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Abstract As a consequence of insufficient re-

moval during treatment of wastewater released

from industry and households, different classes of

organic micropollutants are nowadays detected in

surface and drinking water. Among these micro-

pollutants, bioactive substances, e.g., endocrine

disrupting compounds and pharmaceuticals, have

been incriminated in negative effects on living

organisms in aquatic biotope. Much research was

done in the last years on the fate and removal of

those compounds from wastewater. An important

point it is to understand the role of applied treat-

ment conditions (sludge retention time (SRT),

biomass concentration, temperature, pH value,

dominant class of micropollutants, etc.) for the

efficiency of conventional treatment plants (CTP)

and membrane bioreactors (MBR) concerning the

removal of micropollutants such as pharmaceuti-

cals, steroid- and xeno-estrogens. Nevertheless,

the removal rates differ even from one compound

to the other and are related to the physico-

chemical characteristics of the xenobiotics.

Keywords Organic micropollutants � Sorption �
Biodegradation � Wastewater � Conventional

wastewater treatment � Membrane bioreactor

1 Introduction

Environmental pollution by organic micropollu-

tants is nowadays of great concern, especially,

when it affects the aquatic environment. For

many years, quantification of water pollution was

restricted to monitoring biochemical oxygen

demand (BOD), chemical oxygen demand

(COD), nitrates, phosphates and total suspended

solids (Metcalf and Eddy 2003; EN-ISO-9887

1994). Paralleling the bio/analytical progresses,

the focus on macropollutants related to extensive

industrial and agricultural activities is being enlarged

to micropollutants belonging to diverse classes of

chemicals such as pesticides, pharmaceuticals and

personal care products (PPCP), and industrial
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chemicals, which are detected in trace amounts

(Daughton and Ternes 1999).

Raising the micropollutants, e.g., pharmaceu-

ticals and personal care products (PPCP), endo-

crine disrupting compounds (EDCs), and natural

estrogens, as topic of interest, analytical chemis-

try technology improved the ability to detect

concentrations of ng/l in aqueous media over the

last decades. Mass spectrometric methods and

techniques combining two chromatographic

separation steps such as GC-MS(MS) and LC-

MS(MS) (Marcomini et al. 1987; Jeannot et al.

2000; Li et al. 2000; Reemtsma et al. 2002; Braun

et al. 2003; Clara et al. 2004a; Kloepfer et al.

2004b; Stehmann and Schröeder 2004; Einchorn

et al. 2005; Huber et al. 2005; Weber et al. 2005;

Moeder et al. 2006; Ternes 1998; Rychlowska

et al. 2003; Luthje et al. 2004) and the use of

radiolabelled tracers (Ingerslev et al. 2001; Doi

et al. 2002; Lalah et al. 2003; Corvini et al. 2004;

Liebig et al. 2005) are only few examples of

analytical techniques to identify and analyse

organic micropollutants and their degradation

products occurring in wastewater. In parallel,

the importance of detecting micropollutants was

emphasized through the development of biotests

(e.g., specialized to identify compounds with

endocrine disrupting properties), which pointed

out to the high biological activity of some class of

micropollutants. For instance, the ubiquitous

distribution in the environment of EDCs and

their harmful potential was emphasized through

the development of very sensitive biological tests

based on immunological techniques such as

ELISA or on endocrine functions such as yeast

estrogen screen (YES) (Huang and Sedlak 2001;

Aerni et al. 2003; Bringolf and Summerfelt 2003;

Matsunaga et al. 2003) E-SCREEN assay (Soto

et al. 1995), EROD activity assay (Ma et al. 2005)

or combination of bioassays (Oh et al. 2006). Part

of these studies concluded that some of these

compounds [e.g., alkylphenol ethoxylates, bisphe-

nol A (BPA), estrone (E1), 17b-estradiol (E2),

17a-ethinylestradiol (EE2)] can have high

(specific biological) estrogenic activity even at

extremely low concentration (Purdom et al. 1994;

Jobling et al. 1998). Depending on the dose

exposure, the EDCs are responsible for a wide

range of adverse effects on aquatic organisms,

e.g., feminization of male fish, masculinization of

snails (Desbrow et al. 1998; Körner et al. 2000,

2001; Rajapakse et al. 2002), growth inhibition

(Halling-Sørensen 2000; Cleuvers 2005), immo-

bility (Cleuvers 2004), mutagenicity, mortality

(Robinson et al. 2005), and changes in population

density (Shull and Pennington 1993). Micropol-

lutants are detected in river water world-wide

(Ternes 1998; Kolpin et al. 2002) and wastewater

is identified as substantial release route. Besides,

further contamination occurs via leaching from

solid waste sites, deposition from the air, etc.

Micropollutants are not sufficiently removed

in conventional sewage treatment plants and in

order to prevent the spreading of contamination

to groundwater and soils, the emission of some

micropollutants, which are considered to be pri-

ority compounds, is regulated through the Water

Framework Directive (2000/60/EC). The removal

of micropollutants from wastewater during the

treatment occurs through abiotic transformation,

biological degradation and/or sorption. Among

these mechanisms, sorption to suspended solids

and biodegradation were reported to play pre-

dominant roles. Nevertheless, mechanisms of

removal do not follow a general rule since their

relative contribution depends on the physico-

chemical properties of the micropollutant, the

origin and composition of the wastewater, and the

operational parameters of the wastewater treat-

ment facility.

This article provides an overview on the fate

of representative classes of organic micropollu-

tants, i.e., PPCP and EDCs, during the waste-

water treatment. Conventional treatment process

(CTP) and membrane bioreactor (MBR) are in

the focus of this review since CTP is still

nowadays the most common wastewater treat-

ment process, while MBR is a new promising

technology for municipal wastewater treatment

as well as for industrial one. Due to the lack of

information on MBR and CTP comparative

studies, important classes of micropollutants

such as pesticides were left out of discussion in

the present paper.

