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Abstract A tritium (3H) profile was constructed in a long-
screened well (LSW) of the Fontainebleau Sands Aquifer
(France), and the data were combined with temperature
logs to gain insight into the potential effects of the
ambient vertical flow (AVF) of water through the well on
the natural aquifer stratification. AVF is commonly taken
into account in wells located in fracture aquifers or
intercepting two different aquifers with distinct hydraulic
heads. However, due to the vertical hydraulic gradient of
the flow lines intercepted by wells, AVF of groundwater is
a common process within any type of aquifer. The
detection of 3H in the deeper parts of the studied well
(approximate depth 50m), where 3H-free groundwater is
expected, indicates that shallow young water is being
transported downwards through the well itself. The
temperature logs show a nearly zero gradient with depth,
far below the mean geothermal gradient in sedimentary
basins. The results show that the age distribution of
groundwater samples might be biased in relation to the
age distribution in the surroundings of the well. The use of
environmental tracers to investigate aquifer properties,
particularly in LSWs, is then limited by the effects of the
AVF of water that naturally occurs through the well.

Keywords Environmental tracers . Groundwater age .
Long-screen well . France . Tritium

Introduction

Environmental tracer methods have been widely applied
to investigate groundwater bodies in many different sites
around the world. The method relies on the interpretation
of the tracer concentration in groundwater in terms of
aquifer properties such as, for example, the age distribu-
tion of groundwater. Most applied mathematical models
simplify the natural processes affecting the tracer distri-
bution in groundwater (Ekwurzel et al. 1994; Corcho
Alvarado et al. 2005, 2007). In the models, it is assumed
that the transit time distribution of the water sample
adequately represents the age distribution of the flow lines
within the aquifer and that they can be described by
relatively simple analytical functions (e.g. lumped param-
eter models: Zuber 1986; and Zuber and Maloszewski
2001).

In numerous studies up to now, it has been assumed
that wells provide a simple average of the vertical
distribution of tracer or contaminant concentrations
adjacent to the well screen (Zuber and Maloszewski
2001; Zhang and Fogg 2002; Ozyurt and Bayari 2003).
However, recent works have shown that this situation is
more the exception than the rule (Reilly et al. 1989;
Church and Granato 1996; Elci et al. 2001; Zhang and
Fogg 2002; Elci et al. 2003). These studies confirm that
conventional monitoring wells yield composite samples
that might mask the true vertical distribution of dissolved
contaminants (or tracers) in the aquifer. The complexity of
the concentration averages sampled from the wells depend
on factors such as the length and vertical position of the
screened interval (borehole conditions), the hydraulic
conditions in the aquifer, the vertical distribution of the
tracer in the vicinity of the well screen (Martin-Hayden
and Robbins 1997), the sampling method (e.g. passive or
active sampling, multiple level or full screen sampling,
etc.) and the magnitude and direction of the ambient
vertical flow (AVF) of water within the wells (Reilly et al.
1989; Elci et al. 2001, 2003). The effect of these factors
will be particularly pronounced (1) where groundwater
ages (or tracer concentrations) show strong gradients with
depth; and (2) in wells with long screen intervals (>10 m).
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The second case is very common in studies of public
water-supply wells, which have long screens for produc-
tivity purposes.

The question in how far the tracer or age distribution of
a sample represents the situation in the surrounding
aquifer has been addressed in previous investigations
(e.g. Zuber and Maloszewski 2001; Maloszewski et al.
2004; Weissmann et al. 2002; Zinn and Konikow 2007),
but little attention has been paid to the aspect of AVF
within the well and its effects to the tracer distribution
around the well. It is well known that a vertical water flow
is naturally produced at the borehole location due to the
vertical hydraulic gradient of the flow lines intercepted by
the borehole. Commonly a downward component of the
groundwater flow exists in recharge areas, and an upward
component in discharge areas (Fetter 2001).

