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Abstract The kidney is a key organ in the maintenance of
ion and fluid homeostasis and specific transport systems
localized along the nephron guarantee this function. Due to
its large functional heterogeneity, experiments on the whole
organ level cannot be easily performed, and thus more
refined tools are needed, like for example the development
of specific recombination systems to gain knowledge on the
physiological role of single proteins implicated in ion
transport. This review introduces the transgenic technology
developed over the past decades, and then focuses on recent
strategies for generating kidney-specific gene targeting,
over-expression, and gene ablation in mice, that will help to
understand the physiological role of proteins implicated in
salt and water balance in the kidney.
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Transgenic techniques

Transgenic technology—an introduction

The genome alters during evolution or by specific breeding,
a process that can be accelerated by inducing genetic
modifications. This involves transgenic technology which
allows to modify the genome (here, principally, of the
mouse) at will and enables us to address specific scientific
questions. Alternatively, germ cells of mice can be treated
with mutagenic agents, as X-rays or ENU. The phenotype
of the resulting mouse is scanned for specific defects, as
exemplified by the recent efforts of the mouse clinic (GSF,
Munich)[62]. Random alterations cannot compete for these
directed modifications of the genome, such as classical
transgenesis or knockout-related techniques. In the case of a
transgene introduced by pronuclear injection, lentivirus or
ES cell-mediated gene transfer, the insertion will be
random, and is not linked to the endogenous locus if it
exists. In contrast, knockout-related transgenesis will
achieve a specific genetic modification at a given gene
locus (Fig. 1, Table 1).

The history of transgenic mouse technology has existed
for already several decades (Fig. 2). First transgenic
experiments have been published 30 years ago, following
infection of mouse embryos with viruses or retroviruses
[41, 43]. Next, the generation of mice by microinjecting
DNA into one of the pronuclei of a fertilized mouse oocyte
[24, 110] still represents the most commonly used tech-
nique of generating transgenic mouse lines up to now and
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remained then nearly unchanged over the past three
decades. Thousands of transgenic constructs have since
been generated to answer a whole variety of scientific
questions in biomedical research. Whereas earlier review
articles could still follow the whole range of transgenic
mice [42, 69, 90], nowadays, reviews focus on specific
topics, as for example disease models or organ-specific
transgenesis [39, 50]. Later in the 1980s of the past century,
mouse embryonic stem cells (ES cells) isolated from the
inner cell mass of preimplantation embryos (blastocyst
stage) were established [18, 58] and first successful genetic
manipulations of ES cells and generation of mice carrying
the modification was reported more than 20 years ago [25].
A combination of gene-targeting approaches and these ES
cells then allowed to generate the first knockout mouse,
published in 1989 [93, 105]. The generation of such

genetically engineered mice was honored in 2007 when
the Nobel Prize for Medicine was attributed to Oliver
Smithies, Mario Capecchi, and Martin Evans [56].

In the 1990s, a major breakthrough came up with the
elaboration of the Cre/loxP-mediated recombination system
[88], allowing to modify the genome either in the adult
organism, or only in a specific tissue [45, 64]. First mice
carrying so-called conditional alleles were published in the
early 90s [26, 27], and, since then, the number of strains
carrying conditional alleles or expressing Cre recombinase
is steadily increasing. Only recently, another transgenic
approach has emerged, using lentiviral vectors [55], that
contributed to two major aspects, first allowing to manip-
ulate species other than the mouse [94], and second, to
silence gene expression in vivo using siRNA-expressing
vectors [80]. Lentivirus-mediated transgenesis can be a very

Table 1 A comparison of transgenic mice (pronuclear injection) and mice generated by homologous recombination (ES cells, knockout)

Transgenic mice (pronuclear injection) Transgenic mice (ES cells and knockout)

Purpose Gain-of-function Loss-of-function, change-of-function
Studies Overexpression Knockout

Define regulatory elements A gene is absent or modified
Disease model Disease model

Technique Injection of DNA into fertilized oocytes Electroporation of DNA into ES cells
Injection of ES cells into blastocysts

Transfer to oviduct of pseudopregnant female Transfer to oviduct/uterus of pseudopregnant female
First mouse Transgenic founder mouse (F0) Chimera
Integration Multiple copies One copy

Head-to-tail (tandem) One integration site (independent integration sites, if several copies)
Random Random or directed