CTP and MBR are presented in parallel with

respect to their performance for the removal of

micropollutants. After a short overview on the

fate of micropollutants in CTP and MBR in terms
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of bioavailability, sorption, biodegradation, and

abiotic phenomena, the main factors affecting the

removal of organic micropollutants during waste-

water treatment are presented. These factors are

linked to the chemical properties of pharmaceu-

ticals and estrogenic compounds and the opera-

tional parameters of wastewater treatment

process including sludge retention time, biomass

concentration, pH value and temperature of

wastewater.

2 Wastewater treatment plant (WWTP)

The treatment of wastewater aims at the removal

of bulk organic matter (proteins, carbohydrates,

etc.) and nutrients (Clara et al. 2005a). In CTP

and MBR processes, sorption and biological

degradation of organics and assimilation of inor-

ganics by activated sludge, take place. In both

systems, activated sludge consists mainly of floc-

culating microorganisms held in suspension and

contact with wastewater in mixed aerated tanks.

In CTP, the wastewater influent is first submitted

to a mechanical treatment where large particles

are removed from water. After a primary sedi-

mentation stage, where the water flows slowly

through large tanks, wastewater is send to the

biological activated sludge tank. Finally, one

additional separation step is achieved by gravity

sedimentation in an external clarifier. In MBR

process, the mechanical treatment and primary

sedimentation tanks are not carried out. The main

difference between CTP and MBR is the sludge–

liquid separation step. The activated sludge tank

includes a filtration step through micro or nano-

filtration membrane, which retains the solid

particles in the aeration tank. The biomass

separation technique considerably influences the

quality of wastewater effluent (Clara et al.

2005b). Generally, CTPs are operated at 1–5 g/l

mixed liquor suspended solids (MLSS), while in

MBR this concentration is considerably higher,

ranging from 8 to 25 g/l or even more

(Stephenson et al. 2000; Galil et al. 2003;

Ivasheckin et al. 2004a). MBR technology allows

sewage treatment at high MLSS concentration

due to the membrane separation step and is not

limited by the sedimentation capacity of the

secondary clarifier. As biomass continuously

grows, excess sludge has to be removed from

the system in order to maintain a constant

concentration of microorganisms in the tank.

One of the main parameters of activated sludge

systems is the sludge retention time (SRT), which

is controlled via the removal of excess sludge.

High SRTs generally correlate with high perfor-

mance of the wastewater treatment concerning

COD removal. Usually, SRT up to 25 or 80 days

are applied in MBR, while typical values for a

CTP vary from 8 to 25 days (Winnen et al. 1996;

Cote et al. 1997; Cicek et al. 1999; Stephenson

et al. 2000; Clara et al. 2004a; Johnson and

Williams 2004; Joss et al. 2005). Due to the high

SRT values and complete retention of solids

inside of MBR, biodiversity of the microorgan-

isms is favoured and even slowly growing and free

living bacteria remain in the system (Clara et al.

2005b; Pollice and Laera 2005; Howell et al.

2003). Furthermore, the adaptation of some

microorganisms for the degradation of persistent

compounds contained in sewage, e.g., nonylphe-

nol (NP) and further estrogens, is assumed to be

more likely in MBR than in CTP (De Wever

et al. 2004; Ivasheckin et al. 2004a; Siegrist et al.

2004).

Recognized advantages of MBR are high

effluent quality in terms of COD, nitrogen,

phosphorus, ammonia, retention of suspended

solids and microorganisms, reliable biomass con-

centration, efficient treatment of complex waste

streams and compactness of the installation

(Cicek et al. 1999; Abegglen and Siegrist 2006;

Cornel and Krause 2006). At the opposite, the

high MLSS concentration used in MBR leads to

problems concerning oxygen supply of the micro-

organisms and the membranes require frequent

cleaning (Cicek et al. 2001; Cornel and Krause

2006).

3 Fate of micropollutants in CTP and MBR

The fate of micropollutants during CTP or MBR

treatment depends on physico-chemical proper-

ties of the compound, operational parameters

(biomass concentration, sludge retention time,
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hydraulic retention time, temperature and pH) of

wastewater to be treated. In the literature, sorp-

tion and biodegradation are reported to be two of

the most important removal processes of micro-

pollutants from wastewater and both processes

are correlated with the availability of the sub-

strate to the degrading microorganisms (Clara

et al. 2004a; Ivashechkin et al. 2004a; Clara et al.

2005a; Joss et al. 2005).

3.1 Bioavailability

As biodegradation is the primary removal

pathway for organics in the activated sludge

treatment, the degree of bioavailability of a

micropollutant is important (Vinken et al. 2004;

Burgess et al. 2005). In wastewater treatment

plants, the accessibility of micropollutants to the

population of the activated sludge can be defined

in terms of external and internal bioavailability.

External bioavailability rather defines the acces-

sibility of the substance to microorganisms, while

internal bioavailability is limited to the uptake of

the compounds into the internal cell compart-

ment. In general, bioavailability consists of the

combination of physico-chemical aspects related

to phase distribution and mass transfer, and of

physiological aspects related to microorganisms

such as the permeability of their membranes, the

presence of active uptake systems, their enzy-

matic equipment and ability to excrete enzymes

and biosurfactants (Wallberg et al. 2001; Cavret

and Feidt 2005; Del Vento and Dachs 2002;

Ehlers and Loibner 2006). Higher bioavailability

and thus potential for biological degradation of

pollutants depend mostly on the solubility of

these compounds in aqueous medium.

3.2 Sorption

Sorption mainly occurs via absorption and adsorp-

tion mechanisms. Absorption involves hydropho-

bic interactions of the aliphatic and aromatic

groups of compounds with the lipophilic cell

membrane of some microorganisms and the fat

fractions of the sludge. Adsorption takes place due

to electrostatic interactions of positively charged

groups (e.g., amino groups) with the negative

charges at the surface of the microorganisms’

membrane. The quantity of a substance sorbed

Csorbed (g/l), is usually modelled with a simplified

linear equation (1) (Siegrist et al. 2004).

Csorbed ¼ Kd � SS � Cdissolved ð1Þ

Kd is the sorption constant (l/g), which is defined

as the partitioning of a compound between the

sludge and the water phase. SS (g/l) represents

the concentration of suspended solids in the

activated sludge tank, and Cdissolved (g/l) is the

dissolved concentration of the substance.

