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Abstract. Algorithms for computing the three-stage least squares (3SLS) estimator usually require
the disturbance covariance matrix to be non-singular. However, the solution of a reformulated simul-
taneous equation model (SEM) results into the redundancy of this condition. Having as a basic tool the
QR decomposition, the 3SLS estimator, its dispersion matrix and methods for estimating the singular
disturbance covariance matrix are derived. Expressions revealing linear combinations between the
observations which become redundant have also been presented. Algorithms for computing the 3SLS
estimator after the SEM has been modified by deleting or adding new observations or variables are
found not to be very efficient, due to the necessity of removing the endogeneity of the new data or
by re-estimating the disturbance covariance matrix. Three methods have been described for solving
SEMs subject to separable linear equalities constraints. The first method considers the constraints as
additional precise observations while the other two methods reparameterized the constraints to solve
reduced unconstrained SEMs. Methods for computing the main matrix factorizations illustrate the
basic principles to be adopted for solving SEMs on serial or parallel computers.
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1. Introduction

It is not always possible for the disturbance covariance matrix of a simultaneous
equation model (SEM) to be non-singular. In allocation models, for example, or
models with precise observations that imply linear constraints on the parameters,
or models in which the number of structural equations exceeds the number of
observations, the disturbance covariance matrix is singular (Judge et al., 1985;
Theil, 1971). Such models can be estimated using generalized inverses which are
expensive and can lead to loss of accuracy. Here we provide a computational
strategy for solving an alternative formulation of the 3SLS problem in which the
disturbance covariance matrix can be singular (Court, 1974; Narayanan, 1969;
Pollock, 1979; Srivastava and Tiwari, 1978; Zellner and Theil, 1962).

First, recent methods for solving SURE (seemingly unrelated regression equa-
tion) (Kontoghiorghes, 1993b; Kontoghiorghes and Clarke, 1995a; Kontoghiorghes
and Dinenis, 1996b) models are extended to 3SLS estimation of SEMs. Efficient,
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232 ERRICOS J. KONTOGHIORGHES AND ELIAS DINENIS

stable approaches for computing the coefficient estimates and their dispersion
matrix are presented. Then means for updating SEMs and their solutions with
linear equality constraints are presented. Finally, strategies for computing relevant
matrix operations are suggested.

2. 3SLS Estimation of SEMs

The ith structural equation of the SEM can be written as

yi = Xi�i + Yi
i + "i; i = 1; : : : ; G; (1)

where, for the ith structural equation, yi 2 <T is the dependent vector, Xi is the
T � ki matrix of full column rank of exogenous variables, Yi is the T � gi matrix
of other included endogenous variables, �i and 
i are the structural parameters,
and "i 2 <T are the disturbance terms. For Wi � (Xi Yi) and �Ti � (�Ti 
Ti ), the
stacked system of the structural equations can be written as

vec(Y ) = (IG 
W )S� + "; (2)

where W � (X Y );X is a T � K matrix of all predetermined variables, Y �
(y1 : : : yG); S � diag(S1; : : : ; SG), where Si is a selector matrix such that WSi =

Wi (i = 1 : : : G); �T � (�T1 : : : �TG), and "T � ("T1 : : : "
T
G). The disturbance vector

" satisfies E(") = 0 and E(""T ) = � 
 IT , where � is a G � G non-negative
definite matrix. It is assumed that all structural equations are identifiable, that is,
ei = ki + gi 6 K .

The 2SLS and Generalised LS (GLS) estimators of (2) are defined, respectively,
from the application of OLS and GLS to the transformed SEM (hereafter TSEM)

vec(QT
1 Y ) = (IG 
QT

1 W )S� + (IG 
QT
1 )";

or

vec(R(2)) = (IG 
R)S� + e"; (3)

where e" = (IG 
QT
1 )", and the Qs and Rs come from the incomplete QR decom-

position (QRD) of the augmented matrix W = (X Y ) given by

K G
K T �K

QTW =

 
R(1) R(2)

0 R(3)

!
K

T�K
; with Q = (Q1 Q2); (4)

Q 2 <T�T orthogonal, R(1) upper triangular and non-singular, and

R = (R(1) R(2)) = QT
1 W: (5)
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3SLS COMPUTATIONS 233

Note that E(e") = 0 and E(e"; e"T ) = �
 IK .
The 3SLS estimator, denoted by b�3SLS, is the GLS estimator with � replaced by

its consistent estimator b� based on the 2SLS residuals. Computing the Cholesky
decomposition

b� = CCT ; (6)

the b�3SLS estimator derives from the solution of the normal equations

(fW TfW )b�3SLS = fW T ey; (7)

where C is a K�K non-singular upper triangular matrix, fW = (C�1
R)S, andey = (C�1
IK)vec(R(2)) = vec(R(2)C�T ) (Belsley, 1992; Dent, 1976; Jennings,
1980).

