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Abstract The goal of the present study was to evaluate the
role of verbal stimuli in the production of response variability
in humans. College students were distributed into three groups
and asked to type three-digit sequences. Participants in the
systematic group were instructed to produce sequences
according to a rule of their choice; those in the random group
were instructed to produce sequences according to chance;
and those in the control group were not instructed about how
to produce sequences. The experiment employed an ABA
design. During the A phases, low-frequent sequences were
reinforced (variability contingency), whereas during the B
phase, reinforcement was withdrawn (extinction). The results
indicated the following: (1) The instructions were efficient at
producing systematic and random-like patterns for the sys-
tematic and random groups, respectively; in the absence of
instructions, a mix of both patterns was observed. (2) Behav-
ior was sensitive to extinction independently of the instruc-
tions provided. (3) Systematic patterns favored a more
equiprobable distribution of sequences across trials. (4) Reac-
tion times were longer for responding in a systematic than in a
random-like fashion. The present findings suggest that

individual differences in meeting variability contingencies
may be due, at least partially, to instructional control.

Keywords Humans . Variability . Instruction . Systematic
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The behavior of humans and of nonhuman animals has been
demonstrated to be sensitive to operant contingencies that
specify different levels of variability, such that variable or
repetitive behaviors develop at demand (see Neuringer,
2002, 2004, for reviews). For example, Machado (1989)
exposed pigeons to a sequence formation task in which a
series of four pecks distributed across two keys were fol-
lowed by food if they met a given variability criterion. Low,
medium, and high variability requirements produced
corresponding levels of behavioral variability. A similar
pattern was observed with college students when the task
was to move a square from the top to the bottom of a pyramid:
Path variability increased as a function of the variability
requirement (Stokes, 1999). Additionally, other studies have
shown that behavioral variability comes under discriminative
control both by antecedent (Denney & Neuringer, 1998; Page
& Neuringer, 1985; Ward, Kynaston, Bailey, & Odum, 2008)
and consequent (Souza & Abreu-Rodrigues, 2010) stimuli.
These findings have given support to the notion that variabil-
ity is an operant dimension of behavior, in the same sense as
force, duration, frequency, and so forth.

Behavioral variability may be produced by means of differ-
ing behavioral patterns. While nonhuman animals have been
shown to meet highly demanding variability contingencies by
behaving randomly (Abreu-Rodrigues, Hanna, Cruz,Matos, &
Delabrida, 2004; Cohen, Neuringer, & Rhodes, 1990;
Machado, 1993; McElroy & Neuringer, 1990; Neuringer,
1991; Page & Neuringer, 1985; Ward, Bailey, & Odum,
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2006), some studies have pointed out that humans use system-
atic strategies to produce variation. For example, in a study by
Schwartz (1982, Exp. 6), college students were asked to type
sequences of eight keypresses that differed from the last 50
emitted sequences (a lag 50 requirement). Performance on this
task was very accurate (~100%), and thus highly variable, and
all participants reported using systematic rules to produce the
sequences. According to Schwartz, the sequence emission
patterns matched the self-reported rules (data not provided).

In a more recent experiment, Stokes and Harrison (2002,
Exp. 1) exposed college students to two pyramids (i.e., a
triangle composed of several squares). A white square was
displayed at the top of each pyramid, and the task was to
bring this square from the top to the bottom of the pyramid
by pressing the left and right keys. This task was accom-
plished by pressing the keys five (small pyramid) or ten
(large pyramid) times. Several possible paths (i.e., combi-
nations of left and right responses) could be used to reach
the endpoints on the pyramid, and the larger the pyramid,
the larger the number of paths available. In four conditions,
the variability requirement was increased from a lag of 0 to
2 to 10, and ultimately to lag 20. The greater the number of
available paths and the higher the variability requirement,
the higher the levels of sequence variation that were
obtained. However, when the performance of the students
was compared to that of a random generator, it was observed
that the participants developed a systematic pattern with the
larger pyramid: That is, they produced varied combinations
of left and right presses by aiming at different endpoints, but
varied the selected paths in a structured way. Furthermore,
when requested to describe their performance, most partic-
ipants reported using this strategy.

Maes (2003) also observed systematic responding under a
variability contingency. College students were asked to type
sequences of three digits and received feedback for their
performance. Across two phases, different feedback contin-
gencies were employed: variability-dependent reinforcement
and no reinforcement (Exp. 1), and variability-dependent and
variability-independent reinforcement (Exp. 2). Transitions
between these contingencies were programmed according to
an AB or a BA between-subjects design. Several measures of
behavioral variability were computed: (1) the equiprobability
in the emission of all sequence alternatives (U value), (2) the
percentage of sequences that met the variability requirement
(MetVar), (3) the sequence distribution, and (4) the autocorre-
lations. The first three measures allowed for the identification
of variation at the level of response units, whereas autocorre-
lations indicated whether the current sequence was influenced
by previous sequences (sequence dependency), and therefore
pointed out the use of responding strategies.

