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Abstract Hormonal deficit in post-menopausal women has
been proposed to be one risk factor in Alzheimer's disease
(AD) since two thirds of AD patients are women. However,
large treatment trials showed negative effects of long-term
treatment with oestrogens in older women. Thus, oestrogen
treatment after menopause is still under debate, and several
hypotheses trying to explain the failure in outcome are under
discussion. Concurrently, it was shown that amyloid-beta
(Aβ) peptide, the main constituent of senile plaques, as well
as abnormally hyperphosphorylated tau protein, the main
component of neurofibrillary tangles, can modulate the level
of neurosteroids which notably represent neuroactive steroids
synthetized within the nervous system, independently of pe-
ripheral endocrine glands. In this review, we summarize the
role of neurosteroids especially that of oestrogen in AD and
discuss their potentially neuroprotective effects with specific
regard to the role of oestrogens on the maintenance and
function of mitochondria, important organelles which are
highly vulnerable to Aβ- and tau-induced toxicity. We also
discuss the role of Aβ-binding alcohol dehydrogenase
(ABAD), a mitochondrial enzyme able to bind Aβ peptide

thereby modifying mitochondrial function as well as oestra-
diol levels suggesting possible modes of interaction between
the three, and the potential therapeutic implication of inhibit-
ing Aβ–ABAD interaction.
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Introduction

Steroid hormones are molecules, mainly produced by endo-
crine glands such as the adrenal gland, gonads and placenta,
involved in the control of many physiological processes
mainly in the periphery, from reproductive behaviour to
stress response. In 1981, Baulieu and co-workers were the
first to demonstrate steroid production within the nervous
system itself [1]. They showed that the level of some ste-
roids, such as dehydroepiandrosterone (DHEA), was even
four times higher in the anterior brain of rats than in plasma
and nearly 18 times higher than in the posterior brain with
regard to its sulphated form (DHEAS). Of note, the level of
this steroid remained elevated in the brain even after adre-
nalectomy and castration. In the following decades, other
steroids were identified to be synthetized in situ in the brain,
and enzymatic activities of proteins involved in steroido-
genesis have been shown in many regions of the central and
peripheral nervous system, in neurons as well as in glial
cells [2–5]. Thus, this category of molecules is now called
“neurosteroids” and defines neuroactive steroids that are
synthetized within the nervous system, independently of
peripheral endocrine glands. While steroid hormones act at
a distance from their glands of origin in an endocrine way,
neurosteroids are synthetized by the nervous system and act
on the nervous system in an auto/paracrine configuration.
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Because of their lipophilic nature, peripheral steroid hor-
mones can freely cross cell membranes, including the
blood–brain barrier, and play an important role in the devel-
opment, maturation and differentiation of the central and
peripheral nervous system. However, since some steroids
are also synthetized within the nervous system, their blood
levels do not necessarily correspond to their brain concen-
trations [6]. Intra-cerebral steroid synthesis seems to play a
role in cognition, anxiety, depression, neuroprotection and
even nociception [7].

The ability to cross cellular membranes allows them to
act on nuclear receptors exhibiting genomic action by reg-
ulating gene transcription. This action seems to be important
during neonatal life where it has been shown that neuro-
steroids, such as progesterone (PROG) or oestradiol, are
able to promote dendritic growth, spinogenesis, synapto-
genesis and cell survival, particularly in the cerebellum
[5]. Some studies already demonstrated the role of neuro-
steroids, particularly oestrogens, in the regulation of glucose
homeostasis and lipid metabolism [8] as well as in neuro-
protection [9]. Risk for Alzheimer's disease (AD) is associ-
ated with age-related loss of sex steroid hormones in both
women and men [10, 11]. On the one hand, in post-
menopausal women, the precipitous depletion of oestrogens
and progestogens is hypothesized to increase susceptibility
to AD pathogenesis, a concept largely supported by epide-
miological evidence but refuted by some clinical findings,
above all, by results from the “Woman's health initiative
memory study” (WHIMS) (please see detailed discussion in
the “Conclusion” section). On the other hand, a growing
body of evidence indicates a more gradual age-related de-
cline in testosterone in men similarly associated with in-
creased risk to several diseases including AD. Since
testosterone is at least in part aromatized in the brain to
17β-oestradiol, a loss of it may also affect oestrogen-
mediated neuroprotective pathways. But also, the difference
between how rapidly and significantly the female versus
male primary sex hormones decline might partially contrib-
ute to higher AD incidences in women than in men [10].