For b� singular or badly ill-conditioned the above estimation procedure fails,
sinceC�1 either does not exist or computes badly. However, this can be overcomed
by rewriting the TSEM (3) in the equivalent form

vec(R(2)) = (IG 
R)S� + ( bC 
 IK)V; (8)

where the rank of b� = bC bCT is g 6 G; bC 2 <G�g has a full column rank, and V
is a random gK element vector with zero mean and variance–covariance matrix
IgK , defined as ( bC 
 IK)V = e". Under this formulation, the 3SLS estimator of �
comes from the solution to the generalized linear least squares problem

argmin
�

V TV subject to vec(R(2)) = (IG 
R)S� + ( bC 
 IK)V; (9)

which does not require that the variance–covariance matrix be non-singular (Kon-
toghiorghes, 1993b; Kontoghiorghes and Clarke, 1995a; Kontoghiorghes and Dine-
nis, 1996b; Kourouklis and Paige, 1981; Paige, 1979a; Paige, 1979b).

For the solution of (9) consider the following QRDs involving (IG 
R)S and
( bC 
 IK):

E 1

eQT ((IG 
R)S vec(R(2))) =

0
B@
eR ey(1)
0 ey(2)
0 ey(3)

1
CA

E

q

GK�E�q

(10)

and

gK � q q

eQT ( bC 
 IK)P =

0
B@
L11 L12

0 L22

0 0

1
CA

E

q

GK�E�q

: (11)
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234 ERRICOS J. KONTOGHIORGHES AND ELIAS DINENIS

Here eR � diag( eR(1); : : : ; eR(G)), and the eR(i) 2 <ei�ei andL22 are upper triangular
non-singular matrices; eQ and P areGK�GK and gK�gK orthogonal matrices,
respectively;E = �G

i=1ei, and E+ q is the column rank of ((IG
R)S ( bC
 IK))

(Anderson et al., 1992; Golub and Loan, 1983; Paige, 1990; De Moor and Van
Dooren, 1992). The orthogonal matrix eQ is defined as

eQT =

 
IE 0

0 eQT
C

! eQT
AeQT
B

!
=

 eQT
AeQT

C
eQT
B

!
E

GK�E

; (12)

where the QRD of RSi (i = 1; : : : ; G) and the complete QRD of eQT
B(
bC 
 IK)

(Golub and Loan, 1983; Lawson and Hanson, 1974) are given, respectively, by

ei K � eieQT
i (RSi) =

 eR(i)

0

!
; with eQi = ( eQAi

eQBi) (13)

and

eQT
C(
eQT
B(
bC 
 IK))P =

 
0 L22

0 0

!
;

eQA � diag( eQA1; : : : ; eQAG); eQB � diag( eQB1; : : : ; eQBG);

(14)

 eQT
AieQT
Bi

!
R
(2)
:i =

 ey(1)ibyi
!
ei

K�ei

; (15)

R
(2)
:i is the ith column of R(2); ey(1) � vec(ey(1)1 : : : ey(1)G ) and

eQT
C vec(by1 : : : byG) =

 ey(2)
ey(3)

!
: (16)

Conformally partitioning eV T = V TP as ( eV T
1
eV T

2 ), it follows that the SEM is
consistent iff

ey(3) = 0; (17)

where eV2 derives from the solution of the triangular system L22
eV2 = ey(2) and the

arbitrary vector eV1 is set to zero. The 3SLS estimator is the solution to the block
triangular system eRb�3SLS = ey(1) � L12

eV2, which can be equivalently written as

eR(i)b�(i)3SLS = ey(1)i � hi; (i = 1; : : : ; G); (18)

where b�(i)3SLS 2 <ei corresponds to the 3SLS estimator of �i, and eV T
2 LT12 =

(hT1 : : : h
T
G). Elementary algebraic manipulations produce

b�(i)3SLS = �i + ( eR(i))�1�i
eV1;
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3SLS COMPUTATIONS 235

implying that E(b�(i)3SLS) = �i and that the covariance matrix between b�(i)3SLS andb�(j)3SLS is given by

Cov(b�(i)3SLS;
b�(j)3SLS) = �i�

T
j ; (i; j = 1; : : : ; G); (19)

where�p (p = i; j) is computed from the solution of the triangular system eR(p)�p=

�p; L
T
11 = (�T

1 : : :�
T
G) and�T

p 2 <ep�(gk�q) (Kontoghiorghes and Clarke, 1995a).

