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Abstract The emergence of Intelligent Transportation Systems and the associated technolo-

gies has increased the need for complex models and algorithms. Namely, real-time infor-

mation systems, directly influencing transportation demand, must be supported by detailed

behavioral models capturing travel and driving decisions. Discrete choice models methodol-

ogy provide an appropriate framework to capture such behavior. Recently, the Cross-Nested

Logit (CNL) model has received quite a bit of attention in the literature to capture decisions

such as mode choice, departure time choice and route choice.

In this paper, we develop on the general formulation of the Cross Nested Logit model

proposed by Ben-Akiva and Bierlaire (1999) and based on the Generalized Extreme Value

(GEV) model. We show that it is equivalent to the formulations by Papola (2004) and Wen and

Koppelman (2001). We also show that the formulations by Small (1987) and Vovsha (1997)

are special cases of this formulation. We formally prove that the Cross-Nested Logit model

is indeed a member of the GEV models family. In doing so, we clearly distinguish between

conditions that are necessary to prove consistency with the GEV theory, from normaliza-

tion conditions. Finally, we propose to estimate the model with non-linear programming

algorithms, instead of heuristics proposed in the literature. In order to make it operational,

we provide the first derivatives of the log-likelihood function, which are necessary to such

optimization procedures.

Keywords Transportation demand . Behavior model . Logit . GEV . Random utility

1. Introduction

The emergence of Intelligent Transportation Systems and the associated technologies has

increased the need for complex models and algorithms. Namely, real-time information sys-

tems, directly influencing transportation demand, must be supported by detailed behavioral
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models capturing travel and driving decisions (Bierlaire, Mishalani and Ben-Akiva, 2000;

Ben-Akiva et al., 2001; Chatterjee et al., 2002).

Discrete choice models methodology provide an appropriate framework to capture such

behavior. Their nice and strong theoretical properties, and their flexibility to capture various

situations, provide a vast topic of interest for both researchers and practitioners, that has (by

far) not been totally exploited yet. The particular structure of transportation related choice

situations is not always fully consistent with the underlying modeling theory (Ben-Akiva

and Bierlaire, 2003), requiring to enhance and adapt existing models. The GEV models

family has been proved to be consistent with random utility theory by McFadden (1978). It

appears that only a few members of this family have been exploited so far. In addition to

the well known multinomial logit and nested logit models, the cross-nested logit model has

recently received some attention in the literature, although it has already been mentioned by

McFadden (1978). It is a natural extension of the nested logit model, where each alternative

can potentially belong to more than one nest, allowing for a more complex correlation

structure.

The name cross-nested seems to be due to Vovsha (1997), who uses this model for a mode

choice survey in Israel. Vovsha’s model is similar to the Ordered GEV model proposed by

Small (1987). This model is appealing for its ability to capture a wide variety of correla-

tion structures. Papola (2004) has conjectured that a specific CNL model can be obtained

for any given homoscedastic variance-covariance matrix, but Abbé, Bierlaire and Toledo

(2005) have shown this results not to hold in general. The CNL model has a closed form

formulation derived from the GEV model. Therefore, it is appropriate for a wide range of

applications. Vovsha (1997) and Bierlaire, Axhausen and Abbay (2001) use a CNL model for

mode choice. It has also been shown to be appropriate for route choice applications (Vovsha

and Bekhor, 1998), where topological correlations cannot be captured correctly by the multi-

nomial and the nested logit models. Namely, Prashker and Bekhor (1999) discuss the use of

route choice models based on a simplified CNL model within the stochastic user equilibrium

context. Swait (2001) suggests an original CNL structure to model the choice set generation

process.

As part of the GEV model family, the Cross-Nested Logit model inherits the homoscedastic

property. However, heteroscedastic versions of the model can easily be derived (see, for

instance, Bhat, 1995; Zeng, 2000).

The Cross-Nested model is appealing for modeling complex choice situations because� it inherits from the GEV family the theoretical foundations of random utility theory,� it inherits from the GEV family the closed form of the probability model,� it allows to capture a wide range of correlation structures,� the Multinomial logit and the Nested logit models are special cases of the Cross-Nested

logit model.