AVF has been considered in heterogeneous aquifers
(e.g. fractured aquifers) or in boreholes intercepting two
different aquifers with distinct hydraulic heads. However,
AVF could also largely bias the original age stratification
in relatively homogeneous aquifers (Zinn and Konikow
2007). A well is an open water-filled conduit with a very
high hydraulic conductivity compared to the aquifer. This
fast flow path has consequently important implications to
the flow distribution in the surroundings of the well
itself. Samples from wells with long screens might be
ambiguous for quantifying the concentrations in, e.g.
contaminant plumes. (Elci et al. 2001; Zinn and Konikow
2007).

The small fluxes of AVFs require sensitive flow meters
(e.g. heat-pulse or electromagnetic flowmeters; Reilly et
al. 1989). For example, AVFs between 0.01–6.2 L/min
were measured in 73% of 142 monitoring wells from 16
sites across USA (Elci et al. 2001). In a well with a
diameter of 0.3 m, this range of fluxes would be
equivalent to flow velocities of 0.15–130 m/day. In a
short time scale, they produce little changes in the
groundwater age stratification; but in a long-term one,
the original stratification can be significantly distorted due
to the large volume of water that could be transported
through the well. For example, in a borehole with a
vertical flux of 0.5 L/min, about 0.7 m3 of water per day
would be transported from one section to another section
of the borehole. As mentioned before, the magnitude of
the problem would depend on the relative importance of
the vertical with respect to the horizontal flow in the
system; or, in other words, on the head distribution around
the borehole.

The main objective of this report is then to focus on
this problem which is commonly dismissed in tracer
studies of groundwater systems. Simple field experi-
ments, which combined measurements of the environ-
mental tracer 3H and of the water temperature, were
performed to investigate the vertical flow of water in a
well located in the unconfined Fontainebleau Sands
Aquifer (south of Paris, France). Some sampling recom-
mendations are presented which could help to reduce the
influence of the ambient vertical water flow over the tracer
measurements.

Field site description

The unconfined Oligocene Fontainebleau Sands Aquifer
was selected for this investigation because it is hydro-
geologically well known. This aquifer has been the subject
of intensive tracer studies (Bariteau 1996; Schneider 2005;
Corcho Alvarado et al. 2007). The aquifer is located in the
shallower zone of the Paris Basin (France), which is the
largest sedimentary basin of Western Europe (Fig. 1). It is
embedded between two clayey layers: above is the Beauce
formation (limestone, millstone and clay) and below are
Oligocene and Eocene marls which separate the Fontaine-
bleau Sands from the underlying Eocene multi-layered
aquifer (Fig. 2). The upper part of the Fontainebleau sands
formation is made of up to 99% of pure unconsolidated
quartz sands (white facies), while the content of organic
matter, carbonates, sulphides, feldspar and clays (dark
facies) increases slightly with depth (Bariteau 1996). The
Fontainebleau formation has a typical thickness of 50–70 m,
an hydraulic transmissivity of 1 × 10−3–5 × 10−3 m2 s−1 and
a mean total porosity of about 25% (Mégnien 1979; Mercier
1981; Ménillet 1988).

The hydrogeological situation is characterized by a
spatially extended recharge at rates varying between 100
and 150 mm/year (Schneider 2005; Corcho Alvarado et al.
2007), and by groundwater tables laying between 20 and
45 meters below ground level (m bgl). The groundwater
head distribution is mainly a consequence of the topog-
raphy, where water flows from the elevated plateaus to the
lower valleys where groundwater discharges (Fig. 1).
Possible leakage from the underlying Eocene aquifers to
the Fontainebleau Sands can be excluded in the area of the
present investigation, as the potentiometric surface of the
Eocene aquifer is far below that of the Fontainebleau
Aquifer preventing any upward seeping through the
confining lower Oligocene (Schneider 2005).