2.1. COMPUTING b�
A consistent estimator of� is computed by b� = UTU=T , whereU = (u1; : : : ; uG)

denotes the residuals of the structural equations. Initially, U is formed from the
residuals of the 2SLS estimators

b�(i)2SLS = ( eR(i))�1ey(1)i ; (i = 1; : : : ; G);

that is,

vec(U) = vec(Y )� (IG 
W )Sb�2SLS:

Since UTU = UTQQTU , the premultiplication of both sides of the latter by
IG 
QT gives

vec(QTU) = vec(R
(2)
)� (IG 
R)Sb�2SLS; (20)

where in (4) QTW = R = (R
(1)

R
(2)
). Then, residuals iteratively based on 3SLS

estimators are used to recompute QTU , until convergence has been achieved.
If b� is computed explicitly, then bC in (9) could be obtained by removing the

G� g zero columns of the Cholesky factor C in (6) (Lawson and Hanson, 1974).
An alternative numerically stable method is to compute the factorization

g G� g

QT
uU�u =

 
C11 C12

0 0

!
g

T�g
or U = eQu( eC11

eC12)�
T
u ; (21)

where eQu comprises the first g columns of the orthogonal matrix Qu 2 <T�T ; eC11

is upper-triangular and non-singular, and�u is a G�G permutation matrix. In this
case, the matrix bC is defined as

bC =
1p
T
�u

 eCT
11eCT
12

!
:
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236 ERRICOS J. KONTOGHIORGHES AND ELIAS DINENIS

The factorization (21) could be extended to compute the complete QRD of U as

U = eQu
eC eP T

u �
T
u ; (22)

where ( eC11
eC12)Pu = ( eC 0); eC 2 <g�g is a non- singular upper-triangular matrix

and ePu comprises the first g columns of the orthogonal matrix Pu 2 <G�G. From
the latter it follows that bC = �u

ePu eCT =
p
T . Note from (21) that, if the number of

structural equations exceeds the number of observations in each variable – the so-
called undersized sample problem –, then b�will be singular with rank g 6 T < G.

2.2. REDUNDANCES

Under the assumption that the consistency condition (17) is satisfied, factorizations
(10) and (11) show that GK � E � q rows of the TSEM (8) become redundant
due to linear combinations (Hammarling et al., 1983). Let eQeC comprises the last

GK � E � q columns of eQC and N = eQTeC eQT
B = ( eN (1) : : : eN (G)), where eN (i) is

an (GK �E � q)�K matrix (i = 1; : : : ; G). The elements of the pth row of N ,
denoted by Np., can reveal a linear dependency among the equations of the TSEM
(p = 1; : : : ; GK �E � q). Premultiplication of the TSEM by Np. gives

GX
i=1

eN (i)
p: R

(2)
:i =

GX
i=1

eN (i)
p: R

(i)�i +
GX
i=1

eN (i)
p:

gX
j=1

bCijV:j = 0

or
GX
i=1

KX
t=1

eN (i)
pt R

(2)
ti =

GX
i=1

KX
t=1

eN (i)
pt
eR(i)
t: �i +

GX
i=1

KX
t=1

eN (i)
pt
eVti = 0; (23)

where V T = (V T:1 : : : V
T:g ); V:j 2 <K (i = 1; : : : ; g) and

eVti =
gX

j=1

bCijVtj (i = 1; : : : ; G):

Assume that the �th equation of the �th transformed structural equation

R
(2)
�� =

eR(�)
�: �� +

eV�� (24)

occurs in the linear dependency (23), that is, eN (�)
p� 6= 0. Writing (23) as

GX
i=1
i6=�

KX
t=1
t6=�

eN (i)
pt R

(2)
ti + eN (�)

p� R
(2)
��

=

GX
i=1
i6=�

KX
t=1
t6=�

eN (i)
pt (

eR(i)
t: �i +

eVti) + eN (�)
p� (

eR(�)
�: �� +

eV��);
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3SLS COMPUTATIONS 237

it follows that

1eN (�)
p�

GX
i=1
i6=�

KX
t=1
t6=�

eN (i)
pt R

(2)
ti =

1eN (�)
p�

GX
i=1
i6=�

KX
t=1
t6=�

eN (i)
pt (

eR(i)
t: �i +

eVti)

is an equivalent form of (24). Observe that, if eQTeC = ( eQ(1)eC : : : eQ(G)eC ), then eN (i) =

eQ(i)eC eQT
Bi. Furthermore, if bqTpi and eqip denote the pth row and column of eQ(i)eC and

eQT
Bi, respectively, then eN (i)

pt =
eN (�)
p� = bqTpieqit=bqTp�eq��.

3. Modifying the SEM

It is often desirable to modify the SEM by adding or deleting observations or
variables. This might be necessary if new data become available, old or incorrect
data are deleted from the SEM, or variables are added or deleted from structural
equations. First consider the case of updating the SEM with new data. Let the
additional sample information be denoted by

vec( �Y ) = (IG 
 �W )S� + �"; (25)

where �Wi = �WSi = ( �Xi
eYi) 2 < �T�ei ; �X 2 < �T�K is the matrix of all predeter-

mined variables in (25); E(�") = 0 and E(�"�"T ) = �
 I �T . Computing the updated
incomplete QRD

K G

�QT

 
�X �Y

R(1) R(2)

!
=

 
�R(1) �R(2)

0 �R(3)

!
K

�T
; (26)

the 3SLS estimator of the updated SEM solves

argmin
�

V TV subject to vec( �R(2)) = (IG 
 �R)S� + ( �C 
 IK)V; (27)

where �R(1) is upper triangular, �R = ( �R(1) �R(2)), and �� = �C �CT is a new estimator
of �. The only computational advantage of not solving the updated SEM afresh is
the use of the already computed matrices R(1) and R(2) to construct the updated
TSEM. The solution of (9) cannot be used to reduce the computational burden for
solving (27).