3.3 Biodegradation

Biodegradation defines the reaction processes

mediated by microbial activity (biotic reaction).

In aerobic processes, microorganisms can trans-

form organic molecules via the succession of

oxidation reactions to simpler products for

instance other organic molecules or mineralized

to CO2 (Siegrist et al. 2004; van der Meer et al.

2006). At low concentration, the kinetics of

decomposition of micropollutants occurs mostly

according to a first order reaction (see Eq. 2,

Siegrist et al. (2004).

Rdegradation ¼ Kdegradation � SS � Cmicropollutant ð2Þ

Rdegradation is the degradation rate, Kdegradation is

the degradation constant, SS (g/l) is the concen-

tration of suspended solids and Cmicropollutants

(mg/l) is the concentration of micropollutants in

influent supposed to be degraded.

The degradation rates are strongly dependent

upon environmental conditions, such as the redox

potential of the systems and the microbial pop-

ulations present. The acclimatization of microor-

ganisms to the substrate requires time and the

affinity of the bacterial enzymes for the micro-

pollutant in the activated sludge influences the

pollutant transformation or decomposition (Spain

et al. 1980; Matsumura 1989).

3.4 Abiotic degradation and volatilization

Abiotic degradation comprises the degradation of

organic chemicals via chemical (e.g., hydrolysis,
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oxidation) or physical (e.g., photolysis) reactions

(Acher 1985; Doll and Frimmel 2003; Bouillon

and Miller 2005; Iesce et al. 2006). Abiotic

processes are not mediated by bacteria and have

been found to be of fairly limited importance in

wastewater compared to the biodegradation of

micropollutants (Stangroom et al. 2000; Lalah

et al. 2003; Ivashechkin et al. 2004a; Katsoyinnis

and Samara 2005; Soares et al. 2006). The

removal of micropollutants by volatilization dur-

ing the activated sludge process depends on

vapour pressure (Henry’s constant) and octanol

water partition coefficient (Kow) of the analysed

micropollutant, and becomes significant when the

Henry’s law constant (H) ranges from 10–2 to 10–3

(Stenstrom et al. 1989). At very low H/Kow ratio,

the compound tends to be retained by particles

(Galassi et al. 1997; Roger 1996). The rate of

volatilization is also affected by gas flow rate and

therefore, high efficiency submerged aeration

systems such as fine bubble diffusers should be

used to minimize volatilization rates in wastewa-

ter treatment plants (Stenstrom et al. 1989).

4 Factors affecting the removal of

micropollutants during wastewater treatment

4.1 Chemical properties of micropollutants

4.1.1 Hydrophobicity and hydrophilicity

Hydrophobicity refers to the physical property of

a molecule that is repelled from a mass of water.

Many of the organic micropollutants found in

wastewater are hydrophobic compounds. Hydro-

phobicity is the main property, which leads to

sorption to the sludge, fat and particulate matter

during the wastewater treatment (Garcia et al.

2002; Ilani et al. 2005; Yu and Huang 2005).

Micropollutants can sorb to suspended solids and

subsequently be removed via the withdrawal of

the excess sludge during the wastewater treat-

ment. Sorption of micropollutants to the solid

phase can be estimated using the Kow values,

which reflects the equilibrium of partitioning the

organic solute between the organic phase, i.e.,

octanol and the water phase (Lion et al. 1990;

Stangroom et al. 2000; Yoon et al. 2004). High

Kow is characteristic for hydrophobic compounds,

poor hydrosolubility and high tendency to sorb on

organic material of the sludge matrix (Lion et al.

1990; Stangroom et al. 2000; Yoon et al. 2004).

For compounds with log Kow < 2.5, the sorption

to activated sludge is not expected to contribute

significantly to the removal of the pollutants via

excess sludge withdrawal. Between log Kow 2.5

and 4 moderate sorption is expected and values

higher than 4.0 are synonyms to high sorption

potential (Rogers 1996).

4.1.1.1 The influence of hydrophobicity on the

removal of pharmaceuticals in wastewater

treatment Despite the presence of ionic charges

on antibiotic molecules and their low Kow, the

fate of these compounds in wastewater treatment

systems can be influenced by hydrophobic

interactions with the sludge matrix. For instance,

oxytetracycline can sorb to the sludge even if they

are present in the form of zwitterion (Kulshrestha

et al. 2004). Sorption to sewage sludge of

antibiotics in a CTP led to 80–90% removal of

ciprofloxacin and norfloxacin (Giger et al. 2003).

In another study, approximately 80% of

norfloxacin and ciprofloxacin which entered into

the CTP was sorbed to particles in the raw sewage

water (Lindberg et al. 2006). Sorption kinetics of

oxytetracycline to the sludge in a lab scale study

was studied by Kim et al. (2005). At 3.6 g/l MLSS

concentration, 95% of oxytetracycline was

removed from water phase within only 1 h and

the concentration at equilibrium remained

unchanged over 24 h.

In sewage treatment plant, the removal of

some pharmaceuticals (e.g., diazepam, diclofenac,

ibuprofen, naproxen, sulfamethoxazole) was

mainly due to adsorption of those compounds to

sludge present in the biological reactor (aeration

tank) (Carballa et al. 2004). At the end of this

experiment, the removal efficiency varied be-

tween 40 and 60% for the anti-inflammatory

compounds and reached approximately 60% for

sulfamethoxazole. The sorption was even evident

during the primary treatment aiming at fat

separation, whereby the liphophilic properties of

organic pollutants led to removal rates ranging

from 20 to 50%. In another study, Carballa and
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collaborators (2005) studied the behaviour of

micropollutants with high hydrophobicity (gal-

axolide, tonalide) during different steps of waste-

water treatment and compared the results with

the behaviour of more polar compounds (e.g.,

ibuprofen, naproxen, diclofenac, diazepam, car-

bamazepine). Once more, it was concluded that

the high sorption properties of tested compounds

with hydrophobic character led to up to 70%

removal. At the opposite side, no removal of

carbamazepine and ibuprofen was observed.