A detailed theoretical analysis of the model is therefore necessary. The most thorough analysis

of the CNL model is probably due to Wen and Koppelman (2001), who present it as the

Generalized Nested Logit Model. They show how other models are specific cases of that

model, and provide direct and cross elasticities of probabilities with respect to changes

in attributes. Wen and Koppelman (2001) state that the model is indeed a GEV model,

without actually proving it. In this paper, we provide a formal proof, and clearly identify

the conditions associated with the model validity. The other objective of the paper is to

suggest an estimation procedure, based on classical non-linear programming techniques

applied to maximum likelihood estimation, instead of heuristics presented in the literature.
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Such techniques require derivatives of the log-likelihood function, which are provided in the

appendix.

Section 2 introduces the GEV model and presents various formulations of the Cross-

Nested Logit model from the literature. In Section 3, we analyze the most general formu-

lation. We prove that it is consistent with the GEV model family. The estimation procedure

is discussed in Section 4. In the appendix, we provide the derivatives of the model with

regard to parameters to be estimated. Those are required for most efficient optimization

algorithms.

2. The GEV model

The Generalized Extreme Value (GEV) model has been derived from the random utility

model by McFadden (1978). This general model consists of a large family of models that

include the Multinomial Logit and the Nested Logit models. The probability of choosing

alternative i within the choice set C of a given choice maker is

P(i | C) =
xi

∂G
∂xi

(x1, . . . , xJ )

μG(x1, . . . , xJ )
(1)

where J is the number of available alternatives, xi = eVi , Vi is the deterministic part of the

utility function associated with alternative i , and G is a non-negative differentiable function

defined on RJ
+ with the following properties:

1. G is homogeneous of degree μ > 0, that is G(αx) = αμG(x),

2. limxi →+∞ G(x1, . . . , xi , . . . , xJ ) = +∞, for each i = 1, . . . , J ,

3. the kth partial derivative with respect to k distinct xi is non-negative if k is odd and

non-positive if k is even that is, for any distinct indices i1, . . . , ik ∈ {1, . . . , J }, we have

(−1)k ∂k G

∂xi1
. . . ∂xik

(x) ≤ 0, ∀x ∈ RJ
+. (2)

Because G is homogeneous, Euler’s formula implies that

μG =
∑

j

x j G j , (3)

where Gi = ∂G
∂xi

. Therefore, (1) can be written

xi Gi∑
j x j G j

. (4)

Given that

xi Gi = eVi Gi = eln(eVi Gi ) = eVi +ln Gi , (5)
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we obtain a nice form for the probability model:

P(i | C) = eVi +ln Gi (... )∑J
j=1 eVj +ln G j (... )

. (6)

It is well known that the Multinomial Logit and the Nested Logit models are instances of

this model family, with

G(x) =
∑
j∈C

xμ

j (7)

for the Multinomial Logit and

G(x) =
M∑

m=1

(
Jm∑

i=1

xμm
i

) μ

μm

(8)

for the Nested Logit model with M nests containing Jm alternatives each. We present now

several formulations of the Cross-Nested Logit model proposed in the literature.

2.1. Formulations of the cross-nested logit model

The limitations of the Nested Logit model have been observed by several authors (Williams,

1977; Forinash and Koppelman, 1993). The requirement of unambiguous assignment of

alternatives to nests does not allow to capture mixed interactions across alternatives. We

present here some formulations proposed in the literature, adopting the notations of the

respective authors.

After McFadden (1978) seminal paper, it seems that the first Cross-Nested Logit model

has been proposed by Small (1987) in the context of departure time choice. Small’s model,

called the Ordered GEV model, is based on the following function:

G(x1, . . . , xJ ) =
J+M∑
r=1

( ∑
j∈Br

wr− j x
1/ρr

j

)ρr

, (9)

where M is a positive integer, ρr and wm are constants satisfying 0 < ρr ≤ 1, wm ≥ 0 and

M∑
m=0

wm = 1. (10)

The Br are overlapping subsets of alternatives:

Br = { j ∈ {1, . . . , J }|r − M ≤ j ≤ r}. (11)

Vovsha (1997) introduces the name “Cross-Nested Logit”, and applies the model to a

mode choice application, where the “park & ride” alternative is allowed to belong to the

“composite auto” and the “composite transit” nests. Vovsha derives the Cross-Nested Logit
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model from the GEV model with the generating function:

G(x1, . . . , xJ ) =
∑

m

( ∑
j∈C

α jm x j

)μ

(12)

where m is the nest index, and α jm are model parameters such that

0 ≤ α jm ≤ 1 ∀ j, m, (13)

and ∑
m

α jm > 0 ∀ j. (14)

Vovsha (1997) imposes also that ∑
m

α
μ

jm = 1 ∀ j. (15)

Ben-Akiva and Bierlaire (1999) mention the CNL as an example of an instance of a GEV

model based on the following generating function:

G(x1, . . . , xJ ) =
∑

m

( ∑
j∈C

α jm xμm
j

) μ

μm

, (16)

where m is the nest index, and μm is a parameter associated with nest m.