Similarly, the downdating problem can be described as solving the SEM (2) after
the sample information denoted by (25) has been deleted. If the original matrix
W is available, then the downdated SEM can be solved afresh or the matrix that
corresponds toR in (5) can be derived from downdating the incomplete QRD ofW
(Elden and Park, 1994; Gill et al., 1974; Golub and Loan, 1983; Kontoghiorghes and
Clarke, 1993b; Olszanskyj et al., 1994; Paige, 1978). However, as in the updating
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238 ERRICOS J. KONTOGHIORGHES AND ELIAS DINENIS

problem, the solution of the downdated TSEM will need to be recomputed from
scratch.

Assume that the additional variables denoted by W bSi 2 <T�bei have been
introduced to the ith structural equation. After computing the QRD

bei K � ei � beibQT
i (
eQT
BiR

bSi) =
 bR(i)

0

!bei
K�ei�bei ; with bQi = ( bQAi

bQBi);

the matrix computations corresponding to (13) and (15) are given respectively by

�QT
i (R(Si

bSi)) =
0
BB@
eR(i) eQT

AiR
bSi

0 bR(i)

0 0

1
CCA =

 
�R(i)

0

!
ei+bei
K�ei�bei

and

 
�QT
Ai

�QT
Bi

!
R
(2)
:i =

0
BBBBB@

ey(1)ibQT
Aibyi
bQT
Bibyi

1
CCCCCA =

 
�y
(1)
iby�i
!
ei+bei
K�ei�bei ;

where �QBi = eQBi
bQBi and �QAi = ( eQAi

eQBi
bQAi). Computing the complete QRD

of �QT
B(

�C 
 IK) as in (14) and the equivalent of (16), the 3SLS solution of the
modified SEM can be found using (18), where bQB � diag( bQB1; : : : ; bQBG); �Q

T
B =bQT

B
eQT
B , and, as in the updating problem, �C �CT is a new estimator of �.

Deleting the W bSi data matrix from the ith structural equation is equivalent to
re-triangularizing eR(i) by orthogonal transformations after deleting the columnseR(i) bSi (i = 1; : : : ; G). Thus, if the new selector matrix of the ith equation is
denoted by S�i , and the QRD of eR(i)S�i is given by

ei � bei beibQT
i (
eR(i)S�i ) =

 bR(i)

0

!
ei�bei
bei ; with bQi = ( bQAi

bQBi) (28)

then (14)–(16) need to be recomputed with eQAi and eQBi replaced by eQAi
bQAi and

( eQAi
bQBi

eQBi), respectively.
Now consider the case where new predetermined variables, denoted by the

T � cK matrix bX , are added to the SEM. The modified SEM can be written as

vec(Y ) = (IG 
 �W ) �S�� + ";
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3SLS COMPUTATIONS 239

where �W � (X bX Y ); �S � diag( �S1; : : : ; �SG); �Si is a (K +G+ cK)� (ei + bki)
selector matrix defined as �Si � diag(S

(1)
i ; S

(2)
i ; S

(3)
i ), and Si � diag(S

(1)
i ; S

(3)
i ).

Computing the incomplete QRD

bQT (QT
2
bX R(3)) =

 bR(1) bQT
1 R

(3)

0 bQT
2 R

(3)

!bK
T�K�bK ;

cK T �K � cK
with bQ = ( bQ1

bQ2); it follows that the modified TSEM can be written in the
form

vec( �R(2)) = (IG 
 �R) �S�� + ( �C 
 I
K+bK) �V ; (29)

where now �V and �� are (K +cK) and (E +�G
i=1
bki)-element vectors, respectively,

and

�R(1) =

 
R(1) QT

1
bX

0 bR(1)

!
; �R(2) =

 
R(2)

bQT
1 R

(3)

!
and �R = ( �R(1) �R(2)):

The solution of (29) can be obtained as in the original case. However, computations
for forming the QRDs of �R �Si (i = 1; : : : ; G) can be reduced significally if both
sides of (29) are premultiplied by the orthogonal matrix ( �QA

�QB)
T , where �QA �

diag( �QA1; : : : ; �QAG); �QB � diag( �QB1; : : : ; �QBG); �QAi �
�eQAi

0
0

Ibki
�

and �QBi �
( eQBi 0) for i = 1; : : : ; G. In this case the upper triangular factor in the QRD of
�RS

(1)
i is given by the already computed RS(1)i .