Alzheimer's Disease, Oxidative Stress, Effect of Gender
and Neogenesis of Neurosteroids

AD is a neurodegenerative brain disorder and the most
common form of dementia among the elderly as shown by
the worldwide prevalence of the disease which was 26.6
million people in 2006 [12]. Clinical symptoms are charac-
terized by severe and progressive loss of memory, language
skills as well as spatial and temporal orientation. From a
cellular point of view, the pathological hallmark of AD is
the presence of extracellular senile plaques—composed of
aggregated amyloid-β peptide (Aβ)—and intracellular

neurofibrillary tangles (NFT)—consisting of aggregates of
abnormally hyperphosphorylated tau protein. A lot of efforts
have been made during the last years to understand the
pathogenesis of the disease, particularly the role of AD
key proteins, Aβ and tau, in oxidative stress and mitochon-
drial dysfunction [13].

Epidemiological and observational studies demonstrated
a higher prevalence and incidence of AD in women even
after adjusting for age—about two thirds of AD patients are
female—as well as a greater vulnerability to the disease
[14]. Thus, at early stages of neurofibrillary tangle develop-
ment, women exhibit greater senile plaque deposition than
men [15], and AD pathology is more strongly associated
with clinical dementia in female patients than in male [16].
The drop of oestrogen levels after menopause was proposed
to be one explanation to this phenomenon. However, there is
little information concerning changes of steroid levels in the
human brain during ageing and under dementia conditions.
As steroids present in nervous tissues originate from the
endocrine glands (steroid hormones) and from local synthe-
sis (neurosteroids), changes in blood levels of steroids with
age do not necessarily reflect changes in their brain levels.
The concentrations of a range of neurosteroids have recently
been measured in various brain regions of aged AD patients
and aged non-demented controls including both genders by
the very sensitive GC/MS methods [6]. Schumacher and
colleagues showed a general trend towards lower level of
steroids including oestrogen in AD patients compared to
controls. Notably, neurosteroid levels were negatively cor-
related with Aβ and phospho-tau in some brain regions [6].
Another study using radioimmunoassay for steroid quanti-
fication demonstrated a decrease in oestrogen level in post-
mortem brain from female AD patients aged 80 years and
older but no significant difference in the 60–79-year age
range compared to non-demented women [17]. However in
men, an age-dependent decrease of androgen level was
observed in the brain of non-demented subjects, which
was even more pronounced in the brain of male AD patients
[17]. Whereas large studies investigating systematically
gender differences with respect to Aβ and or tau pathology
in post-mortem brain tissue from AD patients are missing,
broad evidence emerged from transgenic mice models of
AD indicating an increased Aβ load burden and plaque
number in the female brain compared to age-matched male
mouse brain [11, 18]. Of note, consistent findings on greater
Aβ burden in females were found in different animal AD
models: Tg2576 (APPSWE) mice [19], APP/PS1 [20],
APP23 [21], as well as in triple transgenic mice, like
3xTg-AD mice [18, 22] and tripleAD mice ([23], with respect
to gender differences: unpublished observations). On the
basis that the estrous cycle in female mice is constantly
repeated until approximately 11 months of age and becomes
irregular between 12 and 14 months, the data demonstrating

152 Mol Neurobiol (2012) 46:151–160



a significant enhancement of Aβ load in important brain
regions like the hippocampus from the female after the age
of 11 months are striking. Regarding tau pathology, no
gender differences have been observed in the latter triple
AD models. In agreement, NFT formation in Aβ-injected
tau transgenic mice (P301L) did not vary with gender [24].
Even though one single publication reported an enhanced
neurofibrillary pathology in female TAPP mice [25], all
together, these results point to the involvement of the Aβ
pathway, rather than the tau pathway, in the higher risk of
AD in women.

Interestingly, further supporting evidence comes from ox-
idative stress studies. Previous research of our group [26]
demonstrated a gender-specific partial up-regulation of anti-
oxidant defence in post-mortem brain regions from female
compared to male AD patients further indicating that oxida-
tive damage is caused rather by overproduction from reactive
oxygen species (ROS) than by insufficient detoxification of
ROS. Since mitochondria represent the major source of ROS,
the findings from Lloret and co-workers are of specific interest
showing that brain mitochondria from old female rats produce
higher levels of ROS after exposure to Aβ than age-matched
brain mitochondria from male rats [27].