Maes (2003) found that variability-dependent reinforce-
ment engendered higher MetVar and U values and also a
more even sequence distribution than did no reinforcement or

variability-independent reinforcement. This increase in variable
responding, however, was also accompanied by an increase in
the tendency to respond systematically or strategically, such
that high autocorrelations were obtained. This effect, neverthe-
less, varied substantially from participant to participant (being
present in about half of the sample) and from time to time (e.g.,
systematicity increased or decreased across blocks of trials).
These systematic strategies and the alternative, more random-
like patterns shown by other participants, however, were not
correlated with differential rates of reinforcement, meaning that
both patterns were effective in meeting the variability contin-
gency. Between-subjects variability was attributed to either
memory processes or self-rules. That is, Maes argued that
systematicity requires memory of previous emitted sequences
and thus is not always observed, because memory capacity
varies across individuals. Further, some participants might have
followed self-rules stating that the emission of sequences in a
fixed order was relevant to the task, while others might have
developed rules stating that random performance would be
more appropriate.

The studies by Schwartz (1982), Stokes and Harrison
(2002), and Maes (2003) demonstrated that under variability
contingencies, humans tend to develop a systematic strategy
in emitting sequences of responses, although a random-like
pattern would also be functional. Moreover, Maes suggested
that self-rules induced by the experimenter-given instruc-
tions might be one of the factors that alters the probabilities
of adopting systematic or random strategies to satisfy a
variability contingency. This possibility, however, has not
been directly tested so far. Given these considerations, our
primary concern was to evaluate the role of verbal stimuli (i.e.,
experimenter-provided instructions that might induce self-
rules) in the production of response variability in humans.

Thus, college students were asked to type three-digit
sequences. Variability-dependent feedback (Phase A) and
no feedback (extinction; Phase B) were scheduled according
to an ABA design. We provided three groups of participants
with different instructions regarding the response strategy:
The systematic group was told to emit sequences according
to a rule of their choice; the random group was told to
produce sequences according to chance; and the control
group did not receive instructions regarding their sequence
production. We were specifically interested in the effects of
these instructions on the serial organization of the sequences
across trials. We expected that participants told to produce
sequences systematically and randomly would comply with
these instructions, and therefore would show distinguishable
response patterns, whereas the control group would display
more between-subjects variability. To allow for the identifi-
cation of systematicity, we computed autocorrelations and
first-order differences—both measures allowing the obser-
vation of deviations from randomness—and we compared
the students’ data with those produced by a random
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generator. We were also interested in evaluating whether
these differential patterns of responding (i.e., systematic
and random) would affect the probability of meeting the
variability contingency (MetVar), the uncertainty in the emis-
sion of response sequences (U value)—traditional measures of
response variability—and also the rate of responding. Previous
studies (e.g., Maes, 2003) have not found a correlation be-
tween systematic and random response patterns and differen-
tial rates of reinforcement or uncertainty in the emission of
sequences. We expected to replicate these findings. Regarding
the response rate, there is evidence that faster responding
produces more deviations from randomness—that is, more
repetitions than would be expected from random responding
(Baddeley, Emslie, Kolodny, & Duncan, 1998; Neuringer,
1991). Thus, we were interested in examining whether instruc-
tions to respond systematically or randomly would alter the
rates at which participants typed the sequences.

Method

Participants

A group of 36 undergraduate students (25 women, 11 men)
from the Universidade de Brasília (Brazil) participated in
one 1-h session in return for extra credit in introductory
psychology classes. The participants’ ages ranged from 18
to 55 years old (mean 022 years). Participants read and
signed an informed consent form. Points earned during the
task were converted into chances to win a cash prize (ap-
proximately US$25) at the conclusion of the study.

Procedure

The experimental task was programmed in Visual Basic 6.
Participants were randomly assigned to one of three groups:
systematic, random, and control. All participants read the
following instructions at the beginning of the experiment.
The instructions were written in Portuguese and translate
into English as follows:

1. This is a learning experiment. Your task is to type
sequences of three digits, using the keyboard keys
numbered 1, 2, and 3. Each keypress will produce a
yellow circle on the screen. This will allow you to
keep track of the number of responses you have
already made. When you finish typing a sequence,
press the Enter button or the spacebar. There are 27
different possible sequences.

2. For each correct sequence, you will receive 10 points,
and for each 100 points earned, you will receive a
coupon that is worth a chance to win a prize at the end
of the experiment. The computer will show the number

of sequences already typed and the number of coupons
you have accumulated. Try to earn as many points as
you can. You will be asked to type approximately 900
sequences; therefore, try to work at a steady pace.

For participants in the systematic group, the following
instruction was added to the general instructions:

3. The best way to earn points is by emitting sequences
according to some SYSTEMATICITY. Systematic
responses are those that display order and regularity.
Therefore, you should produce sequences that meet a
certain rule of your choice. For example, you might
decide to emit sequences grouped by their first number
(e.g., 111, 123, 132, etc.). Again, emit sequences
according to a predetermined order.

For participants in the random group, the following in-
struction was added to the general instructions:

3. The best way to earn points is by emitting sequences
RANDOMLY. Random responses are those that happen
by chance. Therefore, you should produce patterns of
sequences without following any rule. For example, you
might emit the following sequences (e.g., 123, 311, 311,
222, etc.). Again, do not emit sequences according to a
predetermined order.