4. 3SLS of SEMs Subject to Linear Equality Constraints

Consider the solution of the SEM (2) with the separable constraints

H� = �; (30)

where H � diag(H1; : : : ;HG); �
T � (�T1 : : : �TG);Hi 2 <di�ei has full row rank,

�i 2 <di ; d � �G
i=1di, and di < ei(i = 1; : : : ; G). The constrained 3SLS estimator

can be found from the solution of

argmin
�

V TV s:t:

(
vec(R(2)) = (IG 
R)S� + ( bC 
 IK)V;

� = H�;
(31)

which, under the assumption that the consistency rule (17) is satisfied, can be
written as

argmin
�

V TV s:t:

0
BB@
ey(1)
�

ey(2)

1
CCA =

0
B@
eR
H

0

1
CA � +

0
B@
L11 L12

0 0

0 L22

1
CA
 eV1eV2

!
: (32)
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Computing the QRD

ei di

bQT
i

 eR(i)

Hi

!
=

 bR(i)

0

!
ei

di

; with bQT
i =

 bQ(i)
11

bQ(i)
12bQ(i)

21
bQ(i)

22

!
ei

di

; (33)

let

bQT
11 = diag( bQ(1)

11 ; : : : ;
bQ(G)

11 ); bQT
12 = diag( bQ(1)

12 ; : : : ;
bQ(G)

12 );

bQT
21 = diag( bQ(1)

21 ; : : : ;
bQ(G)

21 ); bQT
22 = diag( bQ(1)

22 ; : : : ;
bQ(G)

22 );

bQT =

 bQT
11

bQT
12bQT

21
bQT

22

!
and

bQT

 ey(1) L11 L12

� 0 0

!
=

 by(1) eL11
eL12

y�2
eL21

eL22

!
E

d

:

The constrained 3SLS solution can be derived analogously to the original prob-
lem after computing the complete QRD

gK � bq bq
bQT
i

 eL21
eL22

0 L22

! bP =

 
0 bL22

0 0

!bq
d+q�bq and

bQT
C =

 
y�2by(2)
!
=

 by(2)
by(3)

!
:

In the case where (30) allows cross-section constraints, the solution of (31)
is derived as above except that, in the QRD bQT ( eRT HT )T = ( bRT 0T )T , the
triangular matrix bR is not block diagonal.

4.1. ANNIHILATION AND DIRECT ELIMINATION METHODS

The annihilation (basis-of-the-null-space) method and the direct elimination
method are alternative means for solving the constrained 3SLS problem. Both
methods reparameterize the constraints and solve a reduced unconstrained SEM of
E � d parameters (Barlow and Handy, 1988; Bjorck, 1984; Kontoghiorghes and
Clarke, 1994; Lawson and Hanson, 1974; Sargan, 1988; Schittkowski and Stoer,
1979; Stoer, 1971). Consider the case of separable constraints. In the annihilation
method, the coefficient vector �i is expressed as

�i = QAi#i +QBi�i; (34)
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3SLS COMPUTATIONS 241

where the QRD of HT
i is given by

di ei � di

HiQi = (Li 0); with Qi = (QAi QBi); (35)

Li 2 <di�di is non-singular lower-triangular matrix, Li#i = �i (from (30)), and �i
is an unknown non-zero (ei � di)-element vector. Substituting (34) into (8) gives
the reduced problem

vec(R(2))� (IG 
R)SQA� = (IG 
R)SQB� + ( bC 
 IK)V; (36)

where �T � (#T1 ; : : : ; #
T
G); �

T � (�T1 ; : : : ; �
T
G); QA � diag(QA1; : : : ; QAG) and

QB � diag(QB1; : : : ; QBG). Premultiplying both sides of (36) by eQT gives

 
�y

ey(2)
!
=

 
�R

0

!
� +

 
L11 L12

0 L22

! eV1eV2

!
; (37)

where it is assumed that (17) holds, V TP = ( eV T
1

eV T
2 ); �y � vec(�y1 : : : �yG); �yi =ey(1)i � eR(i)QAi#i(i = 1; : : : ; G), and �R � diag( eR(1)QB1; : : : ;

eR(G)QBG). Once
the estimator of �i, say b�i, is derived from the solution of (37), then the constrained
3SLS estimator of �i can be found from (34) with �i replaced by b�i.

In the direct elimination method, one computes the QRD

Q
T
i Hi�i = (bLi eLi); (38)

where�i is a permutation matrix and eLi 2 <di�di is non-singular lower-triangular
matrix. If

�T
i �i =

 b�ie�i
!

ei�di

di

; (39)

eLi#i = Q
T
i �i and eLi �Li = bLi, then e�i can be written as

e�i = #i � �Lib�i: (40)

Furthermore, if Si�i = ( bSi eSi), where bS � diag( bS1; : : : ; bSG) and eS �
diag( eS1; : : : ; eSG), then (8) can be written equivalently as

vec(R(2)) = (IG 
R)( bS eS)
 b�
� � �Lb�

!
+ ( bC 
 IK)V

or

vec(R(2))� (IG 
R) eS� = (IG 
R)( bS � eS �L)b� + ( bC 
 IK)V;
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where b�T � (b�T1 ; : : : ; b�TG) and �L � diag(�L1; : : : ; �LG). As in the annihilation
method, the premultiplication of the latter by eQT gives

 
�y

ey(2)
!
=

 
�R

0

! b� +
 
L11 L12

0 L22

! eV1eV2

!
; (41)

where �yi = ey(1)i � �R
(i)
2 #i; eR(i)( bSi eSi) = ( �R

(i)
1

�R
(i)
2 ); �y � vec(ey1 : : : �yG); �Ri =

�R
(i)
1 � �R

(i)
2
�Li, and �R � diag( �R1; : : : ; �RG). The solution to (41) will give an

estimator for b�i, which is then used in (40) to compute e�i (i = 1; : : : ; G). Finally,
the constrained 3SLS estimator of �i is computed by �i(b�Ti e�Ti )T . The above
methods are trivially extended for the case of cross-section constraints.