A selection of studies attested neuroprotective effects of
neurosteroids against AD-related cellular and mitochondrial
injury, but the underlying mechanisms are still poorly
understood.

Findings of our group corroborated that AD key proteins
and oxidative stress are themselves able to modify neogenesis
of neurosteroids in a cellular AD model [28, 29] (Fig. 1). In
fact, treatment of human SH-SY5Y neuroblastoma cells with

H2O2 for 24 or 48 h led to a decrease of oestradiol synthesis.
This was paralleled by an increased cell death compared to
untreated controls and a down-regulation of the expression of
aromatase, an enzyme responsible for oestradiol formation
from testosterone. Interestingly, cell death was also observed
after inhibition of aromatase by treatment with letrozole,
suggesting that endogenous oestradiol formation plays a crit-
ical role in cell survival. Furthermore, if cells were pre-treated
with oestradiol, it was possible to protect them against H2O2

and letrozole-induced cell death. In agreement, a similar pro-
tective effect of oestradiol was observed in stress condition
experiments treating the same cell line with heavy metals,
such as cobalt and mercury [30].

In addition, modulation of neurosteroid production was
observed in SH-SY5Y cells overexpressing the human am-
yloid processor protein (APP) or human tau protein [28].
Indeed, overexpression of human wild-type Tau (hTau 40)
protein induced an increase in the production of PROG, 3α-
androstanediol and 17-hydroxyprogesterone, in contrast to
overexpression of the abnormally hyperphosphorylated tau
bearing the P301L mutation which led to a decrease in the
production of these neurosteroids. In parallel, a decrease of
PROG and 17-hydroxyprogesterone production was ob-
served in cells expressing human wild-type APP (wtAPP),
whereas 3α-androstanediol and oestradiol levels were in-
creased. These results provided first evidence that AD key
proteins are able to modulate, directly or indirectly, the
biological activity of the enzymatic machinery producing
neurosteroids. These findings were further confirmed by in
vitro experiments using native SH-SY5Y cells treated with
aggregated Aβ1-42 peptide for 24 h [31]. Since APPwt SH-

Fig. 1 Main biochemical pathways for neurosteroidogenesis in the ver-
tebrate brain. Boxes represent neurosteroids which are sensitive to modu-
lation by AD key proteins, Aβ and/or tau. Mitochondrial 17β-HSD
(marked by *) is equivalent to the ABAD in mitochondria. PREG preg-
nenolone, PROG progesterone, 17OH-PREG 17-hydroxypregnenolone,
17OH-PROG 17-hydroxyprogesterone, DHEA dehydroepiandrosterone,

DHP dihydroprogesterone, ALLOPREG allopregnanolone,DHT dihydro-
testosterone, P450scc cytochrome P450 cholesterol side chain cleavage,
P450c17 cytochrome P450c17, 3β-HSD 3β-hydroxysteroid dehydroge-
nase, 5α-R 5α-reductase, Arom. aromatase, 21-OHase 21-hydroxylase,
3α-HSOR 3α-hydroxysteroid oxydoreductase, 17β-HSD 17β-
hydroxysteroid dehydrogenase
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SY5Y cells secrete Aβ levels within nanomolar concentra-
tion range, treatment of native SH-SY5Y cells using a “non-
toxic” concentration range (100–1,000 nM, non-cell death-
inducing Aβ1-42 concentrations) revealed an increase in
oestradiol production, whereas toxic Aβ1–42 concentrations
within the micromolar range, leading to cell death, strongly
reduced oestradiol levels.

Modulation of steroid production was also shown in
other cell lines, for example in oligodendrocytes, where
DHEA production is up-regulated under oxidative stress
condition induced by treatment with Aβ peptide or Fe2+

[32]. Interestingly, similar results were found in Alzheimer
patients where DHEA was significantly elevated in brain
and cerebrospinal fluid when compared to control subjects
[33]. Finally, several reports propose the role of allopregna-
nolone (3α, 5α-THP) as a plasmatic biomarker for AD,
since it was shown that the level of this neurosteroid is
decreased by 25 % in the plasma of demented patients
compared with control subjects [34, 35].