4.1.1.2 The influence of hydrophobicity on the

removal of steroid- and xeno-estrogens in

wastewater treatment The estrogenic compounds

are generally characterized by relatively medium

hydrophobicity (see Table 1). Andersen et al.

(2003) carried out a series of sorption

experiments using artificial wastewater and

activated sludge from municipal CTPs in order to

determine the minimal equilibrium time between

water and solid phases for estrone (E1), 17b-

estradiol (E2), and 17a-ethinylestradiol (EE2).

Within half an hour 87–97% of the estrogens

were associated with sludge particles and after 2 h

the equilibrium was approached. Sorption was

estimated to 42.9% (E2), 39.1% (EE2), 47.4 (E3),

46.2% (octylphenol, OP), 34.7% (Bisphenol A,

BPA) and 61.8% (nonylphenol, NP) (Yamamoto

et al. 2003). The authors of this study

demonstrated that the fate of these compounds is

highly correlated to increasing or decreasing log

Kow value. Experiments carried out with 14C-

labelled EE2 indicated that 80% of the

compound was bound to the sludge and removed

from the liquid phase in this way (Layton et al.

2000).

A significant amount of the NP entering the

CTP with the influent was accumulated in the

sludge (93.5%), while the percentage discharged

through effluent varied from 4.8% up to 51.5%

(Keller et al. 2003). Esperanza and collaborators

(2004) found that approximately 60% of the

NPnEO surfactants were associated with the

solids in the aeration tank and increased con-

centration of all targeted compounds was ob-

served in the effluent in comparison to raw

influent due to a slow desorption process.

Approximately 80% of NP was eliminated in a

pilot scale MBR treating dumpsite leachate

(Wintgens et al. 2003). These authors assumed

Table 1 Physico-
chemical properties (e.g.,
Log Kow and vapour
pressure) of a selection of
pharmaceuticals, steroids
and xeno-estrogens
discussed in present
article for determining the
fate in CTP and MBR
systems

a Nakada et al. (2006)
b Hansch et al. (1995)
c Takacsnovak et al.
(1992)
d Predicted by WSKOW
v1.41 and HENRYWIN
v3.10 (EPI Suite,
USEPA)

Class of compounds Name of compound Log Kow Vapour pressure
(mmHg)

Pharmaceuticals Acetylsalicylic acida 1.19 2.02E-05
Benzafibrated 4.25 n.a.
Carbamazepinea 2.45 1.84E-07
Ciprofloxacind 0.4 n.a.
Clofibric acidd 2.84 8.96E-07
Diclofenacd 4.02 4.73E-12
Ibuprofena 3.95 1.86E-04
Ketoprofena 3.12 3.72E-07
Mefenamic acida 5.12 4.63E-07
Naproxend 3.18 1.89E-06
Norfloxacina –1.0 n.a.
Oxytetracyclined 0.90 3.9E-25
Phenazoned 0.38 n.a.
Sulfamethoxazoled 0.89 n.a.
Tetracyclined –1.30 3.60E-25
Trimethoprimc 0.2891 1.082E-17

Steroid- and xeno-estrogens Bisphenol A (BPA)a 3.32 3.91E-07
17a-ethinylestradiol (EE2)b 3.67 7.94E-12
17a-estradiol (E2)a 4.01 1.26E-08
Estrone (E1)a 3.13 1.42E-07
Estriol (E3)a 2.45 1.97E-10
Octylphenol (OP)a 4.12 4.78E-04
Nonylphenol (NP)a 4.48 2.36E-05
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that the adsorption of the compound on sus-

pended matter in the bioreactor and the sub-

sequent withdrawal with the excess sludge was

the main removal pathway of investigated com-

pound. The sorption and removal of micropol-

lutants in CTP or MBR is strongly dependent on

the Kow value of micropollutant. Highly hydro-

phobic compounds reaching the treatment plant

will be adsorbed and removed from wastewater

while, very polar compounds will be poorly

eliminated through sorption process.

4.1.2 Chemical structure

Another chemical property important in evaluat-

ing the removal potential of organic micropollu-

tants is the chemical structure. Chemical structure

and the elementary composition of a compound

can influence the removal rates from wastewater

during CTP or MBR treatment.

4.1.2.1 Influence of chemical structure on the

removal of pharmaceuticals in wastewater treat-

ment Pharmaceuticals are complex molecules

and are most notably characterized by their ionic

nature. Compounds having a complex chemical

structure such as the pharmaceuticals ketoprofen

and naproxen were not eliminated during CTP

process but were by MBR (Kimura et al. 2005). It

was assumed that the poor removal in CTP is due

to the presence of complex structure with two

aromatic rings making the compound more

resistant to degradation process. Compounds

like clofibric acid and diclofenac are small

molecules harbouring chlorine groups and were

not efficiently removed by both CTP and MBR.

Therefore, these authors attributed the

recalcitrance of these PPCP to the presence of

halogen groups. Nevertheless, this theory requires

further verification. On basis of the removal

extent and the chemical structure the same

authors proposed a classification of PPCP into

compounds, which are easily removed by both

CTP and MBR (i.e., ibuprofen), not efficiently

removed in both systems (i.e., clofibric acid,

dichlofenac), and not satisfactory removed by

CTP but well removed by MBR (i.e., ketoprofen,

mefenamic acid and naproxen). According to

other authors, increasing amounts of nitro- and

chlorine-groups in aromatic compounds result in

a decreasing degradation rate (Andreozzi et al.

2006).

4.1.2.2 The influence of chemical structure on

steroid- and xeno-estrogens in wastewater

treatment The removal efficacy of polar

compounds such as naphthalene sulphonates

(anionic surfactants) during MBR treatment

depends strongly on their respective molecular

structure (Reemtsma et al. 2002). The removal of

the naphthalene monosulphonates was almost

complete, while the removal of naphthalene

disulfonates was limited to about 40%.