5. Computational Strategies

The QRD and its modification are the main components of the approach to comput-
ing the 3SLS estimator given here. We now examine strategies for computing the
factorizations (13) and (14) when b� is non-singular. Extensions of the well-known
Householder transformations, Givens rotations, or (classical or modified) Gram–
Schmidt orthogonalization procedure can be employed to compute the remaining
factorizations. The Gram–Schmidt method will be particularly efficient if it is nec-
essary to compute the orthogonal basis of the matrices, while Givens rotations
are suitable when matrices are sparse or have a special banded structure. However,
Householder transformations are the fastest means for deriving the upper-triangular
factor in the QRD of large-scale dense matrices (Clint et al., 1966; Golub and Loan,
1983; Kontoghiorghes, 1993a; Lawson and Hanson, 1974).

5.1. COMPUTING THE QRDS OF THE TRANSFORMED DATA MATRICES

The QRDs of RSi (i = 1; : : : ; G) in (13) are mutually independent and can be
computed simultaneously. In a Multiple Instruction stream–Multiple Data stream
(MIMD) multiprocessor system, each processing unit will compute one or more
factorizations (Kontoghiorghes and Dinenis, 1996a). Furthermore, the particular
structure of RSi can be exploited to reduce the computational burden of the
QRD (13). If bSi comprises the first ki columns of Si, then the QRD of R bSi
is a re-triangularization of an upper-triangular matrix after deleting columns by
orthogonal transformations. Let Si � (e�i;1 : : : e�i;ei ) and define the ei-element
integer vector �i = (�i;1 : : : �i;kiK : : : K), where e�i;j (j = 1; : : : ; ei) is the �jth
column of IK+G and �i;1 < � � � < �i;ei . Figure 1 shows a Givens annihilation
scheme for computing the QRD (13), where �i = (3; 6; 7; 9; 12; 15; 15; 15) and
gi = 3. A number j (1; : : : ; 46), a blank and a � denote the element annihilated
by the jth rotation, a zero element and a non-zero element, respectively. An ele-
ment of RSi at position (l; q) is zeroed by rotating the lth and (l � 1)th adjacent
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rows. Generally, the total number of rotations applied to compute the QRD (13)
for i = 1; : : : ; G is given by

T1(�i; ki; gi; G) =
GX
i=1

gi+kiX
j=1

(�ij � j)

=

GX
i=1

0
@
0
@ kiX
j=1

�ij � ki(ki + 1)=2

1
A+ gi(2K � 2ki � gi � 1)=2

1
A : (42)

Figure 1. Serial Givens annihilation scheme. Figure 2. Parallel Givens annihilation scheme.

Notice that (42) gives the maximum number of rotations for computing the
QRDs (13). This number can be possibly reduced by exploiting the structure
of the matrices RSi (i = 1; : : : ; G), which depends on the specific characteristics

of the SEM. In order to illustrate this, consider the case where RSi = (R
(i)
1 R

(i)
2 )

and RSj = (R
(i)
1 R

(j)
2 ) for some i 6= j. Conformally partitioning eR(i) as

eR(i) = ( eR(i)
1

eR(i)
2 ) =

0
@ eR(i)

11
eR(i)

21

0 eR(i)
22

1
A ;

it follows that eR(j) can be derived from the QRD 
I 0

0 bQT
j

! eQT
i RSj

=

 
I 0

0 bQT
j

!0
@ eR(i)

11
bR(j)

21

0 bR(j)
22

1
A =

0
@ eR(i)

11
bR(j)

21

0 bQT
j
bR(j)

22

1
A

=

0
BB@
eR(i)

11
bR(j)

21

0 eR(j)
22

0 0

1
CCA =

 eR(j)

0

!
;
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where (( bR(j)
21 )

T ( bR(j)
22 )

T )T = eQT
i R

(j)
2 . Thus, the number of rotations for computing

the QRD of RSj is determined by the triangularization of the smaller submatrixbR(j)
22 .

A parallelisation of the above strategy is shown in Figure 2. In this case, a number
j (1; : : : ; 11) denotes the elements annihilated by the jth compound disjoint Givens
rotation (CDGR). A CDGR is a product of Givens rotations that can be applied
simultaneously (Kontoghiorghes, 1995; Kontoghiorghes and Clarke, 1993b; Kon-
toghiorghes and Clarke, 1995b). Notice that elements in the sub-diagonals are
annihilated by successive CDGRs.