A similar formulation is used by Papola (2004), based on the following generating func-

tion:

G(x1, . . . , xJ ) =
∑

k

( ∑
j∈Ck

α
θ0/θk

jk eVj /θk

) θk
θ0

, (17)

where Ck ⊆ C is the set of alternatives in nest k, and 0 ≤ θk ≤ θ0. Papola imposes also that∑
k

α jk = 1 ∀ j. (18)

Finally, Wen and Koppelman (2001) also provide an analysis of the CNL model, naming it

the Generalized Nested Logit Model based on the following generating function:

G(x1, . . . , xJ ) =
∑

m

( ∑
n′∈Nm

(αn′m xn′ )
1

μm

)μm

, (19)

where αn′m ≥ 0 and 0 < μm ≤ 1, and Nm is the set of alternatives in nest m. The condition∑
m

αn′m = 1 ∀n′ (20)
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is mentioned to provide a useful interpretation of the nest allocation. Also, Wen and

Koppelman (2001) provide direct- and cross-elasticities formulae for the model.

Note that (12) and (16) allow all alternatives to belong to all nests, whereas (17) and (19)

explicitly define the set of alternatives within each nest (Ck and Nm , resp.). This makes

no difference if we define αim = 0 if and only if alternative i does not belong to nest

m.

There is a trend in the discrete choice community to use the name cross-nested only when

the parameters capturing the level of membership to nests (usually denoted by α) are not

estimated but imposed a priori. We prefer to use it in the general case.

3. Theoretical analysis

Among these formulations, (16) is the most general. Indeed, Vovsha’s and Small’s formula-

tions are specific cases of (16). We obtain Small’s formulation (9) withμ = 1 andμm = 1/ρm .

Vovsha’s formulation (12) is obtained from (16) with μm = 1 for all m.

Papola’s model (17) is equivalent to (16), with μ = 1/θ0, μm = 1/θm and α jm = α
θ0/θm

jm .

Wen and Koppelman’s model (19) is equivalent to (16) with μ = 1, which is a common

normalization for GEV models.

No formal proof is given in the literature that the CNL model is indeed a GEV model.

In most papers, a proof is sketched, but condition 3 is never derived completely. Theorem 2

shows that (16) is indeed a GEV generating function, and identifies the sufficient conditions

on the parameters. Its proof is based on the following lemma.

Lemma 1. Let i1, . . . , ik be k different indices (k > 0) chosen within {1, . . . , J }. If G is
defined by (16), then

∂k G(x)/∂xi1
. . . ∂xik =

∑
m

(
μk

m

∏
n∈{i1,... ,ik }

(
αnm xμm−1

n

) k−1∏
n=0

(
μ

μm
− n

)
y

μ−kμm
μm

m

)
(21)

where

ym =
∑
j∈C

α jm xμm
j . (22)

Proof: The proof is by induction. We have

∂k G(x)

∂xi1

=
∑

m

(
μ

μm
y

μ−μm
μm

m μmαi1m xμm−1
i1

)

=
∑

m

(
μmαi1m xμm−1

i1

μ

μm
y

μ−μm
μm

m

)

proving the result for k = 1.
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Assuming now that the result is verified for k, we have

∂k+1G(x)/∂xi1
. . . ∂xik+1

= ∂

∂xik+1

∂k G(x)

∂xi1
. . . ∂xik

= ∂

∂xik+1

∑
m

(
μk

m

ik∏
n=i1

(
αnm xμm−1

n

) k−1∏
n=0

(
μ

μm
− n

)
y

μ−kμm
μm

m

)

=
∑

m

μk
m

ik∏
n=i1

(
αnm xμm−1

n

) k−1∏
n=0

(
μ

μm
− n

) (
μ

μm
− k

)
y

μ−kμm −μm
μm

m αik+1
μm xμm−1

ik+1

=
∑

m

(
μk+1

m

ik+1∏
n=i1

(
αnm xμm−1

n

) k∏
n=0

(
μ

μm
− n

)
y

μ−(k+1)μm
μm

m

)
.