Construct Minigene Targeting construct
Regulatory sequence–cDNA–polyA 5′ homology–replacement–3′ homology

Main differences between transgenic mice obtained by pronuclear injection (transgenic mice in the common sense) and homologous
recombination in embryonic stem cells (knockout)

Fig. 1 Transgenic mice can be
obtained by adding new genetic
information or by removing or
mutating a gene already present
in the genome

212 Pflugers Arch - Eur J Physiol (2009) 458:211–222



efficient way of generating transgenic mice. Due to the
multiple independent integrations of the lentivirus, the
establishment of stable lines can be tedious, but, neverthe-
less, the lentiviral approach represents a valid alternative
when the effect of a transgene or mutant protein can be
analyzed at the stage of the founder mice.

Adding genetic information to the genome: pronuclear
injection

In the following, we will detail the various aspects of gene
“addition” in mice. Here, for ease of simplicity, we will
focus on pronuclear injection which is the technique by far
the most often applied today. ES-cell-mediated transgenesis
will not be covered here, and specificities of lentiviral
techniques are mainly related to the design of lentiviral
vectors. Hence, the interested reader is referred to some
recent articles and reviews for a more profound discussion
[72, 80, 89, 101].

The various steps of the pronuclear injection technique
are outlined in Fig. 3. Usually, female mice are super-
ovulated with gonadotrophic hormones to synchronize the

females and to obtain a larger number of maturing follicles
per female. This can be done with almost any mouse strain,
even though the efficiency is rather variable [65] and high
doses of gonadotrophins may affect maturation and meiotic
division in a certain percentage of oocytes [6]. F1 hybrid
mouse strains are most often used, as for example B6D2F1
mice with the mother, B6 (C57BL/6), and the father, D2
(DBA/2). Alternatively, inbred strains as FVB/n or C57BL/
6 might be used [65, 73, 102]. Fertilized oocytes (zygotes)
are recovered when the paternal and maternal nucleus
(“pronucleus”) are not fused yet. DNA solution is injected
into one of the pronuclei until visible swelling. For
lentiviral transgenesis, the virus solution is injected below
the glycoproteinic shell of the oocyte, the zona pellucida,
which is less harmful for later survival. In both methods,
surviving oocytes are then retransferred into the oviduct of
pseudopregnant females. Such females have been obtained
by mating with sterilized males (principally obtained by
vasectomy), keeping them hormonally apt to accept a
conception. If the procedure is successful, pregnancy of
the mouse is visible after about 10–11 days, and mothers
will give rise to birth after 19–20 days. Generally, the
eventual transgenicity of the offspring is tested at weaning.
The overall efficiency then depends, amongst other param-
eters, on the type of the construct, the quality of the DNA
preparation, the choice of the mouse strain and the
individual skill and performance of the experimenter.

The pronuclear injection technique allows the use of
transgenic constructs of several 100 kb in size, using for
example YACs (yeast artificial chromosomes), PACs (P1-
derived artificial chromosomes) or BACs (bacterial artifi-
cial chromosomes) [23, 63, 103]. However, most often
classical transgenic minigene constructs are used, which are
up to 10–15 kb in length and are composed of a regulatory
sequence which specifies the tissue of expression, a coding

Fig. 3 Scheme of the procedure
for generation of transgenic
mice by pronuclear injection

Fig. 2 A timeline of transgenic technology, referring to several
classical publications [10, 24, 26, 43, 55, 105, 110]
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region (e.g., cDNA) and polyadenylation sequences. Often,
intronic sequences are added to the design of the constructs,
since this might enhance the stability of the transcript and
increase the chance of expression [9]. Following removal of
vector sequences, the concentration of the insert is
calibrated to 1–5 ng/µl, and 1–2 pl of solution injected
into one of the pronuclei.