The fact that the ability to produce neurosteroids is con-
served in the vertebrates' evolution suggests that this cate-
gory of molecules is important for living beings. Thus, we
could speculate that the modulation of their biosynthesis
plays an important role in the pathophysiology of neurode-
generative disorders, such as AD.

Neurosteroids, Especially Oestrogens,
and Neuroprotection in AD

Evidence of Neuroprotective Action of Steroids in Cellular
and Animal Studies

Neuroprotective effects of neurosteroids against a variety of
brain injuries have already been described for many years.
Numerous studies with the focus on oestrogens showed that
these molecules are able to enhance cerebral blood flow,
prevent atrophy of cholinergic neurons, and modulate the
effects of trophic factors in the brain [36]. Oestrogens are a
group of compounds known for their importance in the
estrous cycle including oestrone (E1), oestradiol (E2), and
oestriol (E3). Oestradiol is about ten times as potent as
oestrone and about 80 times as potent as oestriol in its
oestrogenic effect. Oestradiol is also present in males, being
produced as an active metabolic product of testosterone. The
serum levels of oestradiol in males (14–55 pg/mL) are
roughly comparable to those of post-menopausal women
(<35 pg/mL). Oestradiol in vivo is interconvertible with
oestrone, oestradiol to oestrone conversion being favoured;
however, evidence of metabolism is mainly derived from the
periphery.

Animal studies, especially in rodents and transgenic mice
models for AD, seem to confirm positive effects of oestrogen

treatment. It has been shown that a treatment with oestrogen in
mice expressing mutations in human APP (Swedish and Indi-
ana mutation) had an impact on APP processing decreasing
Aβ levels and so its aggregation into plaques [37]. Mecha-
nisms underlying this action of oestrogen are still poorly
understood, but as discussed by Pike et al. [11], it seems that
oestrogen amongst others is able to promote the α-secretase
pathway (non-amyloidogenic, meaning non-Aβ producing)
via activation of extracellular-regulated kinase 1 and 2 (ERK
1 and 2) and through the protein kinase C (PKC) signalling
pathway.

In triple transgenic AD mice, depletion in sex steroid
hormones induced by ovariectomy in adult females in-
creased significantly Aβ accumulation and had a negative
impact on cognitive performance [18, 38]. Treatment of
these ovariectomized mice with oestrogens was able to
prevent these effects vice versa. Of note, when PROG was
administrated in combination with oestrogens, the beneficial
effects on Aβ accumulation were blocked but not on cog-
nitive performance. However, oestrogen and PROG both
can modulate kinase and phosphatase activity involved in
tau phosphorylation, especially the glycogen synthase
kinase-3β (GSK-3β). Thus, oestrogen can induce the phos-
phorylation of GSK-3β which inactivates the enzyme and
reduces tau phosphorylation, whereas PROG can decrease
the expression of tau and GSK-3β [11, 39]. This suggests
that oestrogen and PROG not only can interact to regulate
APP processing and tau phosphorylation but can also act
independently on different AD pathways.

Cognitive effects of PROG were confirmed in mice bear-
ing the Swedish double mutation of APP and mutant pre-
seniline 1 (APPswe+PSEN1Δ9 mutant mice) which showed
decreased hippocampally mediated cognitive performances
compared to non-transgenic littermates [38]. In this AD
mouse model, PROG was able to improve the cognitive
performance in tasks involving the cortex but not in those
involving the hippocampus. Besides, APPswe+PSEN1Δ9
mice presented decreased 3α, 5α-THP levels (metabolite of
PROG) in the hippocampus, compared to wild-type mice,
suggesting that deficits in hippocampal function may be
due, at least in part, to reduced capacity to form 3α, 5α-
THP in the hippocampus. Furthermore, a more recent study
supported the role of 3α, 5α-THP in triple transgenic mice
model of AD (3xTgAD) by showing reduced Aβ generation
in the hippocampus, cortex and amygdala, coupled with an
increased cellular regeneration after treatment with 3α, 5α-
THP [40].