Participants in the control group received only the initial
instructions.

In addition to the specific instructions, the systematic and
random groups were required to complete a small task that
ensured that they understood the concepts of systematicity
and randomness adopted in this experiment. They were
asked to classify the following patterns as systematic or
random:

a) 111, 112, 113, 121, 122, 123
b) 313, 111, 321, 233, 122, 223
c) 111, 222, 333, 111, 222, 333
d) 232, 113, 321, 333, 231, 112
e) 331, 332, 333, 221, 222, 223
f) 131, 222, 123, 123, 223, 112

The correct responses were to identify (a), (c), and (e) as
systematic patterns and the remaining patterns as random.
The participants were also requested to give their own
examples of systematic and random patterns. The experi-
menter provided feedback for all responses. After that, par-
ticipants were allowed to start the experiment.

The participants sat in a small room containing a table, a
chair, and an IBM computer. At the start of each trial, the
monitor showed a black screen with the word “Sequence” at
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the top and two counters at the bottom: One counter pre-
sented the number of trials already completed (on the left)
and the other, the number of coupons accumulated (on the
right). The task was to emit three-response sequences by
pressing the digits 1, 2, and 3 on the keyboard. As the
participant typed the digits, yellow circles were presented,
from the left to the right, in a row below the word “Se-
quence.” If a sequence met the reinforcement criterion,
pressing the Enter button or the spacebar changed the screen
color to white. This screen showed feedback (“You won 10
points”), a smiley face, and the total number of earned
points (hereafter called reinforcers) for 1 s. None of the
reinforcers were produced for noncriterion sequences. Fol-
lowing the emission of each sequence (or the reinforcer’s
delivery, when this was the case), a new trial began.

The experiment followed an ABA design. During the VAR
(A) phases, a sequence produced the reinforcers if it satisfied
two criteria: (a) the current sequence had to differ from each of
the two previous sequences (lag 2 criterion), and (b) the
weighted relative frequency of the current sequence had to
be less than or equal to a certain threshold (cf. Denney &
Neuringer, 1998). The relative frequency was computed by
dividing the total number of occurrences of each sequence by
the total number of completed sequences (trials). To weight
recently emitted sequences more than past sequences, after
each reinforcer delivery, the relative frequency of each of the
27 possible sequences was multiplied by a weighting coeffi-
cient (w 0 .95) that exponentially decreased the contributions
of past sequences. The weighted frequency of the current
emitted sequence was compared to the threshold value (set
at .05) to determine whether this sequence was to be rein-
forced. If the weighted relative frequency was less than or
equal to the threshold (and the lag 2 requirement was satis-
fied), the reinforcers were delivered; otherwise, the sequence
was considered a noncriterion one, and the reinforcers were
not provided. In the beginning of this phase, all of a sequen-
ce’s counters were set to zero (thus, the first emission of each
sequence was followed by reinforcement). During the EXT
(B) phase, none of the emitted sequences produced reinforcers
(extinction). In this phase, the emission of each sequence was
followed by the next trial. Phase changes were not signaled.
Each phase lasted 300 trials, except for the last phase, which
ended when the number of reinforcers was equal to that
obtained in the first exposure to the VAR contingency or after
300 trials, whichever occurred first.

After completing the experimental task, participants an-
swered a postexperimental questionnaire and were debriefed.

Data analysis

The data from each phase were divided into blocks of 50
trials, yielding six blocks per experimental phase, and the
data from the first and last blocks of each phase were

considered for the analyses. To evaluate the degree to which
participants were responding systematically or in a random-
like pattern, two measures of sequence dependency were
employed:

Autocorrelations To evaluate higher-order patterns in the
emission of sequences, lag 1 to 27 autocorrelations were
computed (see also Maes, 2003). Lag 1 autocorrelations refer
to correlations between the sequence emitted in trial n and the
sequence emitted in trial n – 1; lag 2 autocorrelations indicate
correlations between trials n and n – 2; and so on.

First-order difference (FOD) This measure reflects the arith-
metic difference between the response in the current trial and
the response in the preceding trial (Towse & Neil, 1998). To
compute this measure, all sequences were recoded in an
ascending order with numbers from 1 to 27 (e.g., sequence
111 was coded as 1; sequence 112 was coded as 2; sequence
113 as 3; and so on, until sequence 333, which was coded as
27). Thus, if across successive trials the sequences 1, 2, 3, 4, 5,
and 2 were emitted, the obtained FOD for the first pair of trials
(2 – 1) would be equal to +1, and the same value would be
obtained for the following three pairs (3 – 2; 4 – 3; 5 – 4). On
the other hand, the emission of the sequence 5 followed by
sequence 2 would yield an FOD of –3. If participants were
responding randomly, all types of transitions between sequen-
ces would be equally likely, so that all FOD values (ranging
from –26 to +26) should be equiprobable. However, if partic-
ipants were responding with some systematicity, some tran-
sitions would be more likely than others (such as emitting all
sequences in ascending order of magnitude, a pattern that
would yield an FOD of +1 on most trials).