Even though the injection of the DNA is effected during
the one-cell stage (the fertilized oocyte), integration can
occur later, for example in one cell of a four-cell stage. In
consequence, the resulting transgenic mouse does not
contain the transgene in all cells but only in a few of
them—the mouse is mosaic for this transgene. As a
consequence, the transgene may not be present in germ
cells, and no transgenic offspring obtained. The integration
of the transgene is random and multiple copies are normally
integrated into a single site of the genome, but their
chromosomal integration varies in independent transgenic
mice. This integration normally occurs “head-to-tail”
(tandem) in the same orientation, and encompasses mostly
less than ten to 20 copies, even though higher copy
numbers (up to 1,000) have been observed [54]. For
example, when using a SV40::c-Myc transgene, more than
50 copies of the transgene were inserted on chromosome 8,
whereas the endogenous c-Myc gene on chromosome 15
remained untouched [5]. A transgene is stably integrated
and then inherited in a Mendelian fashion, and not lost over
many generations [2]. Due to the randomness of integra-
tion, an endogenous gene may be affected, thereby
rendering it unfunctional or modified in its expression.
For example, a transgenic mouse line expressing the key
enzyme in pigmentation, tyrosinase, showed skeletal
malformations and polydactyly. It turned out that the
transgenic insertion affected the Gli3 gene, a member of
the hedgehog signaling pathway, thereby generating a new
allele at this locus [78].

Embryonic stem cells and vectors

In contrast to the pronuclear, but also lentiviral trans-
genesis, ES (embryonic stem) cell-mediated approaches
require two steps, first the genetic manipulation performed
in cell culture, and second, the injection of such modified
cells into mouse blastocysts that are 3.5-day-old-mouse
embryos. Just before implantation, they can be recovered
by flushing uteri [65, 73]. ES cells themselves are derived
from the inner cell mass of mouse blastocysts, and need to
be kept undifferentiated to maintain their stem cell
characteristics. The leukemia inhibiting factor (Lif) known
to be required to prevent differentiation of ES cells is either
produced by irradiated primary mouse fibroblasts that are
co-cultured with the ES cells and/or can also be added in its
recombinant form to the culture medium. Several well-

characterized ES cell lines are available which are most
often derived from different substrains of 129 [97, 106] and
are of male sex. Embryonic stem cells should exhibit
unlimited self-renewal capacity but still maintain pluripo-
tency. They can be amplified and manipulated similar to
standard cell cultures in vitro, and it is feasible to select—
following electroporation of gene constructs into for
example 107 cells—rare genetic modifications. Concordant-
ly, when ES cells carrying a dominant allele of Agouti as
AW (white-bellied agouti, from a substrain of 129) are
injected into mouse blastocysts of the strain C57BL/6 (a,
nonagouti), mice can result, which contain both C57BL/6-
and 129-derived cells and are identified by coat color
chimerism. ES cells then not only colonize somatic tissues
of the blastocyst donor (C57BL/6), as evident from the coat
color, but also the germ line. Following breeding of
chimeras, the new modification can be fixed and bred as a
new transgenic strain [65, 73].

Over the past two decades, various kinds of genetic
modifications have been introduced in ES cells, ranging
from random insertions (enhancer or gene trap approaches,
[114]) and classical transgenic constructs [8, 25] to specific
targeting of a sequence of interest (homologous recombi-
nation). In the mid 1980s, Mario Capecchi and coworkers
showed that a gene defect in somatic cells can be rescued
by introducing the correct sequence, which then recombines
with flanking homologous sequences [104]. Consequently,
this technique of homologous recombination allowed to
generate mice in which a gene is deleted or specifically
mutated [93, 105]. The classical knockout vectors used for
constitutive gene inactivation contained a neomycin resis-
tance gene to replace an endogenous exon—at the best to
remove the ATG or any other vital region of the gene
together with 5′ and 3′ homologous sequences of about 5 kb
in total. Following electroporation into ES cells, selection
markers and molecular analyses by PCR and Southern blot
are required to identify the rare event of homologous
recombination. Once identified, the ES cell clone is
amplified, characterized and used for blastocyst injection
to establish the mouse line [73]. As final outcome, a mouse
line is generated where function of a specific gene is
abolished or altered by replacement with a neomycin
resistance gene. Using recombinase recognition sites in
the targeting construct (loxP or frt, see below) the neomycin
gene can be removed by further breeding to recombinase-
expressing mice, to exclude any unwanted side effects.
Nowadays, the technique of homologous recombination not
only allows to generate null-mutations (classical knockout),
but also subtle mutations (any kind of point mutations,
microdeletions). Mouse models with chromosomal rear-
rangements (macrodeletions, inversions or translocations)
as found in the human genome can be generated [11, 98].
Moreover, knock-in approaches allow not only to remove,
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but to replace the gene by for example another member of
the same gene family, to address issues of redundancy [57].