At the cellular level, oestrogen binds to nuclear receptors,
such as oestrogen receptor α and β (ER α/β), and acts as
transcription factor. It enhanced the expression of anti-
apoptotic proteins, such as Bcl-2 and Bcl-xL, and down-
regulated the expression of Bim, a pro-apoptotic factor,
preventing the initialisation of cell death programme by
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mitochondria [11, 41]. Another way that oestrogen can
protect cells from apoptosis is the activation of antioxidant
defence systems by up-regulating the expression of manga-
nese superoxide dismutase (MnSOD) and glutathione perox-
idase [42]. Thus, oestrogen can have direct antioxidant effects
by increasing reduced glutathione levels and decreasing oxi-
dative DNA damage in mitochondria, as observed in a study
using ovariectomized female rats [43]. Of note, oestrogen can
also modulate the redox state of cells by intervening with
several signalling pathways, such as mitogen-activated
protein kinase (MAPK), G protein-regulated signalling,
NFκB, c-fos, CREB, phosphatidylinositol-3-kinase, PKC
and Ca2+ influx [41, 44]. On the basis of this complex
mode of action, oestrogens not only seem to be able to
decrease oxidative stress markers, including lipid peroxi-
dation, protein oxidation and DNA damage, but can also
directly act on the regulation of mitochondrial function
[42].

Neurosteroids and Mitochondria: Focus on Potential
Protective Effects of Oestrogen Against Aβ-Induced
Toxicity

Mitochondria are the “powerhouses of the cell”, providing
the main part of cellular energy via ATP generation, which
is accomplished through oxidative phosphorylation from
nutritional sources [45]. They control cell survival and death
by regulating both energy metabolism and apoptotic path-
ways and contribute to many cellular functions, including
intracellular calcium homeostasis, alteration of the cellular
reduction–oxidation potential, cell cycle regulation and syn-
aptic plasticity [46]. Mitochondrial dysfunction has been
proposed as an underlying mechanism in the early stages
of AD [47, 48]. We recently summarized evidence from
ageing and Alzheimer models showing that the harmful trio
“ageing, Aβ and tau protein” triggers mitochondrial dys-
function through a number of pathways, such as impairment
of oxidative phosphorylation, elevation of reactive oxygen
species production and interaction with mitochondrial pro-
teins, contributing to the development and progression of
the disease [13, 49].

Mitochondria and neurosteroidogenesis are also closely
linked since mitochondria contain the first enzyme involved
in steroidogenesis, the cytochrome P450 cholesterol side
chain cleavage enzyme (P450scc) located at the inner side
of the mitochondrial membrane which is responsible for the
conversion of cholesterol to pregnenolone (PREG). The first
step of neurosteroidogenesis is the transfer of cholesterol
from the outer to the inner mitochondrial membrane. It is
also the rate-limiting step in the production of neurosteroids
because the ability of cholesterol to enter into mitochondria
to be available to the P450scc will determine the efficiency
of steroidogenesis [50]. Free cholesterol accumulates

outside of mitochondria and binds to the steroidogenic acute
regulatory protein, a hormone-induced mitochondria-
targeted protein that initiates cholesterol transfer into mito-
chondria. Then, molecules are transported inside mitochon-
dria by a protein complex including translocator proteins
(TSPO), a cholesterol-binding mitochondrial protein also
known under the name of peripheral-type benzodiazepine
receptor, which permits cholesterol transfer into mitochon-
dria and subsequent steroid formation.

It has been shown that TSPO is up-regulated in the post-
mortem brain of AD patients, resulting in an increased level
of PREG in the hippocampal region of those brains [50].
Interestingly, the level of 22R-hydroxycholesterol, a steroid
intermediate in the conversion of cholesterol to PREG, was
found at lower levels in the AD brain compared to the
control, which suggests that TSPO does not function nor-
mally in Alzheimer patients [33, 51].

From an energetic point of view, it is known that steroids
such as oestrogen can regulate mitochondrial metabolism by
increasing the expression of glucose transporter subunits
and by regulating some enzymes involved in the tricarbox-
ylic acid cycle (TCA cycle) as well as glycolysis, such as the
hexokinase, phosphofructokinase, pyruvate and malate de-
hydrogenase [41, 52], which leads to improved glucose
utilization by cells [11, 44] (Fig. 2).

