and also parameters
like concentration and size differ, the general trends are
well reproduced. Small clusters show very large MTGV
responses of several 100% and are far from saturation.
The signal of larger clusters is considerably smaller and
saturates at low fields before slowly decreasing again. Con-
ventional magnetoresistance measurements on all samples
yield signals in the percent range or below with shapes
differing from the MTGV curves [10].

Following the thermodynamic argument in refer-
ence [10] we can identify the different contributions to
the MTGV signal. The thermogalvanic experiment mea-
sures the first derivative of the effective conductivity with
respect to the temperature and comprises two main terms:

– the spin-dependent conductivities describe the uncou-
pled spin channels. They depend on the relative orien-
tation of the magnetic grains, i.e. the misalignment of
successive grains and are responsible for the GMR;

– an additional term stands for effects coupling the two
spin channels, i.e. spin mixing. Differences between
GMR and MTGV in their field and temperature de-
pendence are attributed to this term.

Since the magnetoresistive responses of all samples dis-
cussed here clearly differ in both magnitude as well as
shape from the MTGV signals shown, we infer spin mix-
ing as responsible for this difference.
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Spin mixing has previously been invoked in multi-layer
systems, where electron-magnon collisions are proposed
responsible for spin-flip scattering. However, given the size
of the Co clusters considered in this study, scattering of
conduction electrons by low-q magnons seems unlikely [13]
and another spin-mixing mechanism must be considered.
In granular systems, where the grain size is much smaller
than the spin diffusion length, the spins of the conduction
electrons precess about the exchange field as they traverse
the magnetic cluster. This mechanism was named the “jit-
terbug spin channel mixing” [9] and effectively couples the
two channels if two adjacent moments are misaligned. The
conduction electron spin transition are given according to
Rabi’s formula:

P12(t) = sin2 θ sin2

(
∆E

2�
t

)
, (1)

where θ denotes the angle between adjacent magnetic
grains. At zero field the cluster magnetic moments are
oriented arbitrarily in space and the jitterbug spin mixing
is completely symmetric. As the external field preferen-
tially orients the magnetic moments, an asymmetry of the
respective rates between the two channels develops and
consequently the MTGV signal increases. The successive
orientation of cluster moments with increasing field thus
explains on a qualitative level both the increase as well as
the successive decrease of the observed MTGV signals.

An asymmetry of the spin mixing implies a local polar-
ization of the conduction electrons. This is in accordance
with the spin polarization invoked in order to explain
the anomalous low temperature increase of magnetization
as observed in extraordinary Hall effect measurements of
granular samples [14].

Since the magneto-thermogalvanic experiment detects
spin mixing asymmetries, it does not directly measure
transport properties in the non-magnetic matrix. In the
light of these considerations it is not too surprising
to find comparable MTGV results for Co clusters in
different metallic matrices. Undoped matrices show a
thermogalvanic response, most probably due to interface
effects between matrix and contacts or substrate. No mag-
netic field effect, however, could be detected. The ma-
trix, on the other hand, does intervene indirectly in the
MTGV experiments since the magnitude of the cluster
magnetic moment strongly depends on the surrounding
medium [15,16]. We believe the different degree of quench-
ing of the cluster magnetic moment [17] to be responsi-
ble for the difference in cluster size showing a comparable
MTGV for Co-doped samples of Cu or Ag matrices.

Further experiments at lower temperature and higher
fields are under way and are expected to show satura-
tion also for small clusters. The application of a recently
developed theoretical model [18] also promises further in-
sight into the underlying physics of spin-dependent trans-
port, spin mixing and its detection in thermoelectric ex-
periments.

4 Conclusions

Spin-dependent transport in metallic nanostructures has
been studied using a magneto-thermogalvanic measure-
ment. The observed phenomena are explained as due to
spin mixing caused by the precession of the conduction
electron spin about the cluster magnetic moments. The
saturation behavior for different cluster sizes as well the
indirect influence of the surrounding matrix are rational-
ized within a phenomenological model.
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