Conditional knockouts

Since constitutive deficiency of a gene/protein may lead to
embryonic or early perinatal lethality, conditional knock-
outs have been developed to study a mutation in a given
cell type or in a timely controlled manner. The development
of site-specific recombinases and recognition sites from
bacteriophages (Cre/loxP-mediated recombination) or yeast
(Flp/frt-mediated recombination) was a prerequisite for this
technique (as depicted in Fig. 4). Two recombinase
recognition sequences (34 bp loxP sites) are positioned in
the same direction flanking a DNA sequence of interest
(generally containing one or several exons). The Cre
recombinase recognizes these loxP sites, induces a recom-
bination which leads to excision of all DNA sequences
between the two loxP sites, leaving one loxP site at this
locus. The newer generation of knockout vectors possesses
loxP sites 5′ and 3′ of a vital region, for example around the
ATG-containing exon. In addition, the neomycin cassette is
flanked by frt recognition sequences for Flp recombinase to
eliminate the selection marker that may interfere with the
expression of the modified gene. Following ES cell
manipulations as detailed elsewhere [73] (see also above),
a mouse is obtained which carries an exon flanked by two
loxP sites and a neomycin cassette flanked by two frt sites.
By mating this mouse with a transgenic strain expressing
Flp recombinase in germ cells (“germ line deleter” [81]) the
neomycin resistance gene is removed.

The Cre recombinase can be expressed in the germ cells
or ubiquitously, thereby generating a constitutive knockout
mouse, or in a cell type-specific and/or inducible manner

[64]. Tissue-specificity is achieved by a tissue-specific
promoter that targets Cre expression to the cell type or
organ of interest. Consequently, the gene knockout is
restricted to this cell type/organ. In its inducible version,
Cre recombinase expression can be dependent on a
doxycycline-controlled system [92], or alternatively, activ-
ity, and translocation of Cre recombinase to the nucleus is
dependent on tamoxifen treatment [60]. This is due to a
fusion of the Cre recombinase to the binding domain of the
estrogen receptor (CreERT), and, upon administration of
the synthetic hormone tamoxifen, Cre recombinase will
enter the nucleus and exert Cre/loxP-mediated recombina-
tion. Functioning of the Cre/loxP-mediated recombination
system can be tested by the use of reporter mouse strains
that provide a mean to monitor specificity of Cre
recombinase activity in vivo, e.g., using the Rosa26R strain
[99]. Here, a STOP cassette flanked by two loxP sites and
preceding a lacZ reporter gene was introduced at the
ROSA26 locus. Cre activity results in removal of the
STOP and permits lacZ expression which might be specific
to the target tissue of interest thereby validating the tissue-
specificity of the Cre transgenic line [30].

Transgenes targeted to the kidney

Kidney-specific transgenic expression

Genetic engineering in mice nowadays allows us to express
transgenes specifically in the kidney, even though anatomic
complexity of the kidney makes it difficult to select
appropriate promoters that target a specific cell type, e.g.,
along the nephron. Even, a conditional approach is required
(Fig. 4) when the constitutive knockout affects embryonic

Fig. 4 Cre/loxP technology to generate and use conditional alleles. a
The specificity of the Cre/loxP system is given by the 34 bp loxP
recognition sequence consisting of two 13-bp palindromic sequences
and an 8-bp core sequence. b Upon presence of Cre recombinase the
loxP-flanked sequence is removed leaving one loxP sequence in the

genome. c Scheme of the different alleles, wildtype, floxed (condi-
tional) and deleted. In particular, conditional mutants are characterized
as carrying floxed alleles (flox flanked by loxP sites). This allows
elimination of the gene function of interest by transgenic expression of
Cre recombinase
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development or leads to complex phenotypes. The ability to
perform kidney-specific recombination is dependent on the
choice of kidney-specific promoters used to drive the
expression of Cre recombinase in vivo (Table 2). Such
regulatory promoter sequences have to be tested to find out
whether they are able to drive the expression of a reporter
gene in a nephron-segment-specific manner. Classically, a
promoter region of interest is linked to a reporter gene
(lacZ, GFP, luciferase) and transgenic mice are generated
and analyzed for expression in embryos and various organs.
Since Cre expression in such lines in organs beside the
kidney has not always been studied extensively, ectopic Cre
activity may influence the phenotype of the animal.