In addition to autocorrelations and the FOD, more tradi-
tional measures of variability and performance were used:

Percentages of sequences that met the variability criteria
(MetVar) MetVar was computed according to the following
formula: (number of trials on which the variability criteria
were met) / (total number of trials).

Overall index of sequence uncertainty (U value) U values
were obtained according to the following equation (Miller &
Frick, 1949):

�P
RFi� log RFið Þ=log 2ð Þ½ �f g
log 27ð Þ=log 2ð Þ½ � ;

where RF is the relative frequency of the sequence i (for i 0
1 to n), and n is the number of all possible sequences (27). If
each of the 27 possible sequences were emitted equally
often, the U value would be equal to 1; if only one sequence
were emitted, the U value would be equal to 0.
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Mean reaction times (RTs) RTs were computed as the time
(in seconds) to complete a sequence on each trial. RTs were
computed as a measure of response rate.

All of these measures were evaluated separately for each
of the three experimental groups. Moreover, autocorrela-
tions, FOD, MetVar, and U values were also calculated on
the basis of the data produced by a random generator. To
simulate the emission of random sequences, the random
number generator of MATLAB was used. We produced 12
simulations of the random selection of 300 integers with
values ranging from 1 to 27 (simulating the production of
the 27 possible sequences in the present experiment). These
data served as a baseline to compare the levels of random-
ness achieved by the experimental groups on each measure
of variability.

Results

The results were tested for significance with a mixed repeat-
ed measures analysis of variance (ANOVA) having Block
(first and last) and Phase (VAR, EXT, and VAR) as within-
subjects factors, and Group (systematic, random, and con-
trol) as a between-subjects factor. In some of the analyses
performed, the sphericity assumption was violated, and there-
fore Greenhouse–Geisser-adjusted degrees of freedom are
reported (recognizable by the noninteger values). To correct
for nonsphericity, the Bonferroni adjustment for multiple
comparisons was also employed. Partial eta-squared (ηp

2)
results are provided for the significant effects.

Response strategy

To quantify the extent to which participants were using sys-
tematic and random strategies to produce their sequences, we
employed two measures: autocorrelations and FOD.

Autocorrelations Strategic responses can be evaluated by
higher-order measures such as autocorrelations. Random
responding should produce very low levels of autocorrelations,
since the response emitted on the current trial should be

completely independent of the previously emitted responses.
To allow for the evaluation of the degree of randomness
achieved by our participants, we computed autocorrelations
for the simulated data. The patterns of autocorrelations
obtained in the first and last blocks of 50 trials for four of our
simulations are depicted in Fig. 1. As would be expected from
random responding, the autocorrelations were low for all lags
and for the first and last blocks.

Figure 2 shows the autocorrelations in the first and last
blocks of each experimental phase, computed for each partic-
ipant of the systematic group. Participants S1 to S5 displayed
high autocorrelations in all phases, whereas participants S6 to
S10 showed high autocorrelations in some blocks but not in
others. Nevertheless, for the latter participants, autocorrela-
tions tended to be higher during the variability (Var) phases
than during extinction (Ext). Lastly, participants S11 and S12
displayed low autocorrelations across most blocks. Given that
these participants also reported not using a consistent system-
atic rule (see Appendix A), their data were excluded from the
subsequent analyses.

Figure 3 presents the corresponding autocorrelation anal-
ysis for the participants in the random group. Most partic-
ipants (R1 to R10) showed low autocorrelations in all
blocks, with the exception of participant R8, who tended
to show intermediate autocorrelations in the first block of
the first Var phase and in the last block of reconditioning.
Participants R11 and R12, on the other hand, showed high
autocorrelations across most blocks, and they additionally
reported using a systematic strategy to produce the sequen-
ces (see Appendix A). The data of these 2 participants were
also excluded from the subsequent analyses.

Figure 4 shows the autocorrelations computed for the con-
trol group. Participants C1 to C6 displayed low to intermediate
autocorrelations inmost blocks, whereas participants C7 to C12
displayed intermediate to high autocorrelations in most blocks.

FOD If participants were behaving randomly, transitions be-
tween any given pair of sequences should occur with the same
likelihood, which would mean that any value of FOD (ranging
from –26 to +26) would be equally probable. To allow us to
compare the behavior of the different experimental groups
with that in the computer-generated random data, we plotted
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Fig. 1 Lag 1 (leftmost bar of
each block) to lag 27 (rightmost
bar) autocorrelations in the first
and last blocks of 50 trials (out
of 300 trials) obtained in four
simulations of random
responding
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the cumulative frequency (as percentages) of each value
of FOD obtained in the first and last blocks of each
phase for the experimental groups and the FOD values
obtained from the simulated data. Figure 5 shows the
results for the first block of the initial VAR phase for the
experimental groups and for the data from the random simu-
lation. Similar patterns were obtained in the last block of that
phase and in both blocks of the subsequent phases, and
therefore the data are not shown.