Degradation and partitioning behaviour have

also been reported to be a function of the polar-

to-non polar group ratio of the molecule

(Rutherford et al. 1992), the presence of

aromatic moieties (Chiou et al. 1998), and the

organic carbon content (Yamamoto et al. 2003)

which characterize the molecule. Linear

alkylbenzene sulphonates (LAS) with long alkyl

chain were preferentially adsorbed to the sludge

matrix, while the short homologues of this anionic

surfactant were found in the effluent in a

comparative study in CTP and MBR (Terzic

et al. 2005).

The chemical structure of alkyl chain of NP

and LAS is responsible for completely different

biodegradation pathways. For instance, branched

isomers of NP are very recalcitrant and resulting

metabolites posses incomplete degraded alkyl

chain while ultimate degradation of linear NP

isomers is faster (Cirja et al. 2006; Corvini et al.

2006).

The removal rate is influenced by the chemical

structure of steroids. 17b-estradiol and 17a-

ethinylestradiol have basically the same chemical

structure, except the ethinyl group present in

EE2, which leads to drastic differences in biode-

gradability. In wastewater treatment systems,

microorganisms are able to degrade quite easily

E2, while EE2 is very recalcitrant (Ternes et al.

1999).

On the whole, chemical structure of an organic

pollutant does not only provide information

concerning the class to which the compounds

belong, but also indicates degradability or
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persistence of xenobiotics reaching the aquatic

environment. A compound with simple chemical

structure (e.g., absence of branched alkyl chain)

will be prone to removal via degradation during

the wastewater treatment. Compounds with com-

plex structure or chemicals bearing toxic groups

are likely to persist as parent compounds or

incompletely degraded metabolites in sewage

water (either in dissolved state or sorbed to the

sludge particles).

4.2 Process parameters of CTP and MBR

4.2.1 Sludge retention time (SRT) and biomass

concentration

Influence of SRT. Sludge retention time (SRT) is

the mean residence time of microorganisms in

CTP and MBR systems. Many studies state that

sufficient high SRT is essential for the removal

and degradation of micropollutants from waste-

water and allow for the enrichment of slowly

growing bacteria and also the establishment of a

more diverse biocoenosis able to degrade a large

number of micropollutants. It was demonstrated

that at short SRTs (<8 d) those bacteria are

removed from the system and in this case, the

biodegradation is less significant and adsorption

to sludge will be more important (Jacobsen et al.

1993). A diversified microbiocoenosis can

develop at SRT higher than 8 d, including also

nitrifying bacteria. Nitrification leads to the con-

version of ammonia to nitrate and this process is

mediated by endogeneous microorganisms in

aerated tanks. Complete nitrification was

demonstrated in MBRs at sludge ages of

5–72 d and organic loading rate of 0.05–

0.66 kg BOD m–3 d–1(Fan et al. 2000). The Byrns

model (Byrns 2001) concerning xenobiotics deg-

radation shows that at low SRTs, most of the

compounds are removed through sludge dis-

charge. As the SRT increases, the proportion of

sludge wasted from system decreases and higher

amount of less polar micropollutants remain in

the system for further degradation.

Influence of biomass characteristics. The bio-

mass characteristics are important factors for

biodegradation and differ between CTP and

MBR treatment (Brindle and Stephenson 1996).

The possibility for genetic mutation and adapta-

tion of microorganisms to assimilate persistent

organic compounds increases at higher STP

(Cicek et al. 2001). Furthermore, some enzymatic

activities increase proportionally to the higher

specific surface area of MLSS, which is directly

related to the floc-structure. The activated sludge

composition varies both with the influent compo-

sition and operating conditions adapted to the

wastewater treatment system (Chang and Judd

2003). Comparing the MBR and CTP systems,

Cicek and collaborators (1999) showed that the

biomass in the MBR has higher viable fraction

than in the CTP. This phenomenon can be

attributed to improved mass-transfer conditions

in the MBR favoured by smaller flocs and the

presence of many free-living bacteria. The size of

bacterial flocs contained in the activated sludge

can be another factor causing the difference

between CTP and MBR wastewater treatment

processes. In MBR it varies between 10 and

100 lm, and in the CTP between 100 and 500 lm

(Zhang et al. 1997). The same authors reported

that specific flocs surface per unit reactor volume

was ten times higher in MBR than in CTP

systems. The small size of microorganisms and

the flocs surface implies short distances to be

overcome by the substrate during the diffusion

into the flocs.

4.2.1.1 Influence of SRT on removal of

pharmaceuticals from wastewater In order to

remove pharmaceuticals from wastewater

through the treatment in CTP or MBR, SRT is

one of the factors easy to modify and improve the

process efficiency. Two MBRs operated at high

SRT of 26 d showed removal efficacy of 43% for

benzothiazoles (Kloepfer et al. 2004a). By

varying the SRT in MBRs, Lesjean et al. (2005)

noticed that the removal of pharmaceuticals

residues increased with a high sludge age of

26 d and inversely decreased at lower SRT of 8 d.

SRT values between 5 and 15 d are required for

biological transformation of some pharmaceuti-

cals, i.e., benzafibrate, sulfamethoxazole,

ibuprofen, and acetylsalicylic acid (Ternes

et al. 2004). Nevertheless, the application of

high SRT is not automatically leading to the
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removal of all pollutants. For SRT of 2 d, Clara

et al. (2005) found out that none of investigated

pharmaceuticals, e.g., ibuprofen, benzothiazole,

dichlorofenac and carbamazepine was eliminated,

while applying SRT of 82 d in MBR and 550 d in

CTP removal rate >80% were obtained.

Nevertheless, removal rate of carbamazepine

remained below 20%, for all applied SRTs. The

same results were reported also by Ternes et al.

(2004) were carbamazepine and diazepam is not

degradable even at SRT over 20 d. In MBR

containing acclimatized sludge, the removal of

diclofenac ranged from 44 to 85% at SRT of 190–

212 d (Gonzáles et al. 2006).

The biodegradability of trimethoprim was

studied during different sewage treatment steps

using batch systems (Perez et al. 2005). The main

outcome of this study was that the activated

sludge treatment comprising nitrification process

was the only treatment capable to eliminate

trimethoprim. The capacity of nitrifying bacteria

(growing at SRT >8 d) to break down trimetho-

prim was quite unexpected, because a precedent

study reported that this xenobiotic cannot be

degraded by microorganisms (Junker et al.