We had recently generated transgenic mice that do
express Cre recombinase exclusively in the renal proximal
tubule [86] using the high-capacity (type2) Na+/glucose
cotransporter promoter. Other promoters, like, e.g., the
HoxB7 promoter have been used for targeting Cre recom-
binase expression to the cortical duct of the kidney but
expression has also been reported selectively in the spinal
cord and the dorsal root ganglia [113]. Hox genes encode
homeodomain-containing proteins that control, e.g., mam-
malian kidney morphogenesis. During embryonic develop-

ment, some Hoxd genes regulate the metanephric
mesenchyme–ureteric bud interactions, and maintenance
of structural integrity of tubular epithelia is differentially
controlled consistent with their specific expression profile
[14]. Mice expressing Cre from the renin promoter are not
only useful for kidney-specific recombination, but affect a
whole variety of cells given that renin-expressing cells are
precursors for certain epithelial and extrarenal cells [95].
And, finally, promoters like, e.g., nephrin affect efficiently
the glomeruli as shown for the glomerulus-specific knock-
out of VEGF-A that led to congenital and acquired renal
diseases [17]. The expression of most available Cre
recombinase lines is constitutive, but more recently, models
have been developed using inducible and ligand-regulated
promoter systems to spatially and temporally control Cre
recombinase expression in specific renal cell types. Differ-
ent mouse lines exist which use the CreERT2 system, where
the Cre recombinase is fused to a mutant human estrogen
receptor (ER) and gets only active upon tamoxifen
administration [16, 49, 71]. Similarly, a transgenic strain
expressing androgen-inducible Cre recombinase has been
reported. Here, the transgene is expressed specifically in the
renal proximal tubule in male mice, but not expressed in

Table 2 A survey of Cre transgenic mouse strains targeting the kidney and specific nephron segments

Cre line Promoter Expression Reference

γGT::Cre Rat γ-glutamyl transpeptidase II PT (cort. tubules) [40]
iL1-sglt2::Cre Mouse sodium–glucose cotransporter 2 PT [86]
PEPCK::Cre Rat phosphoenolpyruvate carboxykinase PT [32, 79]
GGT::CreERT2 Mouse γ-glutamyl transpeptidase II PT(S3) [16]
KAP2::iCre Mouse kidney androgen-regulated protein PT [53]
Ksp1.3::Cre Mouse kidney-specific cadherin All, TAL, CD [96]
KspCad::CreERT2 Mouse kidney-specific cadherin All segments [48, 49]
Ksp::CreERT2 Mouse kidney-specific cadherin All, CD [71]
THP::Cre Mouse Tamm–Horsfall protein TAL [100]
apoE::Cre Human apolipoprotein (apo) E PT, DT [52]
AQP2::Cre Human aquaporin-2 CD (principal cells) [67]
AQP2::Cre Mouse aquaporin-2 CD (principal cells) [22]
AQP2::Cre Mouse aquaporin-2 Late CNT, CD (principal cells) [83]
Hoxb7::Cre Mouse Hoxb7 CD [113]
Hoxb7::CreEGFP Mouse Hoxb7 CD [118]
Neph::Cre Mouse Nphs1 (nephrin) Glomeruli, podocytes [17]
NPHS2::Cre Human podocin (NPHS2) Glomeruli [61]
Ren1d::Cre Mouse renin 1d Juxtaglomerular cells, afferent arterioles [95]
Pax2::Cre Mouse Pax2 Glomeruli, renal tubules, CD, nephric duct [68]
Pax8::Cre Mouse Pax8 Glomeruli, renal tubules, nepric duct, mesonephros [7]
11HSD2::iCre Mouse 11ß-hydroxysteroid dehydrogenase 2 Kidney (expression in other tissues!) [66]
Pax8::rtTA/LC-1::Cre Mouse Pax8 Renal tubule except glomeruli [92, 108]
Osr2::(Ires)Cre Mouse Odd-skipped related-2 Glomeruli [47]
Hnf4a::(Ires)Cre Mouse hepatocyte nuclear factor α Cortex (tubules) [109]

Some of the strains show Cre expression in other organs as for example gonads (GGT::CreERT2 , THP::Cre, AQP2::Cre), ureteral epithelium
(Hoxb7::Cre) or liver and brain (THP::Cre, PEPCK::Cre). Please note that Cre recombinase activity in other organs has not always been
extensively analyzed and/or documented
PT Proximal tubule, TAL thick ascending limbs of Henle’s loop, CNT connecting tubule, DT distal tubule, CD collecting duct
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females unless induced by testosterone [53]. Another
efficient and versatile tool for acute and chronic modulation
of renal tubular function in transgenic mice has been
recently described by Traykova-Brauch and coworkers
[108]. They generated Pax8::rtTA mice which strongly
express the transgene in a highly kidney-specific, uniform
and tetracycline-dependent manner. Both inducible and
reversible, renal diseases such as polycystic kidney disease,
renal fibrosis and renal cancer can be modeled in transgenic
mice upon doxycycline application.