Using this annihilation scheme, the total number of CDGRs applied to compute
the QRDs of RSi (i = 1; : : : ; G) simultaneously, is given by

T3(�i; ei; G) = max(T2(�i; ei)); (i = 1; : : : ; G); (43)

where, for �i;j 6= j,

T2(�i; ei) = ei �min(2j � �ij); (j = 1; : : : ; ei); (44)

is the total number of CDGRs required to compute the QRD of RSi. A detailed
description of a similar parallel Givens sequence is found in Kontoghiorghes
and Clarke (1993a) and a bitonic algorithm which could possibly be adapted to
compute the QRD (13) using fewer CDGRs is discussed in Kontoghiorghes
(1995).

5.2. COMPUTING THE QRD (14) WHEN b� IS NON-SINGULAR

Consider the computation of the orthogonal factorization (14) when bC is non-
singular; that is, eQC = IGK�E; g = G; q = GK �E, and

P T (( bCT 
 IK) eQB) =

 
0

LT22

!
E

GK�E

: (45)

Let P be defined as P = ( eQA
eQB) eP such that
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 eQT
AeQT
B

!
( bCT 
 IK) eQB

K � e1 K � e2 K � e3 K � eG

=

0
BBBBBBBBBBBBBBBBBBBBBBBB@

0 0 0 : : : 0eA(1)
21 0 0 : : : 0

eA(1)
31

eA(1)
32 0 : : : 0

...
...

...
. . .

...eA(1)
G1

eA(1)
G2

eA(1)
G3 : : : 0

bL(1)1 0 0 : : : 0

bA(1)
21

bL(1)2 0 : : : 0

bA(1)
31

bA(1)
32

bL(1)3 : : : 0
...

...
...

. . .
...bA(1)

G1
bA(1)
G2

bA(1)
G3 : : : bL(1)G

1
CCCCCCCCCCCCCCCCCCCCCCCCA

e1

e2

e3

eG

K�e1

K�e2

K�e3

K�eG

; (46)

where eA(1)
ij = bCji

eQT
Ai
eQBj and bA(1)

ij = bCji
eQT
Bi
eQBj for i > j, and bL(1)i =bCiiIk�ei (i = 1; : : : ; G). The matrix eP is the product of orthogonal matri-

ces that reduce (46) to lower-triangular form. Let eP T
ij (i = 1; : : : ; G � 1 and

j = 1; : : : ; G� i) be orthogonal such that

eP T
ij

0
@ eA(i)

i+j1 : : : eA(i)
i+jjbA(i)

j1 : : : bL(i)j
1
A =

0
@ eA(i+1)

i+j1 : : : 0

bA(i+1)
j1 : : : bL(i+1)

j

1
Aei+j

K�ej

; (47)

where the bL(i+1)
j matrix is lower-triangular. From (47) it follows that the triangular

matrix LT22 in (45) is given by

LT22 =

0
BBBBBBB@

bL(G)1 0 : : : 0

bA(G�1)
21

bL(G�1)
2 : : : 0

...
...

. . .
...

bA(1)
G1

bA(1)
G2 : : : bL(1)G

1
CCCCCCCA
:

The orthogonal matrix eP T is defined as

eP T =

G�1Y
i=1

G�iY
j=1

bP T
ij =

bP T
G�11

bP T
G�22

bP T
G�21 : : :

bP T
1G�1 : : :

bP T
12
bP T

11;
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where the orthogonal matrices bP T
i1 ; : : : ;

bPiG�i (i = 1; : : : ; G� 1) are disjoint and
can be applied simultaneously. Partitioning eP T

ij as

ei+j K � ej

eP T
ij =

 eP (ij)
11

eP (ij)
12eP (ij)

21
eP (ij)

22

!
ei+j

K�ej

; (48)

the GK � GK matrix bP T
ij and the product of this disjoint orthogonal matrices

(PDOM) eP (i) = �G�i
j=1

bP T
ij are given, respectively, by

bP T
ij =

0
BBBBBBBB@

I 0 0 0 0

0 eP (ij)
11 0 eP (ij)

12 0

0 0 I 0 0

0 eP (ij)
21 0 eP (ij)

22 0

0 0 0 0 I

1
CCCCCCCCA

(49)

and

eP (i) =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBB@

IeEi
0 0 : : : 0

0 eP (i1)
11 0 : : : 0

0 0 eP (i2)
11 : : : 0

...
...

...
. . .

...

0 0 0 : : : eP (iG�i)
11

0 0 : : : 0 0

eP (i1)
12 0 : : : 0 0

0 eP (i2)
12 : : : 0 0

...
...

. . .
...

...

0 0 : : : eP (iG�i)
12 0

0 eP (i1)
21 0 : : : 0

0 0 eP (i2)
21 : : : 0

...
...

...
. . .

...

0 0 0 : : : eP (iG�i)
21

0 0 0 : : : 0

eP (i1)
22 0 : : : 0 0

0 eP (i2)
22 : : : 0 0

...
...

