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Abstract We extend the original form of prospect theory by Kahneman and
Tversky from finite lotteries to arbitrary probability distributions, using an
approximation method based on weak-� convergence. The resulting formula
is computationally easier than the corresponding formula for cumulative
prospect theory and makes it possible to use prospect theory in future ap-
plications in economics and finance. Moreover, we suggest a method how to
incorporate a crucial step of the “editing phase” into prospect theory and to
remove in this way the discontinuity of the original model.
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Since prospect theory (PT) has been introduced by Kahneman and Tversky
(1979) as a descriptive model for decisions under risk, it has accommodated
increasing empirical evidence, especially when compared with classical ex-
pected utility theory (EUT), which requires too strict assumptions regarding
rationality from the decision makers. For an overview we refer to Schoemaker
(1982) and Starmer (2000). Prospect theory adopts the basic framework from
expected utility theory, but with additional psychological components based
on the observations of the decision making process by real people.
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Prospect theory assumes that decision makers frame outcomes in terms
of gains and losses, instead of the final wealth level that is used in expected
utility theory. Accordingly, a value function v replaces the standard utility
function. This value function has two parts, a concave part in the gain domain
and a convex part in the loss domain, capturing the risk-averse tendency for
gains and risk-seeking tendency for losses by many decision makers. Another
important aspect is that probabilities are weighted by an S-shaped probability
weighting function w, which is based on the observation that most people
tend to overweight small probabilities and underweight large probabilities.
Although the original formulation of prospect theory proposed by Kahneman
and Tversky (1979) was only defined for lotteries with, at most, two non-zero
outcomes, it can be generalized to n outcomes. Generalizations have been
used by various authors, e.g., Fennema and Wakker (1997), Camerer and Ho
(1994), Wakker (1989), Schneider and Lopes (1986). In this article, we study
the original formulation for n outcomes by Karmakar (1978). The value of a
lottery with outcomes xi, each of probability pi, is then given by

PT =
∑n

i=1 w(pi)v(xi)
∑n

i=1 w(pi)
. (1)

In difference to Kahneman and Tversky (1979) the PT-value is here nor-
malized by the sum of the weighted probabilities. We will see later why
this normalization is necessary when studying a large or infinite number of
outcomes.

Since Tversky and Kahneman (1992), the value function in PT is often
chosen as

v(x) :=
{

xα, x ≥ 0
−λ(−x)β, x < 0,

where λ ≈ 2.25 is called “loss-aversion” coefficient, and α, β describe the risk-
attitudes for gains and losses. The choice for the weighting function given by
Tversky and Kahneman (1992) is

w(p) := pγ

(pγ + (1 − p)γ )1/γ
(2)

with the parameter γ describing the amount of over- and underweighting.
The additional components of PT allow us to explain violations of some

of the properties derived from EUT (in particular the Independence Axiom
of von Neumann and Morgenstern), which have been frequently reported
from experiments. However, PT is also criticized for having some undesirable
characteristics, especially, the violation of first-order stochastic dominance and
continuity. Another limitation of PT is that it can only be applied to discrete
outcomes, but applications, e.g. in finance, require a theory for lotteries with
non-discrete outcome distributions. A portfolio, for instance, might have any
amount as return, not only a finite number of possible amounts. To solve these
problems, a new theory, cumulative prospect theory (CPT) was proposed in
Tversky and Kahneman (1992), where the cumulative probability distributions
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rather than the probabilities themselves are transformed by the probability
weighting function (see also Wakker 1993).

CPT is often considered as an improvement over original PT, particularly
because it does not violate stochastic dominance and it can be applied to
continuous outcomes. However, the empirical comparisons of these two the-
ories are still inconclusive: some data fit better with PT (Camerer and Ho
1994; Wu and Gonzalez 1996), some data fit better with CPT (Fennema and
Wakker 1997). For example, in one recent study using a critical test, it has been
found that the choices for gambles without a certainty effect are consistent
with PT, but not CPT, whereas the choices for gambles with a certainty
effect are consistent with both PT and CPT (Wu, Zhang and Abdellaoui
2005). Moreover, the studies that aimed at testing the key characteristics of
the two theories even seem to suggest frequent contradictions with CPT.
Various studies have reported systematic violations of properties of CPT such
as ordinal independence, branch independence, event splitting effects and
first-order stochastic dominance (Wu 1994; Birnbaum and McIntosh 1996;
Birnbaum and Martin 2003; Birnbaum 2005; Humphrey 1995; Luce 1998;
Starmer and Sugden 1993).