2006).

In a lab scale MBR with high sludge concen-

tration ranging between 20 and 30 g/l and a SRT

of 37 d, degradation of selected pharmaceuticals

were tested (Quintana et al. 2005). Bezafibrate

was transformed (60%) but not mineralized and

the metabolites were tentatively identified. The

naproxen was degraded over a period of 28 d.

Ibuprofen degradation started after 5 d and was

complete after 22 d.

The antibiotics tetracyclines were highly

sorbed to the sludge and the sorption correlated

well with the SRT during adsorption test in batch

system (Sithole and Guy 1987). The adsorption

kinetics for tetracyclines was determined at var-

ious biomass concentrations in sequencing batch

reactors at different SRT and HRT (Kim et al.

2005). Between 75 and 95% of applied tetracy-

clines was adsorbed onto the sludge after 1 h. At

long SRT (10 d) the removal of tetracyclines was

85–86%, while the decrease of SRT to 3 d gave a

lower removal (78%). The lower degradation

rates were assigned to the reduced biomass

concentration once the SRT was shortened.

4.2.1.2 Influence of SRT on removal of steroid-

and xeno-estrogens from wastewater Johnson

and his collaborators (2005) operated many

CTPs in order to evaluate the removal of NP

and E1, E2, EE2 from wastewater. Satisfying

degradation of investigated compounds was

registered at high SRT of 30 d. In the same

study it was shown that no significant difference is

observed between the MBR and CTP in term of

degradation performances. Similar observation

on the removal of NP and BPA was described by

Ivashechkin et al. (2004a) during the operation of

MBR and CTP processes at SRTs of 12 and 25 d.

The high removal efficiency (95%) associated to

the operation of high SRT in MBR was confirmed

as well by Terzic et al (2005) concerning the

removal of NPnEO from wastewater. Joss et al.

(2004) studied the E1, E2, EE2 degradation in

batch experiment using sludge from CTP with

SRT of 11 d and MBR with 30 d. For the natural

estrogens E1 and E2, degradation activity seemed

to be higher in MBR than in CTP by a factor of

2–3 with the respect to the applied SRT. Clara

et al. (2005b) confirmed the good removal (80%)

of BPA, E1, E2, E3 in CTPs or MBR. For SRT

higher than 10 d, no significant difference was

observed between the various wastewater

treatment systems; the removal rates ranged

between 90 and 95% for E1, E2 and EE2 in

CTP and MBR. The good performance of the

treatment was attributed to the high age of the

biofilm sludge. Using SRT of 12–15 d, both of

the treatment systems were adapted to

nitrification denitrification process. In a full-

scale municipal plant including a nitrification

step, degradation rates of estrogens ranged

between 79 and 95% and the extended

biodegradation was mainly attributed to the

nitrifying activity (Vader et al. 2000). When the

sludge was adapted to the nitrification process,

the degradation of EE2 reached satisfying rate of

removal (half-life of approximately 28 h). On the

contrary, the degradation of EE2 stopped when

the sludge lost the nitrification capacity due to the

low temperature. The correlation between the

efficacy of biological treatment to remove

micropollutants and the nitrogen removal is

supported by other studies where good removal

rates are reached in installations designed for the
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optimal treatment of nitrogen from effluents

(Clara et al. 2005b). Apparently, WWTP

designed for nitrogen removal achieved also a

high removal of EDC.

Concerning the removal of micropollutants,

SRT is a key parameter of the wastewater

treatment in CTP and MBR. At longer SRT in

the treatment system the contact time, the diffu-

sion into the flocs, and the adaptation of micro-

organisms to the substrate are improved. From

these studies, it can be concluded that SRTs

ranging between 10 and 30 d allow for sufficient

removal rates concerning most of the investigated

micropollutants. The SRT of CTP and MBR has

to be chosen according to the persistence of

micropollutants to be eliminated. In relation to

SRT, the biomass concentration is very impor-

tant. Sorption of micropollutants is favoured by

the high biomass content, which is especially

characteristic for MBR and additionally, the

sludge composition plays an important role con-

cerning the micropollutants degradation.

4.3 pH value

The acidity or alkalinity of an aqueous environ-

ment can influence the removal of organic micro-

pollutants from wastewater by influencing both

the physiology of microorganisms (pH optima of

microbial enzyme activities) and the solubility of

micropollutants present in wastewater.

4.3.1 Influence of pH value on the removal of

pharmaceuticals during wastewater

treatment

Depending on their pKa values, pharmaceuticals

can exist in various protonation states as a

consequence of pH variation in the aquatic

environment. At pH 6–7 tetracyclines are not

charged and therefore, adsorption sludge be-

comes an important removal mechanism (Kim

et al. 2005). It was also demonstrated that the

hydrophobicity of norfloxacin varies with the pH

values, being very low at pH < 4 and pH > 10 and

the maximal hydrophobic value was reached at

pH of 7.5 (Advanced Chemistry Development,

ACD Labs). Another study identified the pH

value as critical parameter affecting the removal

of micropollutants during the MBR treatment,

pH value varied from neutral to acidic as nitrifi-

cation became significant in the MBR (Urase

et al. 2005). At pH lower than 6, high removal

rate (up to 90%) was observed for ibuprofen.

Ketoprofen was removed from MBR up to 70%

when the pH dropped down below 5.

4.3.2 Influence of pH value on the removal of

steroid- and xeno-estrogens

The sorption of E1 and E2 to the organic matrix

was reported to be strongly dependent on the pH

value (Jensen and Schaefer 2001). In these studies,

23% of the steroid estrogens were sorbed to the

activated sludge at pH value of 8, while this

proportion increased up to 55% when pH value

was maintained at 2 and it was shown that

increasing pH values up to pKa (pH > 9) lead to

an increased desorption of steroids. The same

behaviour was observed in the study of Clara and

collaborators (2004a, b), where solubility of E2 and

EE2 increased at pH of 7–12. During the sludge

treatment like sludge dewatering and conditioning

with lime, the pH is increasing over 9 and the

micropollutants can be desorbed from sludge

solids. For instance, the recovery of BPA in

aqueous phase, took place at pH > 12 and desorp-

tion was attributed to the increased hydrosolubility

of the deprotonated form of BPA (Clara et al.