. . .
...

...

0 0 : : : eP (iG�1)
22 0

0 0 : : : 0 IbEi

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCA

;

(50)

where eEi = �i
p=1ep, and bEi = iK � �i

p=1eG+1�p. Notice that (48) and (50)
are block generalizations of a single Givens rotation and a CDGR, respectively.
That is, if 8i K � ei = ei = 1, then (48) is identical to the single Givens
rotation (cs

�s
c ) (Kontoghiorghes, 1993a; Kontoghiorghes, 1995; Kontoghiorghes

and Clarke, 1993b; Kontoghiorghes and Clarke, 1995b).
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Figure 3. Parallel reduction of (46) into lower triangular form.

Figure 3 illustrates the process of reducing (46) to triangular form, using the
block-parallel strategy described above. Now a number i (1; : : : ; 5) denotes the
blocks annihilated simultaneously from the application of eP (i). The total number
of steps required to compute the QRD (46) is given by

T5(G;K; e) =
G�1X
i=1

max(T4(K; e; i; j)); (j = 1; : : : ; G� i); (51)

where T4(K; e; i; j) and max(T4(K; e; i; j)) are the number of steps needed to
compute the orthogonal factorization (47) and apply the PODM (50), respectively,
and e = (e1; : : : ; eG).

6. Conclusions and Future Work

Our purpose has been to present computational methods for solving the SEM
without requiring the non-singularity of the disturbance covariance matrix. This
is achieved by considering the transformed SEM as a generalized linear least-
squares problem. This formulation facilitates the use of orthogonal factorisations
for deriving the 3SLS estimator and its dispersion matrix. Computational strategies
for solving the main two factorisations (13) and (14) when b� is non-singular
have been presented. These are by no means the most efficient strategies, but they
show the general principles to be adopted for solving the SEM on a serial or
parallel computer. Actual implementation depends on the number of processing
units available and the problem’s dimensions. For example, the block-parallel
algorithm described in Figure 3 will be inefficient if there is a p > 1 such that
ep >>> ej (j = 1; : : : ; G � 1). This is because the steps of the first p � 1 stages
will be given by T4(K; e; l; p� l), which by assumption is of higher order than that
of T4(K; e; l; j), where l = 1; : : : ; p� 1; j = 1; : : : ; G� l and j 6= (p� l).
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The algorithms for solving the modified SEM fail to exploit the calculations
used to solve (9) fully, because of the need to remove the endogeneity of the
new data or to re-estimate b� = bC bCT . In contrast, the algorithms for solving
the SEM with separable linear equality constraints can be seen as a continuation
of the unconstrained problem with minor differences. Further research is needed
to investigate the computational merits of these algorithms and propose efficient
strategies for solving the SEM with combinations of separable and cross-section
constraints.

Expressions that reveal linear combinations between the observations that
become redundant are derived. These combinations can provide further insights
into the properties of the particular SEM. However, inconsistencies in the SEM
have not been considered. Unlike the case of inconsistent SURE models, the setting
of ey(3) to zero will result in incompatibilities in the specification of the SEM (Ham-
marling et al., 1983; Kontoghiorghes and Dinenis, 1996b). In order to illustrate
this, assume for simplicity that ey(3) = N vec(R(2)) is uniformly non-zero, where
N = eQTeC eQT

B , using the notation of subsection 2.2. Premultiplying the TSEM (8)

by the idempotent matrix D = (IGK�E�q �NTN) gives

vec(QT
1 Y )�NT ey(3) = (IG 
R)S� + ( bC 
 IK)V;

from which it can be observed that

eQT (vec(QT
1 Y )�NT ey(3)) =

0
BB@
ey(1)
ey(2)
ey(3)

1
CCA�

0
B@

0

0

ey(3)
1
CA =

0
BB@
ey(1)
ey(2)
0

1
CCA :

If vec(QT
1
bY ) denotes the modified vector vec(QT

1 Y ) in the TSEM such that
vec(QT

1
bY ) = vec(QT

1 Y )�NT ey(3), then

vec(bY ) = eD vec(Y ) + vec(Q2�);

where � is a random (T � K) � G matrix and eD = (IG 
 Q1)D(IG 
 QT
1 ).

Therefore, the premultiplication of (2) by eD will give the consistent modified SEM

eD vec(Y ) = eD(IG 
W )S� + eD" (52)

or, equivalently,

vec(Q1Q
T
1
bY ) = (IG 
 cW )S� + eD"; (53)

where cW = (X Y � Q2R
(3)). Thus, the above modified model is incompatible

with the specification of the original SEM, since the replacement of Y by Q1Q
T
1
bY
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contradicts the replacement of Y by Y �Q2R
(3) in W . Further research is needed

to define the modification in the endogenous matrix Y that yields a consistent and
correctly specified model.

Currently under investigation are the solutions of a SEM with linear inequality
constraints and block-recursive SEMs, and the development of optimum parallel
strategies for computing (13) and (14).
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