That concludes the proof. �

Theorem 2. The following conditions are sufficient for (16) to define a GEV generating
function:

1. α jm ≥ 0, ∀ j, m,

2.
∑

m α jm > 0, ∀ j ,

3. μ > 0,

4. μm > 0, ∀m,

5. μ ≤ μm , ∀m.

Proof: We show that, under these assumptions, (16) verifies the four properties of GEV

generating functions.

1. G is obviously non-negative, if x ∈ Rn
+ .

2. G is homogeneous of degree μ. Indeed,

G(βx) =
∑

m

( ∑
j∈C

α jmβμm xμm
j

) μ

μm

=
∑

m

(
βμm

∑
j∈C

α jm xμm
j

) μ

μm

=
∑

m

βμ

( ∑
j∈C

α jm xμm
j

) μ

μm

= βμG(x).
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3. The limit properties hold from assumption 2, that guarantees that there is at least one

non-zero coefficient α jm for each alternative j .

lim
xi →∞ G(x1, . . . , xJ ) = lim

xi →∞

∑
m

(∑
j∈C

α jm xμm
j

) μ

μm

=
∑

m

⎛⎝ lim
xi →∞

(∑
j∈C

α jm xμm
j

) μ

μm

⎞⎠
= ∞

4. The condition for the sign of the derivatives is obtained from Lemma 1.

Considering (21), we distinguish three cases, considering only x ≥ 0.

(a) If k = 1, we have

∂G(x)/∂x j = μ
∑

m

(
α jm xμm−1

j y
μ

μm
−1

m

)
≥ 0. (23)

(b) If k > 1 and μ = μm , we have

∂k G(x)/∂xi1
. . . ∂xik = 0. (24)

Indeed,

k−1∏
n=0

(
μ

μm
− n

)
(25)

contains a zero factor when n = 1.

(c) If k > 1 and μ < μm , the sign of (21) is entirely determined by the sign of (25). For

n > 0, we have μ

μm
− n < 0 (assumption 5). Therefore, there are k − 1 negative and

one positive factors in the product. We obtain that

k−1∏
n=0

(
μ

μm
− n

) {
≥ 0 if k is odd

≤ 0 if k is even
(26)

Therefore, in any case, we have

∂k G(x)/∂xi1
. . . ∂xik

{
≥ 0 if k is odd

≤ 0 if k is even
(27)

�

The probability formula can be directly derived from (1) and (16). From (23), we have

Gi = μ
∑

m

αim xμm−1
i

( ∑
j

α jm xμm
j

) μ

μm
−1

.
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Using (1), we obtain

P(i | C) =
∑

m αim xμm
i

( ∑
j α jm xμm

j

) μ

μm
−1∑

n

( ∑
j α jn xμn

j

) μ

μn

.

Re-arranging the terms, and posing xi = eVi , we can write

P(i | C) =
∑

m

( ∑
j α jmeμm Vj

) μ

μm∑
n

( ∑
j α jneμn Vj

) μ

μn

αimeμm Vi∑
j α jmeμm Vj

, (28)

which can nicely be interpreted as

P(i | C) =
∑

m

P(m | C)P(i | m). (29)

The issue of parameter identifiability is still to be addressed. In addition to the normaliza-

tion of the Alternative Specific Constants (see Bierlaire, Lotan and Toint, 1997) and of the

parameter μ, normalization of the αim and μm parameters is also required. It is important

to emphasize that constraints (10), (15), (18) and (20), proposed in the literature, are not

necessary for the model validity (see Theorem 2). They are used to enable parameter identi-

fication, or to simplify the interpretation of the model. Abbé (2003) has shown that a proper

normalization for the α parameters is∑
m

α
μ

μm
jm = e−γ ∀ j ∈ C, (30)

where γ � 0.5772 is Euler’s constant.

4. Estimation procedure

The estimation procedures proposed by Small (1987) and Vovsha (1997) are based on heuris-

tics. Small reduces the number of free parameters by imposing arbitrary restrictions on the

parameters: wm = 1
M+1

, ∀m, and ρr = ρ, ∀r . Vovsha proposes a complicated heuristic, where

each observation is artificially substituted with n observations (Vovsha proposes n = 100).