Most of the production wells in the Fontainebleau
Sands Aquifer have long screen intervals. The borehole
SM was selected for the study for several reasons. The use
of this well for water supply stopped more than 15 years
ago, and the natural flow conditions have therefore re-
established, which, as this study is focused on natural
conditions, is an important condition for this study. The
age structure of the groundwater is well constrained with
an exponential age distribution with a mean age of about
100 years (Corcho Alvarado et al. 2007). The well is
located in an area with elevated piezometric heads
(Fig. 1), and downward flow might be probable (Fetter
2001; Einarson 2005). The well has a long screen interval
(ca. 27 m, located between 26 and 53 m bgl), completely
immersed in the sands formation. The inner diameter of
the sampled screen is 0.6 m. The water table is at about
20–25 m bgl, and the well is about 54 m deep.

Methods
3H activity in groundwater
In a first set of experiments, groundwater samples from
different depths within well SM were taken for tritium
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analysis (3H, half-life of 12.32 years). A low-flow
pumping approach (pumping rate <2 L/min) was selected
for the sampling in order to minimize distortion of the
water column and to reduce a potential mixing of
groundwater from different depth intervals. The 3H
measurements were performed by gas proportional count-
ing at the Physics Institute of the University of Bern
(Switzerland), after an electrolytic enrichment step.

The natural cosmogenic level of 3H in precipitation is a
few TU (Roether 1967); however, as a result of the
atmospheric testing of thermonuclear bombs, high 3H
activities were introduced in the environment between
1951 and 1980. This anthropogenic contamination pro-
duced a maximum 3H fallout in the mid-1960s (bomb
peak), with an almost exponential decrease to present-day
3H fallout levels of about 10 TU. Hence, this radionuclide
has been intensively used for tracing young groundwater
(groundwater that recharged over the past 40–50 years).

Numerous methodologies have been developed for
using this radioisotope in groundwater studies. 3H
concentrations above 0.2 TU indicate the presence of
water components which recharged after 1950. The peak
shape of the 3H fallout curve in precipitation results in
ambiguous dating results. Thus, 3H is commonly com-
bined with its decay product 3He (Schlosser et al. 1988;

Schlosser et al. 1989), which allows the determination of
unique and precise 3H/3He ages of the young groundwater
components. Another approach is based on obtaining
long-term records of 3H in groundwater, which also
provides better constraints to the groundwater age (Zuber
and Maloszewski et al. 2001). Some studies are based on
the combination of 3H with other young tracers like, for
example, 85Kr, SF6 and CFCs in multiple tracer studies
(Ekwurzel et al. 1994; Corcho Alvarado et al. 2005). The
multiple tracer approach provides a better understanding
of the processes that affects the tracer concentrations in
groundwater. In the present study, measurements of 3H in
groundwater are combined with groundwater temperature
data, in a kind of multiple tracer approach, to obtain
information about the occurrence of vertical mixing within
the well.

The 3H fallout in the investigated area was recon-
structed by averaging the 3H fallout data reported for the
monitoring stations located in Le Mans and Orleans-La-
Source (data taken from IAEA/WMO 2001). A value of
5 TU was assumed for fallout prior to the bomb tests
(Roether 1967). The expected 3H distribution in ground-
water was then predicted by coupling an advection-
diffusion transport model for the unsaturated zone with a
lumped parameter model for the saturated zone.

Fig. 1 Location of the study area showing the isopiezometric heads in the Fontainebleau Sands Aquifer (modified after Rampon 1965)
and the location of the sampling well SM. Arrows indicate the most probable flow directions
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A one-dimensional advective diffusive decay trans-
port model is used to describe the transport of 3H through
the thick unsaturated zone (~20–25 m) that overlays the
Fontainebleau Sands Aquifer (Cook and Solomon 1995;
Corcho Alvarado et al. 2007), and to predict the temporal
input of 3H into groundwater. The model, as well as its
validation, have been already described in a previous
publication (Corcho Alvarado et al. 2007). The following
parameters are used for the modeling: 10% for the water
filled porosity and 25% for the total porosity (Mégnien
1979; Vernoux et al. 2001; Schneider 2005), a dispersiv-
ity of 0.1 m (Cook and Solomon 1995; Rueedi et al.
2005, Gaye and Edmunds 1996), a gas tortuosity of 0.6
(Millington 1959), a liquid tortuosity of 0.25 (Barra-
clough and Tinker 1982), a recharge rate of 150 mm/year
(Mercier 1981; Bariteau 1996; Schneider 2005; Corcho
et al. 2005) and a recharge depth of 25 m (depth of the
water table near the borehole).