As can be seen in Fig. 5, the systematic group displayed a
pattern of responses that resembled a step function: The
most frequent values of FOD were +1 and –1, thus indicat-
ing that participants were producing sequences in ascending

order (e.g., sequences 1, 2, 3, 4, 5, which would yield an
FOD of +1 for all pairs) or descending order (e.g., 5, 4, 3, 2,
1, yielding an FOD of –1). For the random group, the curves
were a roughly constant function very similar to the pattern
expected in the case of random responding (panel in the
bottom right), thus meaning that any emitted sequence was
equally likely to be followed by any other sequence; the
control group, on the other hand, showed more within-
subjects variability, with some participants displaying
strategic-like behavior (step-like curves) and some display-
ing more random-like behavior (constant curves).

To summarize the results of the different groups across
phases, we arranged the absolute frequency of each FOD
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and last blocks of each phase
for each participant of the
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value and the absolute values of the autocorrelations for
each participant in a descending order. Then we drew the
maximum obtained value for each measure, which we termed
MaxFOD and MaxAut (see also Maes, 2003), respectively.
The larger the MaxFOD and MaxAut, the more the pattern
deviated from random responding, or alternatively, the more it
could be characterized as systematic. Figure 6 presents the
average MaxFOD and MaxAut for the three experimental
groups in the first and last blocks of each phase. The dashed
lines indicate the predicted random performance drawn from
our simulations.

For MaxFOD, a significant main effect of phase was found,
F(2, 58) 0 5.53, p 0 .006, ηp

2 0 .16, and repeated contrasts

indicated that the first VAR phase was not significantly differ-
ent from the EXT phase (F < 1), but the EXT phase differed
from the subsequent VAR phase, F(1, 29) 0 8.38, p 0

.007, ηp
2 0 .22. The main effect of group also reached

significance, F(2, 29) 0 21.65, p < .001, ηp
2 0 .60, and

repeated contrasts indicated that the systematic group was
different from the random group (p < .001) and the random
group was different from the control group (p 0 .033). Both
effects interacted significantly [Phase × Group: F(4, 58) 0 3.1,
p 0 .022, ηp

2 0 .18], probably because the transition to extinc-
tion produced a decrease in FOD for the systematic group, a
slight increase for the control group, but no change for the
random group. To test this possibility more closely, we
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computed the change in FOD with the transition from the first
VAR to the EXT phase [i.e., (first block of EXT) / (last block
of VAR)], which yielded values of 0.75, 1.07, and 1.21 for the
systematic, random, and control groups, respectively. These
values were submitted to a one-way ANOVA that yielded only
a marginally significant effect of group, F(2, 31) 0 2.67, p 0

.086. Pairwise comparisons suggested that the systematic and
control groups slightly differed from each other (p 0 .091), but
the systematic and random groups did not differ, nor the
random and control groups (p > .410). Finally, the main effect
of block (F < 2.1, p > .15) and the two-way (Block × Phase,
Block × Group) and three-way (Block × Phase × Group)
interactions were not significant (Fs < 2, ps > .15).

To test whether responding during the VAR phases dif-
fered from random responding, we compared the perfor-
mance of the experimental groups across the VAR phases
with the data from the random generator (12 simulations) by
means of a mixed repeated measures ANOVA with three
factors (Block, Phase, and Group). Given that we were
specifically interested in the between-subjects factor
(Group), we focused on the main effect of this variable
and on the results of simple contrasts with the performance
of the random generator as the reference category. This
analysis yielded a significant effect of group, F(3, 40) 0
40.64, p < .001, ηp

2 0 .75, and simple contrasts showed that
the systematic (p < .001) and control (p 0 .007) groups, but

C2 

-1.0

-0.5

0.0

0.5

1.0
C1

C12

-1.0

-0.5

0.0

0.5

1.0
C11

B1 B1 B1 B6B6B6B1 B1 B1 B6B6B6

C6 

-1.0

-0.5

0.0

0.5

1.0
C5 

B1 B1 B1 B6B6B6 B1 B1 B1 B6B6B6

C4 

-1.0

-0.5

0.0

0.5

1.0
C3 

B1 B1 B1 B6B6B6B1 B1 B1 B6B6B6

Var 1 Ext Var Var Ext Var 

B1 B1 B1 B6B6B6 B1 B1 B1 B6B6B6

CONTROL GROUP

C8

-1.0

-0.5

0.0

0.5

1.0
C7 

B1 B1 B1 B6B6B6B1 B1 B1 B6B6B6

C10

-1.0

-0.5

0.0

0.5

1.0
C9

B1 B1 B1 B6B6B6B1 B1 B1 B6B6B6

First (B1) and last (B6) block in each phase

A
u

to
co

rr
el

at
io

n
s

Fig. 4 Lag 1 (leftmost bar of
each block) to lag 27 (rightmost
bar) autocorrelations in the first
and last blocks of each phase
for each participant of the
control group

374 Learn Behav (2012) 40:367–379



not the random group (p 0 .257), significantly departed from
the random-generator data.