2004b; Ivashechkin et al. 2004b). The consequence

of such high release was a high backloading of CTP

via the recycling of the process water.

In another study, the sludge–water partition

coefficients (Kp) of investigated estrogens in

activated sludge from a CTP were increased with

the decrease of pH value for almost all the

investigated compounds (BPA, E2, EE2) (Kikuta

2004). In the case of compounds harbouring

one carboxyl group, the Kp values at pH = 5.6

were 2.5–30 times higher than those at pH = 6.7,

while for compounds having phenol groups such

as E1, EE2, BPA the increase of partition

coefficient varied to a lower extent within this

range of pH values.

The better removal rate of deprotonable

micropollutants from wastewater can be achieved

at low pH value, the protonation state influencing

both sorption and degradation processes. On the

70 Rev Environ Sci Biotechnol (2008) 7:61–78

123



one hand, acidic conditions are not usual in CTP

or MBR, but could be adapted for systems

treating wastewater from highly contaminated

sites or industrial wastewater in order to increase

degradation rates. On the other hand, since the

dissolution of a compound can be controlled by

varying the pH value, one can use this advantage

in order to avoid further contamination. A

possible application would be the alkalinization

of sludge to be used for soil amendment in

agricultural applications.

4.4 Temperature during the wastewater

treatment

Temperature is influencing the microbial activity

in both CTP and MBR as microbial growth rate

strongly varies according to the applied temper-

ature conditions (Price and Sowers 2004). With

increasing temperatures, adsorption equilibriums

are reached earlier and degradation rate and

bacterial growth are faster (ten Hulscher and

Cornelissen 1996).

4.4.1 Influence of temperature on the removal of

pharmaceuticals during wastewater

treatment

In a recent study, the removal of pharmaceuticals,

i.e., ibuprofen, benzafibrate, diclofenac, naproxen

and ketoprofen was reported to increase during

the summer time when the temperature reached

17�C in comparison to the winter season when the

water temperature was around 7�C (Vieno et al.

2005). A temperature of 20�C was beneficial for

the removal of pharmaceuticals in CTP and MBR

and for instance more than 90% bezafibrate was

eliminated (Clara et al. 2004a). At low tempera-

ture during winter season, the degradation rates

decreased. In the case of diclofenac, naproxen,

and ibuprofen, better performances of removal

are reached when the systems are operated at

25�C than at 12�C (Carballa et al. 2005). In

another study, comparing the removal of phar-

maceuticals (phenazone, carbamazepime and

metabolites) during CTP and MBR process, the

performance of the CTP process remained rela-

tively constant over time despite the winter/

summer changes of temperature (10–25�C), while

in MBR removal rates were strongly affected by

the seasonal changes (Lesjean et al. 2005). The

higher temperature registered in summer in MBR

and the long sludge age (26 d) improved the

removal rates at 80–100%. The same study states

that the extent of removal in MBR units was up to

99% for pharmaceuticals and up to 80% for the

steroids initially present in the incoming waste-

water during the summer period. The adsorption

of antibiotics fluoroquinolone to the particles in

the raw water is influenced by the temperature.

Lindberg et al. (2006) stated that at 12�C the

adsorption was 80%, while Golet et al. (2003)

showed an adsorption of 33% when the temper-

ature was higher. Studies on the influence of high

temperature on the removal of COD from

wastewater of pharmaceutical industry led to the

conclusion that temperature serves as pressure of

selection for the bacterial community develop-

ment during aerobic biological wastewater

treatment (La Para et al. 2001). In the same time,

it stimulates higher degradation rates of

pharmaceuticals.

4.4.2 The influence of temperature on the removal

of steroid- and xeno-estrogens during

wastewater treatment

Temperature was reported to influence also the

mineralization of E2 (Layton et al. 2000). An

increase of 10�C leads to a duplication of micro-

bial activity (from Arrhenius equation) and min-

eralization rate and changes of approximately

15�C had statistically significant effect on the

mineralization rate of E2 present in the aqueous

phase. Concerning EE2, other authors carried out

investigations in both systems and reported that

over the sampling period (May–July) the removal

varied from 60 to 70% in both CTP and MBR

(Clara et al. 2004a). In December, the EE2

removal in the CTP was 60%, while as a conse-

quence of temperature decrease this compound

was not removed in MBR, although removal of

EE2 should at least have occurred through

sorption. Another study on the fate of estrogens

led to the conclusion that biomass was less active

concerning the removal of steroids during the

winter and high concentration was observed in

the effluent (Desbrow et al. 1998).
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The removal of NPnEO and LAS from

municipal wastewater was investigated (Terzic

et al. 2005). The results of this study showed

removal efficiency up to 95% and the efficacy was

in fact improved when the temperature in the

treatment system varied from 3 to 30�C. In the

case of NP it was stated that at 10–15�C, which

are typical values for Europe, the compound is

preferentially distributed into the sludge fraction

(Brunner et al. 1988; Tanghe et al. 1998). The

degradation of NP in a packed bed bioreactor

containing cold adapted bacteria, (Soares et al.

2006) showed optimal biodegradation rate at

temperature of 10�C. By decreasing the temper-

ature from 10 to 5.5�C a negative effect on the

bioreactor efficiency was observed. The explana-

tion was based on the lower diffusion of organic

pollutants (limited solubility), which decreases

with the temperature.

On the whole, the temperature influences the

solubility and further physico-chemical properties

of micropollutants present in the wastewater

treatment systems and also the structure of the

bacterial community. Concerning the removal of

micropollutants, it seems that CTP shows better

stability than MBR during seasonal temperature

variations. The larger surface of CTP than MBR

would attenuate the variations of temperature,

protecting bacterial activity against temperature

shock produced in the system. The temperature-

induced increase in microbial activity favours a

higher biodegradation rate of micropollutants.