Most of the time, the use of such heuristics is motivated by existing software packages,

restricted to estimate simpler models. But the estimated parameters may be biased and some-

times even inconsistent with the theory. Instead, we prefer to exploit the closed form formula

of the probability model (28) to perform a classical maximum likelihood estimation of the

parameters.

Maximum likelihood estimation aims at identifying the set of parameters maximizing

the probability that a given model perfectly reproduces the observations. It is a non-linear

programming problem. The nature of the objective function and of the constraints deter-

mines the type of solution algorithm that must be used. The objective function of the max-

imum likelihood estimation problem for the Cross-Nested model is a non-linear function.

In general, the function is not concave which significantly complicates the identification
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of a (global) maximum. Most non-linear programming algorithms (see Dennis and Schn-

abel, 1983; Bertsekas, 1999 ) are designed to identify local optima of the objective function.

They require the availability of the derivatives of the objective function and of the con-

straints. As the Cross-Nested model has a closed-from, so does the log-likelihood function.

Therefore, the analytical formula for the derivatives can be used. They are provided in the

appendix.

There exists some meta-heuristics designed to identify global optima, like simulated an-

nealing (Kirkpatrick, Gelatt and Vecchi, 1983; Rossier, Troyon and Liebling, 1986), tabu

search (Glover, 1977; Hansen, 1986; Hansen and Jaumard, 1987) and variable neighbor-

hood search (Hansen and Mladenovic, 1997). However, none of them can guarantee that the

provided solution is indeed a global optimum. Therefore, whatever algorithm is preferred,

starting it from different initial solutions is a good practice.

Constraints have to be imposed on parameters to be estimated. On the one hand, constraints

defined by Theorem 2 guarantee the model validity. On the other hand, normalization con-

straints (such as (30)) are necessary for the model to be identifiable.

In the past, it was usually advised to explicitly incorporate normalization constraints (by

setting a fixed value to some parameters), to ignore other constraints, and to use unconstrained

optimization algorithms. The complexity of the CNL model, combined with the availability

of efficient software packages for constrained optimization (Murtagh and Saunders, 1987;

Conn, Gould and Toint, 1992; Lawrence, Zhou and Tits, 1997) now motivate the explicit

management of constraints in the estimation process. Also, explicit constraints avoid mean-

ingless values of the parameters to be generated during the iterations of the optimization

algorithms.

A model estimation package called Biogeme (Bierlaire, 2003) has been developed, and

is freely available from biogeme.epfl.ch. It is designed to estimate any model within the

GEV model family. Non-linear utility functions can be handled. In particular, a specific scale

parameter can be associated with different segments in the sample, and Box-Cox and Box-

Tukey transforms can be applied to the attributes. Finally, any type of (continuous) constraint

on the parameter can be defined. Biogeme proposes several optimization algorithms: CFSQP

by Lawrence, Zhou and Tits (1997), DONLP2 by Spellucci (1993), SOLVOPT by Kuntsevich

and Kappel (1997) and BIO, a recent implementation of Bierlaire (1995). A case study using

Biogeme to estimate a CNL model in a mode choice SP/RP context is described by Bierlaire,

Axhausen and Abbay (2001).

5. Conclusion and perspectives

The CNL model is appealing to capture complex situations where correlations cannot be

handled by the Nested Logit model. Even with few alternatives and nests, the use of a CNL

instead of a NL model may significantly improve the estimated model (Bierlaire, Axhausen

and Abbay, 2001).

In this paper, a formal proof has been provided that CNL is indeed a member of the

GEV family. Moreover, an estimation procedure based on classical non-linear programming

techniques has been suggested to perform the log-likelihood estimation of the model, instead

of the heuristics proposed in the literature. This procedure has been embedded in a new

software package designed to estimate GEV models in general and CNL in particular. Also,

derivatives of the log-likelihood function for the CNL model are provided.

Springer



Ann Oper Res (2006) 144:287–300 297

We are currently conducting some research to adapt non-linear optimization procedures

when the model is not identifiable (Bierlaire and Thémans, 2005), that is when no appropriate

normalization has been performed. Indeed, as models become more sophisticated, the theo-

retical analysis of their identifiability is more and more difficult, and a numerical solution is

desirable.

Appendix: A Derivatives

We provide here the derivatives of the log-likelihood function for GEV models in general,

and for the Cross-Nested Logit model in particular. These formula’s have been implemented

in the Biogeme software package, and their validity has been checked against numerical finite

difference approximations of the derivatives.