The temporal input of 3H into groundwater, pre-
dicted with the advective-diffusive-decay transport
model, is then used as an input function (cin) in the
lumped parameter model (Eq. 1). The activity distribu-
tion of 3H in groundwater, at the sampling date, is
obtained applying the dispersion model (Zuber and
Maloszewski 2001). This lumped parameter model is
selected because it can be adapted to represent a large
number of age distributions by simply tuning the

dispersion parameter. The relation between the input
cin and the output tracer concentration cout is given by
the convolution integral:

cout Tð Þ ¼
Z1

0

cin T � tð Þ � e�lt � tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p � d � t3

p � e� t�tð Þ2
d�t dt ð1Þ

where d is the dispersion parameter (years), τ is the
mean residence time, T is the sampling date, λ is the
decay constant of the radioisotope (years−1) and t is
the residence time of a water parcel.

The activity distributions of 3H obtained with the
dispersion model for two different dispersion parameters
are depicted in the Fig. 3. The dispersion parameters
selected for the modeling are within realistic values for
sandy aquifers (Engesgaard et al. 1996). The modeled 3H
activities show a large variability with depth (Fig. 3).
High concentration gradients can be expected in the
depth range between 25–40 m bgl where two samples
were taken for 3H analyses (sampling depths 27 and
33 m bgl). An additional sample was taken at 47 m bgl,
where a 3H activity below detection limit is expected.
Strong deviations between the modeled and measured
values are an indication for vertical flow within the
borehole.

Fig. 2 Geological cross section of the aquifer (left), and schematic display of the applied conceptual model (right)
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Groundwater temperature
In a second set of experiments, the groundwater temper-
ature gradient within the long screen interval of well SM
was investigated. In this study, a temperature sensor with a
resolution of 0.005°C, adequately calibrated, was used to
obtain the groundwater temperature data. In order to
reduce the distortion of the water column, the sensor was
moved as slowly as possible within the well. The
temperature measurements were carried out in two
consecutive months (June and July 2006) by the IDES
laboratory of the University of Paris XI (France).

Temperature logs provide very useful information on the
movement of water through a well, including the location of
depth intervals with elevated conductivity. Absence of
vertical flow is indicated by a smooth and linear temperature
increase with depth according to the local geothermal
gradient, which depends on the thermal conductivity of the
formation and the heat flow from lower strata. A thermal
equilibrium between the water and the surrounding rocks is
achieved within hours. A deviation of the temperature
gradient in the borehole from the geothermal gradient in
the rock matrix provides evidence for a vertical water flow
(Price and Williams 1993). A smaller gradient is an
indication for a downward flux and visa versa. In the area
of investigation, a geothermal gradient of 3°C/100 m can
be assumed for the formations (BRGM 2005). This value is
similar to the average geothermal gradient in French
sedimentary basins of 3°C/100 m (data taken from BRGM
and ADEME (2005); BRGM 2005). The range of variation
of the geothermal gradient in sedimentary basins (1–5°C/
100 m) is also included in the interpretations (Pfister and
Rybach 1996).

Results and dicussion
3H activities in groundwater
The activities of 3H are rather similar in all the
groundwater samples analysed, with values between 5

and 6 TU (Fig. 4). According to the modelling results
(Fig. 3), we would expect a peak and a decrease in depth
with concentrations below the detection limit for the
deepest sampling location where groundwater ages are on
the order of a few hundreds of years (Corcho Alvarado et
al. 2007). The 3H activity of 5.3 TU found in the
groundwater sample taken from the bottom part of the
screen (Fig. 4) indicates the presence of relatively young
groundwater in this depth section of the well. This, and
the lack of a concentration peak, are explained by a
downward vertical flow of water through the well.
Recharge rates estimated based on low-flow pumping or
diffusion samplers (passive sampling; Sanford et al. 1996)
will therefore overestimate the in situ value within the
aquifer.