In particular, the violation of stochastic dominance is not necessarily a
weakness for a descriptive decision theory because it has been observed
that subjects frequently choose dominated lotteries especially when stochastic
dominance is not transparent to them. In this respect, PT is even better than
CPT in predicting such preference patterns (Tversky and Kahneman 1986;
Birnbaum 2005). On the other hand, it seems that most people do not violate
first-order stochastic dominance for lotteries with two outcomes, but this can
be predicted by the original formulation (1) proposed by Karmakar (1978).1

Given the above evidence, it seems that CPT may be descriptively not as
strong as PT. However, PT has some major disadvantages:

1. There is no generalization of PT to non-discrete outcome distributions.
2. It is not continuous, i.e., small changes in a lottery can produce large

differences in its utility.

The purpose of this paper is two-fold: on the one hand, we want to generalize
PT to non-discrete outcomes (Section 1), and on the other hand we want to
show how by incorporating a central editing rule, the collecting of nearby
outcomes (Kahneman and Tversky 1979), into PT, the theory can be made
continuous (Section 2).

Let us first summarize our approach for extending PT to non-discrete
outcome distributions: our central idea is here to use an approximation
method. More precisely, we approximate non-discrete outcome distributions
by finite lotteries. If we do this in Karmarkar’s formulation (1), we can pass
to the limit and obtain a well-defined expression for the non-discrete outcome
distribution. In the simplest case of a continuous outcome distribution given

1Alternatively, it can also be achieved by editing rules, when using the formulation of Kahneman
and Tversky (1979), but these editing rules are not always clearly defined.
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by the probability density p and a probability weighting function w defined as
in Eq. 2 we obtain with this method

PT(p) =
∫

v(x)p(x)γ dx
∫

p(x)γ dx
.

A more general formulation of this result can be found in Theorem 1 and
Remark 1. Although the details to derive this formula are necessarily a bit
technical, the general idea of this process can be illustrated by an analogy
to histograms (compare Figure 1): a non-discrete outcome distribution (e.g.
an absolutely continuous distribution as schematically depicted in the last
picture of Figure 1) can be approximated by finer and finer histograms. Each
histogram, however, can be represented by a finite lottery, where the outcomes
are given by the position of the histogram bars, and the probabilities of these
outcomes can be represented by the area of the bars. Approximating the
distribution with finer and finer histograms, the number of bars and hence
the number of outcomes increases and at the same time the area of the bars
and hence the probability of the outcomes decreases. In the limit we arrive
therefore at an integral formula for the PT-value of the non-discrete lottery
where only the behavior of w close to zero plays a role—for this approach to
work it is crucial that we have convergence. The question of convergence will
turn out to be more than just mathematical hair-splitting: in fact, we will see
that the method is only applicable if we use the formulation (1) of PT, i.e. that
the normalization with the sum of the weighted probabilities is essential.

After extending PT to arbitrary outcome distribution, we try to solve the
problem of continuity: a small change of a lottery (e.g. splitting a single
outcome into two similar outcomes) changes the PT-value often substantially.
This is the cause of several theoretical problems of PT that could only be
resolved using cumulative prospect theory. Already Kahneman and Tversky
(1979) suggest a so-called “editing phase” before the evaluation of the formula
for the PT-value. In the editing phase in particular nearby outcomes are
combined. We formalize this process and call the resulting modified theory
smooth prospect theory (SPT). We show that this theory is in fact continuous.
Its key idea is to make the outcomes “fuzzy”, i.e. replacing an outcome at, say,
x by an outcome-distribution around x. Nearby outcomes are then handled
as something in between two separate outcomes and one combined outcome,

Fig. 1 Non-discrete outcome distributions are approximated by finer and finer histograms of
uniform width
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depending on their distance. If this is done in a mathematically sound way,
it can be shown that this guarantees continuity. We show that other typical
properties of PT are, nevertheless, still present, in particular violations of
stochastic dominance.

In the final part, Section 3, we compare properties of the different variants
of prospect theory with empirical evidence. Some mathematical background
on continuity and the proofs of our results are provided in the Appendix.

1 Extending prospect theory to continuous probability distributions

In this section we derive a non-discrete variant of prospect theory. Afterwards
we demonstrate why a naive extension of PT fails and why it is necessary
to use the extension of PT as given in Eq. 1. For some refreshment on the
mathematical background of the related concepts, we refer the reader to
Appendix 1.

To extend PT to continuous distributions, we first consider a naive approach
where we simply define the PT utility of a continuous distribution p on R by

∫

v(x)w(p(x)) dx, or

∫
v(x)w(p(x)) dx,
∫

w(p(x)) dx,
, (3)

where v is the value function and w the weighting function as specified in
Eq. 2.