Given a sample of observations, the log-likelihood of the sample is

L =
∑

n∈sample

ln P(in | Cn), (31)

where in is the alternative actually chosen by individual n, Cn is the choice set, and

ln P(in | Cn) = Vin + ln Gin − ln

( ∑
j∈Cn

eVj G j

)
(32)

where Gi = ∂G/∂xi . In the following, we drop index n for the sake of simplification. All

sums on j and k are over all alternatives in Cn .

For any GEV model, if βk is an unknown parameter to be estimated, we have

∂ ln P(i | C)

∂βk
= ∂Vi

∂βk
+ 1

Gi

∂Gi

∂βk
−

∑
j eVj

(
G j

∂Vj

∂βk
+ ∂G j

∂βk

)∑
k eVk+ln Gk

, (33)

with

∂Gi

∂βk
=

∑
j

∂Gi

∂x j

∂x j

∂βk
,

where ∂Gi/∂x j for the CNL model is given by (40) and (41). As x j = eVj , we have

∂Gi

∂βk
=

∑
j

eVj
∂Gi

∂x j

∂Vj

∂βk
. (34)

Note that this formula is sufficiently general to capture non-linear utility functions, such that

∂Vj/∂βk is not necessarily constant. If λk is a model parameter, such as the μm or α jm in

(16), the derivative simplifies as

∂ ln P(i | C)

∂λk
= 1

Gi

∂Gi

∂λk
−

∑
j eVj ∂G j

∂λk∑
k eVk+ln Gk

, (35)

where ∂G j/∂λk for the CNL model is given by (42)–(45).
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In the specific case of Cross-Nested logit model, we provide the first and second derivatives

of (16) with respect to every parameter. The sums with index m are over all nests. The first

derivative with respect to a variable xi is given by

Gi = ∂G

∂xi
= μ

∑
m

αim xμm−1
i

( ∑
j

α jm xμm
j

) μ

μm
−1

. (36)

The first derivative with respect to the μ parameter is

∂G

∂μ
=

∑
m

1

μm
y

μ

μm
m ln(ym), (37)

where ym is defined by (22). The first derivative with respect to the nest parameter μm is

∂G

∂μm
= μ

μm
y

μ

μm
−1

m

( ∑
j

α jm xμm
j ln(x j )

)
− μ

μ2
m

y
μ

μm
m ln(ym) (38)

and with respect to the αim parameter is

∂G

∂αim
= μ

μm
y

μ

μm
−1

m xμk
i . (39)

We now provide the second derivative with respect to xi and x j . If i = j , we have

∂2G

∂x2
i

= ∂Gi

∂xi
=

∑
m

μ

μm
y

μ

μm
−2

m αimμm xμm−2
i

((
μ

μm
− 1

)
αimμm xμm

i + ym(μm − 1)

)
(40)

and if i �= j , we have

∂2G

∂xi∂x j
= ∂Gi

∂x j
=

∑
m

μmμ

(
μ

μm
− 1

)
αimα jm y

μ

μm
−2

m xμm−1
i xμm−1

j (41)

where ym is defined by (22).

The second derivative with respect to xi and μ is

∂2G

∂xi∂μ
= ∂Gi

∂μ
=

∑
m

y
μ

μm
−1

m αim xμm−1
i

(
1 + μ

μm
ln(ym)

)
. (42)

The second derivative with respect to xi and μm is

∂2G

∂xi∂μm
= ∂Gi

∂μm

= − μ

μm
y

μ

μm
−1

m αim xμm−1
i − μ2

μ2
m

y
μ

μm
−1

m ln(ym)αim xμm−1
i

+ μ

μm
y

μ

μm
−1

m αim xμm−1
i + μy

μ

μm
−1

m αim xμm−1
i ln(xi ).

(43)
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The second derivative with respect to xi and αik is

∂2G

∂xi∂αik
= ∂Gi

∂αik
= μxμk−1

i y
μ

μk
−1

k

(
1 + αik

(
μ

μk
− 1

)
y−1

k xμk
i

)
(44)

and with respect to xi and α jk (i �= j) is

∂2G

∂xi∂α jk
= ∂Gi

∂α jk
= μαik xμk−1

i

(
μ

μk
− 1

)
y

μ

μk
−2

k xμk
j (45)

where yk is defined by (22).

Acknowledgments The author would like to thank Nicolas Antille for his help in the theoretical analysis,
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