Oestrogens seem to be able to up-regulate genes coding
for some electron transport chain components present in
nuclear and in mitochondrial DNA [53, 54]. In fact, an
oestrogen-induced increased expression of some subunits
of mitochondrial complex I (CI), cytochrome c oxidase
(complex IV or CIV) and F1 subunit of ATP synthase was
observed [41, 42, 52]. Furthermore, treatment of ovariecto-
mized female rats with oestradiol induced an increase of
mitochondrial respiratory function in the brain with regard
to an enhancement of O2 consumption coupled to an in-
creased activity of cytochrome c oxidase [53]. Thus, oes-
trogen seems to enhance the general metabolism in cells, but
besides, it seems also able to directly protect mitochondria
against oxidative stress-induced injury [52]. Thus, incuba-
tion of isolated mitochondria from the rat brain with oestra-
diol leads to a decrease of H2O2 production by this organelle
coupled with an increase of the mitochondrial membrane
potential (MMP). Furthermore, it has been proposed that its
phenolic A ring could allow oestradiol to intercalate into the
mitochondrial membrane and to avoid lipid peroxidation
occurring in stress condition [54], which could be responsi-
ble for the stabilization of the MMP. Moreover, oestradiol
seems to prevent the release of cytochrome c by mitochon-
dria (a mechanism known to induce apoptosis of cells by
activating the caspase cascade in the cytoplasm), a mecha-
nism increasing the efficiency of the respiratory chain [52].

Finally, another oestrogen signalling pathway avoiding
the negative effects of oxidative stress is the one regulating
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calcium homeostasis by inducing mitochondrial sequestra-
tion of cytosolic calcium [42, 54]. In fact, an imbalance of
calcium regulation can lead to an increase of ROS produc-
tion by activating the enzyme nitric oxide synthase, which
can in turn sensitize neural cells to oxidative damage. It has
been shown that an oestradiol treatment of primary hippo-
campal neurons was able to potentiate glutamatergic re-
sponse via NMDA receptor which resulted in an increased
influx of calcium in cells. This effect was coupled to an
induction of mitochondrial sequestration of cytosolic calci-
um and an increase of the mitochondrial calcium load tol-
erability thereby avoiding calcium-induced excitotoxicity as
well as promoting cell survival.

Taken together, all those different findings indicate that
oestrogen might be able to compensate deficits and injuries
that occur in AD, namely mitochondrial respiration impair-
ments, enhanced ROS production, excitotoxicity and, more
generally, metabolic deficits (Fig. 2). More recently, new light
has been shed on a mitochondrial enzyme that is able to

directly bind Aβ peptide and in which one of the main
substrate is 17β-oestradiol [55]. This enzyme is known under
the name of 17β-hydroxysteroid dehydrogenase type 10
(17β-HSD) or Aβ-binding alcohol dehydrogenase (ABAD).

ABAD, Oestradiol and Aβ-Induced Mitochondrial
Impairment

ABAD belongs to the alcohol dehydrogenase family, and it is
responsible for the reversible oxido/reduction of several sub-
strates including linear alcohols and steroids, such as 17β-
oestradiol, using NAD+ as cofactor [56]. Under normal con-
ditions (without Aβ), this enzyme plays a role in the regulation
of metabolic homeostasis, and its overexpression improved
cell viability and ATP content [57]. It has been shown that
ABAD is up-regulated in brains of AD mice as well as AD
patients [57, 58], and it has been suggested that the binding of
Aβ changes the conformation of the enzyme, which seems to
exacerbate mitochondrial dysfunction induced by Aβ.

Fig. 2 Modulation of mitochondrial function by Aβ, hyperphosphory-
lated tau and oestradiol. In AD, mitochondrial dysfunction was found
to be a central pathological mechanism which occurs already at early
stages of the disease. On one hand, studies showed that amyloid-β
peptide (Aβ) can be responsible of metabolic impairments, such as the
decrease of glucose consumption observed in the AD brain as well as
the calcium-induced excitotoxicity in neurons. It has been found that
hyperphosphorylated tau and Aβ are able to impair mitochondrial
respiration by inhibiting the ETC CI and CIV, respectively, inducing
decreased oxygen consumption, decreased ATP production and in-
creased ROS level. This oxidative stress induced by ETC dysfunction
can surpass cellular and mitochondrial scavenger (MnSOD, Cu/
ZnSOD) and impacts on MMP as well as mitochondrial DNA
(mtDNA). On the other hand, it has been shown that oestradiol can