A further application of targeting transgenes to the
kidney might be the production of human therapeutic
proteins: the uromodulin gene promoter has been used to
produce recombinant proteins (growth hormone, α1-anti-
trypsin, erythropoietin) in the urine of transgenic mice [115,
116, 119].

Mouse models for kidney diseases

This part of the review exemplifies the use of transgenic
mouse models for studying renal and electrolyte physiology
by targeting gene expression specifically to epithelial cells
of the renal tubule. This has been useful, e.g., for studying
the intrarenal renin–angiotensin–aldosterone system
(RAAS) that is implicated in the development of hyperten-
sion, and therefore an important mediator of systemic blood
pressure and electrolyte balance. Data obtained from
transgenic mice expressing the rat and human angiotensi-
nogen gene [15, 87], the human renin gene [51], and the rat
angiotensin II type 1 receptor-associated protein ARAP1
gene [29] to proximal tubules using the kidney-androgen-
regulated protein (KAP) promoter underlined the role of the
proximal tubule-specific renin–angiotensin system in the
regulation of blood pressure and renal function. Further,
kidney-specific expression of a cDNA encoding a mutant
form of a protein as identified in human is an attractive
approach to determine its effects on kidney function.
Igarashi et al. expressed a dominant-negative form of the
mouse HNF-1β protein that corresponds to the A263insGG
mutation as found in human under the control of the
kidney-specific Ksp-cadherin promoter. The mice devel-
oped maturity-onset diabetes of the young-5 (MODY5),
with renal cysts and renal failure, similar to the human
condition. This kidney-specific transgenic experiment
clearly demonstrated that mutations of HNF-1β are
sufficient to produce kidney cysts and that the renal cystic
disease is intrinsic to the kidney and not secondary to
diabetes [31]. To investigate the pathogenic mechanism of
the Pkd1 gain-of-function mutations in the renal tubular
epithelium, Trudel and coworkers have produced a trans-
genic mouse strain that overexpressed the murine Pkd1
gene using a modified Pkd1 BAC. These transgenic mice
displayed features similar to autosomal dominant polycystic

kidney disease (ADPKD) demonstrating that Pkd1 gain-of-
function mutations in the kidney are sufficient to reproduce
a renal ADPKD phenotype as found in human [84, 103].

Chung and colleagues used a transgenic approach to
address effects on urine concentration and kidney function
in vivo in epithelial cells of the renal collecting tubules
[46]. Overexpression of a dominant-negative form of the
osmotic response element-binding protein (OREBP) under
the control of the kidney-specific Ksp-cadherin promoter
led to polyuria and polydipsia indicating that OREBP is an
important regulator of the urine-concentrating mechanism
[46]. The knockout of aldose reductase as one of the
osmoresponsive genes transcriptionally regulated by
TonEBP/OREBP has lost the ability to concentrate urine;
in contrast, a knock-in of an aldose reductase transgene
(under control of the Ksp-cadherin promoter) onto the
aldose reductase knockout background revealed an incom-
plete rescue of the knockout phenotype. The authors
concluded that aldose reductase, in addition to its role in
osmoregulation, may be essential for the full maturation of
the urine-concentrating mechanism [112].