Regarding MaxAut, the ANOVA yielded a significant ef-
fect of phase, F(2, 58) 0 4.77, p 0 .012, ηp

2 0 .14. Repeated

contrasts showed that the first VAR phase was not different
from the EXT phase (F < 1), but the EXT phase differed from
the subsequent VAR phase, F(1, 29) 0 11.44, p 0 .002, ηp

2 0

.28. The main effect of block was only marginally significant,
F(1, 29) 0 3.72, p 0 .064, ηp

2 0 .11, probably because the
tendency of MaxAut to increase across blocks is only visible
during the EXT phase and the subsequent VAR phase. The
main effect of group also reached significance, F(2, 29) 0
37.71, p < .001, ηp

2 0 .72, and pairwise comparisons showed
that the systematic group had a higher MaxAut than the
random group (p < .001) and that the random group had a
lower MaxAut value than the control group (p 0 .039). The
two- and three-way interactions were not significant (F < 1.5,
p > .25). Finally, comparison of the performance of the three
groups during the VAR phases against the data of the random
generator yielded a significant effect of group, F(3, 40) 0
43.27, p < .001, ηp

2 0 .76, and simple contrasts showed that
the systematic and control groups significantly departed from
the random-generator data (p < .001), but the random group
did not (p 0 .682).

Figure 7 shows plots of MetVar (top panels), U value
(middle panels), and RT (bottom panels) in the first and last
blocks of each phase per group. Dashed lines indicate the
performance predicted by random responding (only for the
two variability measures).

MetVar

Inspection of Fig. 7 shows that MetVar tended to increase
from the first to the last block during the first VAR phase,
reaching the level predicted by random responding. This trend
was true for all groups except the systematic group, whose
performance was always above random. During the EXT
phase,MetVar was reduced for all groups, whereas reexposure
to the VAR phase was followed by recovery of the preextinc-
tion MetVar levels. These effects are confirmed by the results
of the ANOVA, which yielded a significant main effect of
phase, F(2, 58) 0 34.80, p < .001, ηp

2 0 .55. Repeated con-
trasts indicated that responding differed significantly in the
first VAR and the EXT phase, as well as in the EXT and the
second VAR phase, Fs(1, 29) 0 58.02 and 41.05, ps < .001,
ηp

2s 0 .67 and .59. Themain effect of phase was modulated by
an interaction with block,F(2, 58) 0 81.52, p < .001, ηp

2 0 .74,
and a marginally significant interaction with group, F(2, 58) 0
2.38, p 0 .062, ηp

2 0 .14. Repeated contrasts showed that the
effect of block differed in the VAR and EXT phases: While
during the VAR phases the MetVar value increased across
blocks, during the EXT phase the tendency was to decrease:
Fs(2, 29) 0 24.85 and 87.9, ps < .001, ηp

2s 0 .46 and .75, for
comparisons between the first VAR and EXT phases and
between the EXT and second VAR phases, respectively.

Regarding the Phase × Group interaction, repeated con-
trasts indicated that the groups differed in the transition from
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the VAR to the EXT phase, F(2, 29) 0 3.62, p 0 .039, ηp
2 0

.20. We ran an ANOVA (with Block and Group as factors)
on the data from the first VAR phase, and another on the
data from the EXT phase. In both phases, the effect of block
was significant [VAR, F(1, 29) 0 10.36, p 0 .003, ηp

2 0 .26;
EXT, F(1, 29) 0 4.72, p 0 .038, ηp

2 0 .14]. However, only
during the VAR phase did the effect of group reach signif-
icance, F(2, 29) 0 3.95, p 0 .030, ηp

2 0 .21, and the Block ×
Group interaction was marginally significant, F(2, 29) 0
2.53, p 0 .071, ηp

2 0 .15. Simple contrasts with the system-
atic group as the reference category indicated that this group
differed significantly from the control group (p 0 .009), but
not from the random group (p 0 .12). The effects of block
and group and the Block × Group and Block × Phase ×
Group interactions were not significant (F < 1.5, p > .20).

To test whether responding during the VAR phases dif-
fered from random responding, we again compared the
performance of the experimental groups across the VAR
phases with the data from the random generator. The main
effect of group was still not significant (F < 1, p > .35), thus
suggesting that all groups reached the level predicted by
random responding during the variability contingency.

U value

The U values were relatively high (above .75) during all
phases. The ANOVA showed main effects of phase, F(1.6,
47.6) 0 8.60, p 0 .001, ηp

2 0 .23, and block, F(1, 29) 0
15.22, p 0 .001, ηp

2 0 .34. Repeated contrasts indicated that
U values were higher during the first VAR phase than during
the EXT phase, F(1, 29) 0 10.28, p 0 .003, ηp

2 0 .26, but
were similar across the EXT and second VAR phases (F <
1). In all phases, U values were smaller in the last block than
in the first block. The main effect of group and the Phase ×
Group, Block × Group, and Block × Phase × Group inter-
actions were not significant (Fs < 1.5, ps > .25).

As can be seen in Fig. 7, the obtained U values tended to
be smaller than the ones predicted by random responding
across all phases. To test this assumption, we compared the
U values obtained by the experimental groups during the
VAR phases with the ones obtained in the simulations of
random responding. After entering the random generator as
one of the groups, the main effect of group reached signif-
icance, F(3, 40) 0 3.93, p 0 .015, ηp

2 0 .23. Simple contrasts
indicated that the performance of the control group was
significantly different from the random-generator data (p 0

.002), whereas for the random group this effect was margin-
ally significantly (p 0 .061). The systematic group did not
differ from the random generator (p 0 .234).