Why do those “natural” attempts for extensions not work? First of all,
the probability density p(x) might take values larger than one, but w is only
defined for values in [0,1]. Moreover, both formulas do not satisfy one of the
most natural requirements for a decision theory: they are not invariant under
changes of the coordinate system. If we “relabel” the monetary units from
euros to cents, for example, it will lead to lower values of p and hence to a
different over- or underweighting of the probability distribution:

Example 1 Let x be first given in euros and let p be an outcome distribution
that attaches uniform probability for all outcomes between 0 and 1, i.e.

p(x) :=
{

1, for x ∈ [0, 1],
0, elsewhere.

The PT-value therefore depends on w(1) = 1. For v(x) = x we have PT = 1/2.
Now let us consider the same lottery in cents. Then p becomes:

p(x) :=
{

1/100, for x ∈ [0, 100],
0, elsewhere.

The PT-value in the first formulation depends now on w(1/100) which is
overweighted and therefore larger than 1/100. For v(x) = x/100 (which gives
the same value function as before after conversion into cents) we hence have
PT = 50 · w(1/100) > 1/2.

To show a contradiction to the second possible formulation, a slightly more
complicated example would be needed, but the idea is the same.
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Generally, the formulas do not give the same result if we replace p(x) by
tp(tx) and v(x) by v(tx) for some t > 0, as a simple transformation shows. This
leads to a direct dependence of decisions on the monetary unit in which the
lotteries are phrased (as illustrated in the above example), which is certainly
not a desired consequence, in particular since the independence is satisfied for
the discrete case in PT, as well as for the general cases in CPT and EUT.

Can we rescue the “naive” approach 3 by replacing w by its derivative w′?
It is easy to see that the same problems would arise: w′ is (as w) only defined
on [0, 1] and the consistency with respect to changes of monetary units would
still be violated.

For these reasons we need to consider a more sophisticated approach based
on an approximation method. The key idea is to approximate a continuous
probability distribution by a sequence of finite lotteries. Finite lotteries can be
represented by weighted sums of Dirac masses (see Appendix 1 for details).
Therefore we can formulate our task as follows: we want to approximate the
absolutely continuous probability measure p by a sequence of Dirac measures
pn. The usual PT utility for finitely many outcomes can be computed for
pn and we will study the limit limn→∞ PT(pn). The hope is to find a limit
functional that can be used to directly compute PT(p). Unfortunately, not
every possible approximation pn of p will lead to the same limit functional,
at least in the simple model considered in this section. This is caused by the
highly discontinuous structure of the PT functional. However, we can select a
“representative” approximation by formalizing the editing phase as collecting
of nearby outcomes: we integrate the probability of all outcomes between, say,
a and b into one event with an outcome of a. In this way, we transform the
continuous distributions into a simple, discrete lottery where, e.g., the outcome
a has a certain probability larger than zero. If we decompose the set of all
possible outcomes into intervals of size 1/n, we arrive at a lottery pn. This
process can be interpreted as the construction of a histogram from a probability
distribution. When n → ∞, this approximation becomes better and better, and
our hope is that the associated PT-values of pn will eventually converge to a
PT-value that represents the continuous distribution given by p.

Mathematically spoken, we decompose R into intervals of equal size 1/n
and replace on each interval p by a Dirac measure of corresponding weight.
More precisely, we define

pz,n :=
∫ z+1

n

z
n

dp, p̄n :=
∑

z∈Z

pz,nδz/n.

The measures p̄n are still infinite sums of Diracs, but since p is a probability
measure, it is easy to see that

∫
[z/n,(z+1)/n)

dp → 0 for |z| → ∞, thus we can
neglect all, but finitely many intervals by making an arbitrarily small error.
We call the resulting measure pn. By a small lemma (McCann 1995), this

approximates in fact p; in mathematical language: pn
�

⇀ p.
Generally, we can use any decomposition of R into equally sized intervals

[xi, xi+1) where the size hn := |xi − xi+1| → 0 and the union of these intervals
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covers all of R as n → ∞. In fact, to keep the notation simpler, we will use this
more general class of approximations from now on.

One reason why we have chosen the above approximation is that it is a
homogenous approximation that allows for over- and underweighting of the
probability in the limit. By “homogenous” we mean that the approximation
does not depend directly on x. A non-homogenous approximation would
mean, for instance, to choose in the above approximation the interval length
hn as a function of x. In the illustration of Figure 1 this corresponds to equally
sized histogram bars in each approximation step. This is probably the most
natural possible choice that we can make.2

We will demonstrate in the next section how incorporating the editing phase
of prospect theory into our consideration makes it possible to derive this limit
for arbitrary approximating sequences.