increase glucose utilization by cells as well as ETC activity, stabilize
the MMP and prevent ROS production and calcium-induced excitotox-
icity. In the graph, E2 designates where oestradiol potentially acts on
mitochondria to compensate Aβ-induced toxicity. In turn, Aβ seems to
be able to impact oestradiol metabolism in mitochondria, since it can
be directly linked to the mitochondrial enzyme ABAD and possibly
modulates its enzymatic activity (such as the reversible conversion of
oestradiol to oestrone) and non-enzymatic activity (mitochondrial RN-
Ase P). ABAD Aβ-binding alcohol dehydrogenase, CI complex I, CII
complex II, CIII complex III, CIV complex IV, CV complex V, cyt c
cytochrome c, Cu/Zn SOD copper/zinc superoxide dismutase, MnSOD
manganese superoxide dismutase, TCA tricyclic acid, E2 oestradiol,
ROS reactive oxygen species, mtDNA mitochondrial DNA, ER oestro-
gen receptor
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More recently, studies performed in transgenic micemodels
of AD showed that behavioural stress or depletion of ovarian
hormones by ovariectomy exacerbated mitochondrial dys-
function, aggravated plaque pathology and increased ABAD
expression in the brain [59, 60]. Furthermore, double trans-
genic mice overexpressing mutant APP and ABAD present an
earlier onset of cognitive impairment and histopathological
changes when compared to APP mice [49], suggesting that
Aβ–ABAD interaction is an important mechanism underlying
Aβ toxicity. This hypothesis is supported by a study from Yao
and collaborators who recently showed that inhibition of Aβ–
ABAD interaction by a decoy peptide can restore mitochon-
drial deficits (activity of mitochondrial respiratory complexes,
ROS level) and improve neuronal and cognitive function [60].

New interesting findings of our group seem to go in the
same way with regard to the use of a novel small ABAD-
specific compound inhibitor (AG18051) by investigating
the role of this enzyme in Aβ toxicity in human SH-SY5Y
cells treated for 5 days with Aβ1–42 0.5 uM [61]. The crystal
structure of human ABAD in presence of AG18051 showed
that the inhibitor formed a covalent link with the NAD+

cofactor and occupied the substrate-binding site of the en-
zyme [62]. Thus, the inhibitor was able to prevent Aβ-
induced cell death and significantly normalized metabolic
functions impaired by Aβ, such as cytosolic and mitochon-
drial ROS as well as mitochondrial respiration. Furthermore,
it was able to restore oestradiol levels which were reduced
after treatment with Aβ [31, 61]. What is interesting to note
is that the apparent protective effects of the ABAD inhibitor
seem to be independent on its interaction with Aβ. In fact, a
24-h pre-treatment with AG18051, before the incubation of
cells with Aβ1-42, was sufficient to prevent cell death, nor-
malize ROS production and restore mitochondrial respira-
tion. Regarding oestradiol level, we previously showed that

it decreased in the cytosol and increased in isolated mito-
chondria of SH-SY5Y cells after 5 days of treatment with
Aβ [49]. The ABAD inhibitor normalized the oestradiol
level in the cytosol [61], and preliminary data of our group
suggest a similar effect in isolated mitochondria (unpub-
lished data). Thus, we propose the following model of mode
of action: ABAD inhibitor is able to block Aβ toxicity by
changing ABAD configuration, which disables the binding
of Aβ thus preventing its toxic effects (Fig. 3). The action of
ABAD on the electron transport chain (ETC) is still unclear,
but the potential role of ABAD as mitochondrial RNAse P
directly links ABAD to the production of mitochondrial
ETC proteins and ROS generation [63]. Notably, AG18051
was able to normalize also this function of ABAD since
mitochondrial respiration was restored, but the underlying
mechanisms still remain unclear [61].

Thus, the interplay between ABAD, oestradiol and mito-
chondria may be a very interesting lead to follow in the
future to decode Aβ-induced mitochondrial toxicity and
explore therapeutic strategies of ABAD inhibition.