Reaction times

For RTs, the ANOVAyielded main effects of block, F(1, 29) 0
64.64, p < .001, ηp

2 0 .69, and phase, F(2, 58) 0 37.70,
p < .001, ηp

2 0 .57. Repeated contrasts showed signif-
icant differences between the first VAR and the EXT
phase, as well as between the EXT and the second VAR
phase: Fs(1, 29) 0 21.94 and 28.26, ps <.001, ηp

2s 0

.43 and .50, respectively. The effects of block and phase
interacted significantly, F(2, 58) 0 19.42, p < .001, ηp

2 0

.40, because the reduction in RTs across blocks was
greater in the first phase than in the second, F(1, 29) 0
9.65, p 0 .004, ηp

2 0 .25, and greater in the second than
in the third, F(1, 29) 0 16.28, p < .001, ηp

2 0 .36.
The main effect of group was also significant, F(2, 29) 0

10.44, p < .001, ηp
2 0 .42, given that the systematic group was

slower than the other groups (p 0 .002), but the random and
control groups did not differ (p 0 .482). The Group factor also
entered in significant interactions with block, F(2, 29) 0 4.71,
p 0 .017, ηp

2 0 .25, and phase, F(4, 58) 0 7.35, p < .001, ηp
2 0

.34, and a triple interaction with block and phase was also
present, F(4, 58) 0 3.08, p 0 .023, ηp

2 0 .17. All of these
interactions reflected relatively higher gains in speed across
blocks and phases for the systematic group as compared to the
other two groups.
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Discussion

Our findings support Maes’s (2003) suggestion that, under
an unconstrained variability task—that is, when either random
or systematic patterns are equally effective for producing
reinforcers—the resulting pattern may be influenced by the
instructions (see also Souza, Abreu-Rodrigues, & Baumann,
2010). Our instruction manipulation was successful in estab-
lishing differential response patterns across groups: Partici-
pants in the systematic and random groups produced
systematic and random-like performance—as assessed by
the FOD and autocorrelation analyses—therefore consistently
deviating from (systematic group) or approximating (random
group) the performance predicted by random responding. On
the other hand, in the absence of instructions (control group),
between-subjects variability was observed: Some participants
behaved in a random-like fashion, whereas others employed
more systematic strategies. This was also the case for most
participants in Maes’s study. Considering that (1) several
studies have shown that verbal stimuli provided by the exper-
imenter (instructions) and verbal stimuli provided by the
individual (self-instructions) tend to produce similar behav-
ioral effects (Baumann, Abreu-Rodrigues, & Souza, 2009;
Matthews, Catania, & Shimoff, 1985; Rosenfarb, Newland,
Brannon, & Howey, 1992; Torgrud &Holborn, 1990), and (2)
individuals tend to formulate self-instructions while
performing a task (see, e.g., Skinner, 1969), it seems plausible
to suggest that self-instructions might be one of the reasons
why participants in our control group, and in other studies
with no explicit instructions about randomness, differed in
their likelihood of approaching a variability task in a system-
atic or random fashion.

Interestingly, the present study showed that instructions to
perform in a random-like fashion can be effectively used to
reduce higher-order dependencies under variability contingen-
cies, therefore promoting more randomness in human behav-
ior. This result contrasts with several reports in the literature
showing that such instructions have not gained control over
behavior (Baddeley 1966; Baddeley et al., 1998; Bar-Hillel &
Wagenaar, 1991; Rapoport & Budescu, 1997; Wagenaar,
1972), with the exception of those situations in which feed-
back concerning the degree of randomness was also given
(Neuringer, 1986). On the contrary, in the present study,
participants showed random patterns even though there was
no feedback on randomness. This inconsistency could be
related to the fact that in the present study variability-
dependent feedback was provided. Thus, although reinforce-
ment was not directly contingent on the degree of randomness,
rule following was eventually reinforced.

Regarding the other behavioral measures evaluated in the
present study, systematic responding tended to increase the
likelihood of meeting the variability contingency in the first
block of training, as compared to a random strategy;

however, this difference disappeared as training progressed.
During extinction, the probability of meeting the MetVar
decreased substantially for all groups, and reexposure to the
variability contingency was followed by an abrupt increase
in the measure, thus showing sensitivity to the operant
contingency established between low-frequent sequences
and positive feedback. These effects, however, were not
affected by the systematic or random strategies underlying
the production of the sequences.

Systematic responding was also associated with higher U
values, probably because the most frequent form of system-
aticity employed (i.e., emitting sequences in ascending or
descending order) promoted an even distribution of sequences.
The U values for the systematic group tended to be indistin-
guishable from the ones predicted by random responding. For
the random and control groups, however, U values were usu-
ally below the level predicted by random responding, suggest-
ing that participants tended to be biased toward emitting some
sequences. These results indicate that although higher-order
dependencies (e.g., FOD and autocorrelations) were reduced
by the instruction to perform randomly, participants failed to
emit all sequences with equal probability. This finding also
shows that, depending on the measurement under consider-
ation, higher variability can be ascribed to participants showing
higher-order dependencies than to participants using more
random strategies to produce sequences.