Groundwater temperature
The groundwater temperature profiles measured in June
and July 2006 in the well SM of the Fontainebleau Sands
Aquifer are shown in the Fig. 4. In both field campaigns
the water temperatures showed a slight change with depth
with a mean gradient of 0.3°C/100 m. This gradient
reveals that the groundwater in the well is not thermally
equilibrated with the rock matrix, which has a mean
geothermal gradient of about 3°C /100 m (BRGM and
ADEME (2005); and BRGM 2005). The reduced temper-
ature gradient observed in the water column is likely the
result of vertical movement of groundwater through the
well.

The annual mean air temperature in the area is 10.7±
0.6°C (Station Trappes of Meteo-France: observation
period from 1991 to 2000), which constrains the water
temperature at the upper part of the screen (25 m bgl)

Fig. 3 3H activities in groundwater modeled with the dispersion
model, for two different dispersion parameters (d=1year and d=10
years), plotted as function of the groundwater age. The dotted lines
represent the depths below the soil surface (30, 35, 40, 45 and 50 m)

Fig. 4 Water temperature profiles measured in well SM on two
different dates (June and July, 2006). For July 2006, the temperature
profiles measured before and after using the low-flow pumping
method are shown. The average geothermal gradient in rocks (3°C/
100 m), with the typical range of variation for France (between 1
and 5°C/100 m), and the water gradient (0.3°C/100 m) are
represented. The 3H activities measured at the selected depth within
the screen are shown
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to about 11.5°C based on a geothermal gradient of 3°
C/100 m in the unsaturated zone of the aquifer
(Gosnold et al. 1997). This estimate fits to the values
measured at the upper part of the screen (11.5–11.6°C,
see Fig. 4). An agreement that further supports the
hypothesis of a downward water flow within the well.

Conclusions

Simple field experiments confirmed the existence of
ambient vertical flow in a LSW which is located in an
area of the Fontainebleau Sands Aquifer with very
homogeneous hydrogeological conditions. This preferen-
tial transport of water through the well has strong
implications, for example, for the interpretation of the
environmental tracer data. Since the groundwater stratifi-
cation within and in the surroundings of the well is
modified by the AVF of water; samples collected from the
well would provide unreliable and potentially misleading
results of aquifer properties. The application of the
commonly used lumped parameter models might result
in a biased understanding of the real groundwater age
distribution in the aquifer.

The study highlights the possibility of using tempera-
ture logs for identifying the existence of AVF in wells.
This approach is in general cheap and does not require
further interpretations. It is shown that tracers with large
stratification of depth such as 3H, are excellent tools for
detecting the direction of the vertical flow. However, for
the same reason, their use for investigating aquifer
properties may be restricted.

Special care must be taken when planning tracer
investigations, even in aquifers with very homogeneous
hydrogeological conditions. In recent years, several
sampling strategies have been proposed to avoid the
misrepresentations discussed above (Nielsen 2005). The
sampling techniques have to be adopted according to the
objectives of the investigation, the hydrogeological
conditions of the site and the design of the borehole.
Between the most common solutions we could mention,
for example, the drilling of precise monitor boreholes
open to selected depths or short-screened boreholes. This
solution is, in general, expensive, as several boreholes
will be needed to cover different depths, and requires
other testing. Other researchers prefer the use of
“packers” in already drilled boreholes, but special care
must be taken to avoid mixing via percolation of water
through the packing material.

In order to reduce the effects of the AVF within
boreholes, special attention must be paid in designing and
constructing the wells. If a detailed characterization of the
aquifer system is needed, then it would be advisable to use
multiple-level sampling in short-screened wells instead of
using the full screen sampling in LSWs. However, this
solution is generally expensive.
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