Conclusion

It is still debated whether oestrogen treatment after meno-
pause could result in improved cognitive function in wom-
en. This debate is based on many animal and cell culture
data showing that oestrogens can positively affect the ageing
and AD brain. It was recognized from former studies that
oestrogen depletion in post-menopausal women represents a
significant risk factor for the development of AD and that an
oestrogen replacement therapy may decrease this risk and
even delay disease progression [64, 65]. However, large
treatment trials showed negative effects of long-term

Fig. 3 Aβ, ABAD and mitochondria: modes of interactions. a Under
normal conditions, ABAD is responsible of the reversible oxido/reduc-
tion of linear alcohols and steroids, such as the reversible conversion
from oestradiol to oestrone. Its potential function as an RNAse P could
also be important for the good functioning of the mitochondrial ETC. b
Under AD-relevant pathological conditions, Aβ can directly bind the
mitochondrial enzyme ABAD, changing the configuration of the en-
zyme which seems to inhibit its activity and creates an imbalance

between oestradiol and oestrone. Aβ-induced ABAD misfolding can
impact ETC functioning and increase, directly or indirectly, ROS
production, which lead to cell death. c In the presence of AG18051
(AG), the binding of Aβ to ABAD is inhibited, normalizing oestradiol
level, ROS production, ETC activity, and improves cell survival.
ABAD Aβ-binding alcohol dehydrogenase, IMM inner mitochondrial
membrane, OMM outer mitochondrial membrane
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treatment with oestrogens in older women. Above all, results
from the WHIMS including 4,532 post-menopausal woman
aged over 68 years indicated a twofold increase in dementia
after 4.2 years of hormonal treatment (p.o. treatment with
premaxin plus medroxyprogesterone). In addition, the study
indicated potential risks for breast cancer, pulmonary embo-
lism and stroke [66, 67]. Some attribute this failure to the
synthetic nature of the hormones used in the WHIMS trial,
since in vitro studies support a beneficial role of oestradiol and
progesterone, but not of medroxyprogesterone used in the
WHIMS [68, 69]. Of note, medroxyprogesterone is not me-
tabolized to 3α, 5α-THP and can inhibit conversion of PROG
to 3α, 5α-THP [70]. Similarly, oestradiol, PROG or 3α, 5α-
THP, but not medroxyprogesterone, showed beneficial effects
in ageing, seizure, cortical contusion, ischaemia and diabetic
neuropathymodels [38]. Another theorywhich tries to explain
trial failure is the “critical window hypothesis”, asking for the
critical period where oestrogen might exert a neuroprotective
effect [71]. This hypothesis is substantiated by animal re-
search, e.g. mice which have undergone ovariectomy, but in
which oestrogen treatment was delayed substantially by
months (the equivalent of years in human terms), did not
benefit by this, as the animals did which received treatment
immediately after ovariectomy [72]. However, a recent meta-
analysis [73] indicated, contrary to expectations, that age of
women and duration of time relapsed when treatment was
initiated since menopause did not significantly affect treat-
ment outcome. Thus, natural oestradiol (E2) without a pro-
gestagen should represent the preferred treatment [73].
Furthermore, the oral route of drug delivery, being non-
invasive in nature, is by far the most convenient and preferred
route of administration in any acute or chronic treatment.
Though oestradiol itself from conventional oral oestradiol
formulations has the ability to cross the blood–brain barrier
(BBB) and reach the brain, but a large oral dose is required to
achieve therapeutic levels of oestradiol due to its non-
specificity for the brain. This non-specificity increases the
peripheral drug burden and subsequently potentiates the risk
of peripheral adverse effects. Furthermore, with specific re-
gard to the brain-specific action of oestradiol as a neuroste-
roid, independently of its action in the periphery, other modes
of administration (cyclical, nasal, polymer nanoparticles for
oral delivery) need to be sought and investigated [74]. Alter-
natively, the true potential of phyto-oestrogens, like the soy
isoflavones genistein, daidzein and glycitein, which activate
the same neuroprotective pathways than oestrogens but with
weak oestrogenic cellular effects that might be responsible for
the lower prevalence of AD in Japanese living in their ethnic
homeland compared to Japanese living in the USA [75], to
beneficially modify disease processes should be studied in
clinical trials [27]. In addition, the field could strongly benefit
from the successful development of oestrogen derivates that
have no unfavourable oestrogenic side effects. The successful

use of oestrogen or oestrogen-analogue therapies to delay,
prevent and/or treat AD will require additional research to
optimize key parameters of therapy.

In this context, the interplay between ABAD, oestradiol
and mitochondria and accordingly ABAD inhibition might
represent a further interesting lead to follow in the future.
Knowledge acquired from these studies will eventually be
applied to unravel the pathophysiology and to inform pre-
vention and intervention strategies of AD.
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