Kidney-specific knockout models for renal salt and water
homeostasis

In the following paragraph, we will give examples of renal
tubule epithelial cell-specific knockouts of proteins impli-
cated in salt and water homeostasis. Peroxisome prolifer-
ator-activated receptor subtype γ (PPARγ) is the
pharmacological target of thiazolidinediones (TZDs) and,
within the kidney, is predominantly expressed in the
collecting duct. TZDs are widely used antidiabetic drugs,
but have well-established side effects such as fluid retention
leading to weight gain and occasionally to edema and heart
failure [70]. To address the mechanism of TZDs-induced
fluid retention, Breyer and colleagues used a mouse strain
transgenic for Cre recombinase driven by 14 kb of the
human AQP2 5′-flanking region (AQP2::Cre) [28, 67].
Yang et al. used AQP2::Cre mice using 11 kb of the mouse
AQP2 5′-flanking region [117]. Using either Cre strain,
removal of PPARγ in the collecting duct prevented body
weight gain and fluid retention induced by TZDs. These
data also underlined a PPARγ-dependent pathway of
sodium transport in the collecting duct, with TZDs-induced
fluid retention. Concerning renal regulation of water
balance and urinary concentrating process, mice lacking
AQP2 expression in CD but with sustained AQP2
expression in CNT using HoxB7::Cre mice were generated
[82]. Mutant mice survived to adulthood but exhibited
severe polyuria and deterioration of urinary concentrating
ability after water deprivation. The model demonstrated that
AQP2 expression in CNT is sufficient for postnatal survival
and in CD is essential for the regulation of body water
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homeostasis. To better understand the role of the medullary
endothelin-1 (ET-1) system in regulating renal salt and
water excretion and systemic blood pressure, Kohan and
colleagues have engineered several mouse models using
Cre/loxP technology and AQP2::Cre transgenic mice
expressing Cre recombinase in the collecting duct. Mice
with CD-specific downregulation of ET-1 are hypertensive
and have impaired sodium excretion in response to sodium
loading [1]. These mice also have decreased ability to
excrete an acute water load and enhanced sensitivity to
vasopressin [19]. Moreover, in these animals, urinary
prostaglandin E2 (PGE2) excretion was increased which
partly compensates for loss of ET-1 [21]. In addition, the
role of ET receptors was also assessed by disrupting ETA or
ETB receptors specifically in CD. ETB loss-of-function in
CD results in hypertension and reduced Na+ excretion after
an acute Na+ load leading to the conclusion that ETB

receptors partially mediate ET-1 functions as a natriuretic
and antihypertensive factor [20]. In a separate study, the
authors highlighted the role of CD ETA receptors in
reducing ET-1 inhibition of vasopressin signaling [22].
Recently, the role for nitric oxide (NO) pathway in CD-
derived ET-1-induced natriuresis, diuresis, and hypotension
was unveiled [91]. With regard to regulation of urine
concentration mechanism, the role of the Pax transactiva-
tion-domain interacting protein (PTIP) in the inner renal
medulla was studied by tissue-specific gene deletion using
Ksp1.3::Cre mice, demonstrating the functional importance
of PTIP in urine-concentrating ability by modulating
arginine vasopressin receptor 2 and AQP2 expression in
the renal collecting ducts [44].

To assess the role of a proximal tubular endocytic
receptor, megalin, in calcium and phosphate homeostasis,
two reports analyzed kidney-specific megalin knockout
mice generated by conditional gene targeting using apoE::
Cre mice. Renal specific deletion of megalin resulted in
plasma vitamin D deficiency, hypocalcemia and bone
disease [52]. Proximal tubular type IIa sodium phosphate
cotransporter (NaPi-IIa) handling is also affected in this
model and disruption of endocytosis resulted in reduced
phosphaturia [3]. These two studies highlighted an essential
role of the megalin receptor pathway in calcium and
phosphate homeostasis. Tiwari et al. removed the insulin
receptor specifically in renal epithelial cells in the mouse
revealing its role in the kidney for sodium balance and
blood pressure [107]. To examine the role of the mineral-
ocorticoid receptor (MR) in sodium homeostasis, a new
AQP2::Cre mouse strain was used to inactivate MR in
collecting duct and late connecting tubule [83]. The mutant
mice exhibited normal renal sodium excretion associated
with elevated aldosterone levels on a standard diet.
However, this compensation by the late distal convoluted
tubule and early connecting tubule fails when challenged

with a low-salt diet leading to loss of body weight
associated with increased renal sodium and water excretion.