Theorem 1 Let p be a probability distribution on R with exponential decay
at infinity and let pn be defined as above. Assume that v ∈ C1(R) has at most
polynomial growth and that for the weighting function w : [0, 1] → [0, 1] there
exists some α ∈ (0, 1) and some finite number C > 0 such that

lim
ε→0

w(ε)

εα
= C (4)

for ε → 0. Then the PT utility as formulated by Karmakar (1978)

PT(pn) =
∑

z w(pn,z)v(z/n)
∑

z w(pn,z)

converges to

lim
n→∞ PT(pn) = PT(p) :=

∫
v(x)p(x)α dx
∫

p(x)α dx
. (5)

The proof is given in Appendix 2. It can be easily generalized to the following
case, which is important in many applications:

Remark 1 If p is a probability measure that can be written as a sum of finitely
many weighted Dirac masses πiδxi and an absolutely continuous measure pa,
i.e., p = pa + ∑n

i=1 πiδxi , then we obtain the following limit:

lim
k→∞

PT(pk) = PT(p) :=
∑n

i=1 v(xi)π
α
i + ∫

v(x)pa(x)α dx
∑n

i=1 πα
i + ∫

pa(x)α dx
.

Remark 2 Condition (4) simply means that the weighting function close to
zero is approximately pα for some α. This is the case for most suggested

2A practical application can be found in Hens, Mayer and Rieger (2007) where historical data on
stock returns is used to derive an (approximate) lottery describing their performance, which is in
turn used to derive subjective PT utilities. The most natural method of forming a lottery is here to
integrate the (discrete) events into a histogram that corresponds to a probability distribution. The
results of this section make this approach possible.
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weighting functions, in particular the one from Tversky and Kahneman (1992)
where α < 1. A weighting function with α = 1 has been suggested in Rieger
and Wang (2006). We could also consider the case α > 1.

Remark 3 The assumption that p has exponential decay at infinity and that v

has at most polynomial growth is needed in order to ensure that
∫

p(x)α dx and∫
p(x)αv(x) dx both have finite values.3 This problem is closely related to the

variant of the St. Petersburg paradox that occurs in CPT and is interesting on
its own. The curious reader may compare this with the results in Rieger and
Wang (2006).

This approach to extend prospect theory to continuous distributions has
not been used before to our knowledge. One property of this approach might
at first glance contradict a core ingredient of PT, namely the S-shape of the
weighting function. In fact, the probability density p(x) is only weighted as
p(x)α , so we have a strictly concave “probability weighting function” and no
S-shape. However, this is not really the case: the normalization ensures that
large probabilities are still underweighted. A drawback of this result is that
the probability weighting function can no longer be freely fitted to individual
behavior. Instead there is only one parameter (here written as α) left that can
be adjusted. One can look at this phenomenon from two sides: on the one
hand this demonstrates that the freedom in the choice of w in the original
formulation of prospect theory is misleading, since it disappears when we study
lotteries with many or even infinitely many outcomes. On the other hand, fewer
degrees of freedom mean fewer difficult decisions regarding the choices of the
functional form of w, which can also be seen as a conceptual advantage.

Let us now explain why it is essential to use the formulation of n-outcome
lotteries by Karmarkar and not the formulation P̃T(p) = ∑

w(pn)v(xn), as in-
troduced implicitly in Schneider and Lopes (1986). We will show the following
(at first glance slightly surprising) result:

Theorem 2 Let p be a continuous probability distribution on R with expected
utility

EU(p) :=
∫

v(x)p(x) dx �= 0

and let pn be defined as above. Assume v ∈ C1(R). Moreover, assume that for
the weighting function w : [0, 1] → [0, 1] there exists some α ∈ (0, 1]. Then the
P̃T utility of Schneider and Lopes (1986)

P̃T(pn) =
∑

z

w(pn,z)v(z/n)

3The assumption can be weakened, e.g. to
∫

p(x)α dx < +∞ if v is bounded.
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converges to

lim
n→∞ P̃T(pn) =

{∞, if α < 1,

C · EU(p), if α = 1,

We remark that this theorem also holds when EU(p) is infinite. The proof
of the theorem is given in Appendix 2.

Remark 4 The condition EU(p) �= 0 is a technical condition that is only used
in the case α < 1. Since the expected utility is only meaningful up to an affine
transformation, this can be assumed without loss of generality.