Besides, as the MBR system are more compact,

operation at high constant temperature required

for the degradation of persistent organic micro-

pollutants represents a solution for a satisfying

removal of micropollutants.

5 Conclusions

From the general overview of the factors influ-

encing the removal of organic micropollutants

from wastewater, it can be concluded that sorption

and biodegradation are the dominant removal

processes in CTP and in MBR, which are influ-

enced by operation conditions. Operation param-

eters of both treatment systems seem to play

substantial/important role on the biodegradation

rates and pathways for the removal of pharma-

ceuticals and estrogenic compounds. Sewage

treatment conditions represent in fact the key

for the optimization of different processes for

efficient removal of xenobiotics and macropollu-

tants before releasing the effluent into the envi-

ronment. Most of the studies related in the present

article concerned adapted systems, which were

operated under different conditions. This fact

must be taken into account in order to interpret

the results and compare the values retrieved from

various studies. The operation mode and the scale

of the process are important and data obtained

from studies carried out at real scale can drasti-

cally differ from those resulting from batch

experiments. However, the latter can supply

qualitative information on the fate of the investi-

gated compound, which may be extrapolated to

the real scale for modelling applications. The

removal rates differ from one compound to the

other, even if physico-chemical properties such as

Kow, pKa, and chemical structure are similar.

Concerning the factors determinant for the

removal of micropollutants from wastewater,

which have been discussed in the present work,

some general rules can be derived as follows:

(1) Hydrophobic compounds (NP, EE2, etc.)

can be removed from the influent via

adsorption to the sludge particles present

in the system.

(2) Chemical structure: compounds containing

complex structure (e.g., alkyl chain branch-

ing) and toxic groups (e.g., halogens and

nitro group) show higher resistance to bio-

degradation processes.

(3) When SRT in the wastewater treatment

system is high enough (at least 8 d) the

removal of organic compounds through

biodegradation processes is enhanced.

(4) The temperature of wastewater treatment

seems to play an important role; WWTP in

countries with average temperature of 15–

20�C may better eliminate micropollutants

as in cold countries with a temperature

mostly under 10�C. The seasonal tempera-

ture changes between summer and winter

influences the biodegradation and removal

of micropollutant.
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(5) The pH value influences the removal of

micropollutants from wastewater. Although

few studies focused on this parameter, the

control of pH value might be a solution for

the removal of micropollutants in WWTP.

The pH of industrial wastewater is often

subject to variations and may also negatively

influence the removal of the micropollu-

tants. One solution would be the adjustment

of the pH of the influent before the biolog-

ical treatment step. Furthermore, modifying

the protonation state of some compounds

represents a solution for increasing their

removal via adsorption to the sludge.

By comparing CTP and MBR, it can be

concluded that there is no real difference between

the two investigated systems concerning the

removal of different classes of micropollutants.

Nevertheless, the removal rates differ from one

compound to the other and the rates of removal

depend on the physico-chemical characteristics of

the xenobiotic, e.g., hydrophobicity, chemical

structure, pKa, etc. Hydrophobic compounds are

removed from the liquid phase via adsorption,

and possibly through biodegradation processes

when the SRT is high enough.

Although the research on the fate and removal

of micropollutants from wastewater has made

consequent progress, one can still notice a lack of

studies at full scale, especially for MBR process.

Additionally to the compactness of MBR plant

and the high organic load that can be applied, this

process is promising concerning the removal of

micropollutants, which are eliminated at high

SRT and biomass concentration.
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Li HQ, Jiku F, Schröder HF (2000) Assessment of the
pollutant elimination efficiency by gas chromatogra-
phy/mass spectrometry, liquid chromatography-mass
spectrometry and – tandem mass spectrometry –
comparison of conventional and membrane assisted
biological wastewater treatment processes. J Chro-
matogr A 889(1–2):155–176

Liebig M, Egeler P, Oehlmann J, Knacker T (2005) Bio-
accumulation of C-17a-ethinylestradiol by the aquatic
oligochaete Lumbriculus variegatus in spiked artificial
sediment. Chemosphere 59(2):271–280

Lindberg RH, Olofsson U, Randahl P, Johansson M,
Tyaklind M, Andersson BAV (2006) Behaviour of
fluoroquinolones and trimethoprim during mechani-
cal, chemical and activated sludge treatment of sew-
age and digestion of sludge. Environ Sci Technol
40(3):1042–1048

Lion LW, Stauffer TB, MacIntyre WG (1990) Sorption of
hydrophobic compounds on aquifer materials; analy-
sis methods and the effect of organic carbon. J Con-
tam Hydrol 5:215–234

Luthje K, Hyotylainen T, Riekkola ML (2004) On-line
coupling of microporous membrane liquid-liquid
extraction and gas chromatography in the analysis of
organic pollutants in water. Anal Bioanal Chem
378(8):1991–1998

Ma M, Li J, Wang Z (2005) Assessing the detoxication
efficiencies of wastewater treatment processes using a
battery of bioassays/biomarkers. Arch Environ Con-
tam Toxicol 49(4):480–487

Marcomini A, Capri S, Giger W (1987) Determination of
linear alkylbenzenesulphonates, alkylphenol polyeth-
oxylates and nonylphenol in waste water by high-
performance liquid chromatography after enrichment
on octadecylsilica. J Chromatogr A 403:243–252

Matsumura F (1989) Biotic degradation of pollutants
ecotoxicology and climate, SCOPE. John Wiley &
Sons Ltd, Chichester

Matsunaga T, Ueki F, Obata K, Tajima H, Tanaka T,
Takeyama H, Goda Y, Fujimoto S (2003) Fully
automated immunoassay system of endocrine dis-
rupting chemicals using monoclonal antibodies
chemically conjugated to bacterial magnetic particles.
Anal Chem Acta 475(1–2):75–83

Metcalf L, Eddy HP (2003) Wastewater engineering –
treatment and reuse, 4th edn. Handbook. McGraw-
Hill, New York

Moeder M, Martin C, Harynuk J, Górecki T, Vinken,
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