Finally, the analysis of RTs showed that responding was
slower in the first phase than in subsequent ones, and
responding became faster the more trials were completed.
Furthermore, producing sequences according to a systematic
rule consumed more time than did employing random (ran-
dom group) or no specific strategies (control group), espe-
cially in the first phase. This result suggests that following a
well-defined instruction in generating sequences involved
the greatest difficulty, because it required encoding the
previously emitted sequence and retrieving the next se-
quence to meet the instruction. The finding that random
responding was related to faster reaction times than was
systematic responding is inconsistent with previous reports.
Some studies have shown that reducing the interval between
two responses leads to more repetitions, whereas random-
like responding improves with the imposition of long delays
between responses (Baddeley et al., 1998; Neuringer, 1991).
The imposition of these delays has usually been assumed to
impair memory for the previous responses, therefore encour-
aging the emergence of response patterns that are not corre-
lated with the previous emitted response (one of the criteria for
randomness). It is important, however, to highlight that when
participants are asked to behave randomly, this instruction
might reduce the likelihood of strategies such as actively
remembering the last emitted response and trying to generate
the next response by means of some rule. Nevertheless, when
no instructions are provided, participants might use the delay
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to prepare a specific response. Consequently, it is possible to
assume that the imposition of delays between responses might
have different effects, depending on the instructions (or pos-
sible self-instructions): Long delays might increase random-
ness when participants are instructed to behave in a random-
like fashion, whereas it might decrease randomness if the
instruction is to behave systematically.

In conclusion, the present findings show that instructions
can have large effects on the way that participants try to
satisfy a variability contingency. Although traditional meas-
ures of behavioral variability (MetVar and U value) may not
be affected by the different strategies employed by the
participants, these strategies can be revealed by measures
that consider high-order dependencies—such as autocorre-
lations and first-order differences—and by comparing the
obtained data with those produced by a random generator.
Our findings also illustrate that variability and randomness
are not synonyms: Variability is related to how differently one
behaves, whereas randomness is related to the predictability of
this behavior (Stokes&Harrison, 2002). These concepts might
overlap under some conditions, but nevertheless, one cannot
assume randomness from variation—because variability can
also be produced in a systematic fashion—or, conversely,
variation from a random process—because random processes
can also lead to repetitions.

Appendix A

Participants’ responses to the question Did you use any rule
to emit the sequences? Which one? in the postexperimental
questionnaire

Part. Systematic Group

S1 Emitted numbers in ascending and descending order.

S2 I tried, but as time went by, I got confused and I couldn’t tell
in which sequence I had stopped. I opted to emit sequences
in ascending order.

S3 Yes, in ascending order from 111 to 333.

S4 I started with the easy sequences, and then I tried several ones
until I got points.

S5 Only the rule of putting the numbers in numerical order.

S6 Yes. Several different rules.

S7 I used mainly two rules. I varied the last digit of the
sequences, and I emitted sequences that started with a 3
when I got no points.

S8 Yes. From the smallest to the largest, I sorted them in
ascending order.

S9 I tried to organize myself in terms of the change in the digits. I
tried to find new sequences. Sometimes I changed only the
first, sometimes only the last digit.

S10 Yes. I alternated the digit slots.

S11 Yes. I tried to start with a digit and vary the others. Later I
would change the digits.

S12 I didn’t use a constant rule. I repeatedly typed the digits, using
three fingers, and varying the order.

Random Group

R1 No.

R2 Yes. Never repeat a sequence twice.

R3 I tried to memorize the sequences I typed to vary them.

R4 No.

R5 My rule was not to repeat the sequences, but there wasn’t any
algorithm.

R6 No.

R7 Yes. Not to use the previous rule.

R8 Yes. Start with one and try all sequences with one, then with
two and three.

R9 No. I used random sequences.

R10 I thought of several sequences, and then I typed one I haven’t
used recently.

R11 When I was very bored I used the factorial rule, but most of
the time I did it randomly.

R12 Yes. Systematic sequences.

Control Group

C1 No. I repeated the same sequence in intervals of three
sequences.

C2 Not to repeat the just-emitted sequence.

C3 I started with the basic sequences and then I tried to remember
one that I hadn’t used.

C4 No. I just tried to be quick.

C5 First, I emitted all possible sequences. Then I made pairs like
123 and 321, but there were moments in which I just pressed
the keys.

C6 Every 10th sequence, I paid attention not to repeat the
sequence, and most of the time I followed a specific order.

C7 Yes. 111, 222, 333, 123, 321, 112, 113, 221, 223, 312.

C8 Most of the time it was random because a sequence was only
repeated in an interval of three sequences.

C9 Logical sequences so that I wouldn’t forget any sequence.

C10 Not to repeat a sequence very soon. Then I made cycles of
five triplets to be quicker.

C11 Yes. I pressed the first key three times, then two times and
another one, than one time and another one, and so on.

C12 I used the ascending order starting at 111 (the smallest) to 333
(the largest).
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