Lastly, we will discuss the genetic dissection of the
highly amiloride-sensitive epithelial sodium channel ENaC
along the nephron as an example of a constitutively as well
as conditionally targeted sodium transporting protein in the
kidney. Over the past years, we have generated an allelic
series of mutations at the ENaC (Scnn1) gene loci showing
that any modified expression the ENaC subunits may cause
a kidney disease [4, 36, 39, 74, 76, 111]. Constitutive gene
inactivation of all three subunits revealed that the absolute
ENaC expression is essential for survival [4, 35, 59].
Removal of the αENaC subunit (Scnn1a) resulted in
completely abolished ENaC activity, whereas inactivation
of the ßENaC (Scnn1b) and γENaC (Scnn1g) subunit led to
reduced ENaC activity. Mice without ßENaC (Scnn1b) and
γENaC (Scnn1g) develop hyperkalemia and die soon after
birth [4]. Failure to thrive and lethargy are associated with
urinary Na+ wasting, K+ retention, and increased plasma
aldosterone concentrations (for review, see [39]). Mutations
that result in hypofunction in the kidney are expected to
induce a salt wasting syndrome similar to type 1 pseudo-
hypoaldosteronism (see, for review [33]). Various mouse
lines have been generated in which the ENaC activity
ranges from hypoactive channels (5–15% of total ENaC
activity) to hyperactive channels (>150% of total ENaC
activity; for review, see [37]. Reduced ENaC activity in
mice bearing ENaC mutations led to clinical symptoms
similar to PHA-1 (pseudohypoaldosteronism type 1) rang-
ing from mild (e.g., mutation in the ßENaC gene locus
[74]) to severe phenotype (e.g., γENaC knockout mice [4]).
We further introduced one of the classical Liddle mutations
(R566STOP) into the mouse ßENaC (Scnn1b) gene locus,
thereby generating mice, which reproduce to a large extent
the clinical symptoms of Liddle patients [76]. These mice
present an impaired ENaC internalization, and exhibit
ENaC-mediated transport features that are consistent with
an overall increased ENaC activity [75]. Interestingly,
mineralocorticoid-mediated up-regulation of ENaC expres-
sion and function is still maintained in these mice which
show a remarkable high sensitivity to aldosterone in vivo
[13, 75]. Renal cells from these mice exhibit hyperactive
apical vasopressin-regulated CFTR Cl− conductance [12]
that could contribute to the enhanced NaCl reabsorption
observed in the distal nephron of patients with Liddle’s
syndrome (for review, see [34]). Finally, we used condi-
tional gene targeting of ENaC to genetically dissect the
aldosterone-induced ENaC-mediated sodium reabsorption
along the nephron. When a floxed allele for the αENaC
subunit (Scnn1alox/lox mice) [38] was crossed with the
HoxB7::Cre line this resulted in a complete abolishment of
ENaC function in the cortical collecting duct (CCD), but
not in the early segments of the aldosterone-sensitive distal
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nephron (ASDN), the late distal convoluted tubule (DCT)
and connecting tubule (CNT)[85]. Surprisingly, we found
that ENaC expression in the CCD is not a prerequisite for
normal sodium and potassium balance. We further con-
cluded that aldosterone-regulated ENaC activity might
occur more proximal in the early ASDN. Further tools to
dissect ENaC function along the nephron include the
AQP2::Cre mice that have been recently used to knockout
the mineralocorticoid MR receptor in the CNT and CCD
(Christensen et al., manuscript in preparation; [83]) and the
Pax8::rtTA/LC1::Cre double transgenic line [108], that
should eliminate ENaC function in all kidney cells with
exception of glomeruli when bred to the floxed αENaC
mice (Scnn1aflox). Elimination of ENaC in the whole
kidney will certainly indicate to which extent the kidney
contributes to the whole net sodium homeostasis of the
body. The ultimate proof of the aldosterone-dependent
sodium reabsorption will be the specific inactivation of
ENaC within the DCT2 and CNT by crossing the floxed
ENaC mice, e.g., with mice that express the Cre recombi-
nase under the control of the TRPV5 promoter [77]. The
identification of the exact nephron segment involved in
aldosterone-dependent sodium reabsorption will help to
develop a more refined treatment for hypertension.

Conclusion

In summary, renal cell-specific expression and renal cell-
specific knockout approaches are effective tools for
demonstrating in vivo importance of genes in ion and
water homeostasis in the adult kidney. With a growing list
of nephron-segment-specific promoters and nephron-
segment-specific Cre mouse lines, any gene of interest
can now be expressed or removed within the nephron to
study renal physiology and pathophysiology. Such studies
will finally lead to more refined drugs in kidney disease.
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