Theorem 2 highlights the difficulty of probability weighting in this formula-
tion of the n-outcome prospect theory: in the approximation process, the single
probabilities become smaller and smaller, hence (if α < 1) the overweighting
becomes stronger and stronger and finally leads to an infinite utility. In the case
α = 1, however, the relative difference between the overweighting becomes
smaller and smaller as the single probabilities become small, hence in the limit
the overweighting does not play a role any more and we arrive simply at a
variant of the expected utility.

One might wonder at this point whether it is really a problem that the
PT-values diverge to infinity in the approximation process (if α < 1), since
they have per se no real meaning: what matters only, are preference relations
expressed by the differences between the PT-values of lotteries. There are two
reasons why this argument is not convincing:

• First, it would imply that we can make a lottery with positive value
arbitrarily attractive if only we decompose its events into more and more
single events. Applied to the problem of continuous lotteries that would
mean that by approximating them differently fine, we could induce any
preference relation between them.

• Second, we could not compare two continuous lotteries directly, since their
PT-values were both infinite. Instead, we would always have to compare
their approximations and hope that the preferences expressed by them
converge. This would render any practical application as impossible.4

For all of these reasons it is therefore necessary to rely on the formulation 1
and Theorem 1.

4Since we obtain directly infinity as the limit, rather than an integral formulation with infinite
value, it is also not possible to consider the difference of two lotteries by writing their values under
the same integral. This method would allow, e.g., in expected utility theory, where we have such
an integral formulation, to define preferences over pairs of some lotteries that each have infinite
utility.
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2 Continuity in prospect theory

The original prospect theory lacks some properties which would be quite
natural to assume. We have already discussed stochastic dominance. Now
we turn our attention to another problem: the discontinuity of PT. In the
classical framework of PT, there is a process called the “editing phase” which
“filters” this (and other) problems. The person is assumed to process first
the presented lotteries, in particular by collecting outcomes with identical (or
nearly identical) values to a single event. As an example for this editing process
consider the following two lotteries:

probability 0.8 0.1 0.1
outcome 0¤ 9.99¤ 10¤

probability 0.8 0.2
outcome 0¤ 10¤

Without an editing phase, PT could value the first higher than the second,
due to the strong overweighting of the low probability 0.1. In the editing
phase, however, the first lottery would be converted into a lottery similar to
the second one, by simply collecting the very similar payoffs of 9.99 and 10¤.

In this example we see two effects of the editing phase: on the one hand, it
avoids certain stochastic dominance violations, based on event splitting. On
the other hand, it avoids a discontinuity of the theory: without this editing
phase, a sequence pn of lotteries of the first type that converges to the second
lottery does not satisfy the continuity condition PT(pn) → PT(p). However,
the editing phase is, as Kahneman and Tversky (1979) admit, not very well
defined.

In this section we present a modification of PT that incorporates this basic
idea of the editing phase. At the end of this section we compare certain
properties of this modified version, called smooth prospect theory (SPT), with
PT and CPT to discuss its usefulness.

Our idea is to model the editing phase by making our evaluation on the
payoffs a little bit “fuzzy” (in a well-defined way). We introduce a parameter
ε > 0 and assume that outcomes that differ only by less than ε are more
and more considered to be the same. In a first step we therefore transform
p := ∑n

i=1 piδxi into an absolute continuous probability distribution pε by
the formula

pε(x) := 1

2ε

n∑

i=1

piχ[xi−ε,xi+ε](x),

where χ[a,b ], the indicator function of the interval [a, b ], is given by

χ[a,b ](x) :=
{

1 , when a ≤ x ≤ b
0 , elsewhere.

In Figure 2 we give an illustration for such a transformation, based on a lottery
similar to the one from our initial example. The idea is closely related to the
concept of “kernel estimates” and to “mollifiers” in analysis.
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Fig. 2 A lottery before (thick
lines) and after (thin lines) the
“editing phase” as described
by the smooth prospect
theory model

Given this transformed probability, we now need to define its subjective
utility in a way that we recover the classical PT when ε → 0. To this aim, we
need to define the smooth prospect theory (SPT ) of the lottery p by

SPTε(p) :=
∫

w
(∑n

i=1 piχ[xi−ε,xi+ε](x)
)
v(x) dx

∫
w

(∑n
i=1 piχ[xi−ε,xi+ε](x)

)
dx

(6)

or more generally for arbitrary probability measures p by

SPTε(p) :=
∫

w
(∫ x+ε

x−ε
dp

)
v(x) dx

∫
w

(∫ x+ε

x−ε
dp

)
dx

.

In the following, we will occasionally omit the index ε. Then ε is an
arbitrary fixed positive number. The following proposition (which is proved
in Appendix 2) shows that our definition is meaningful, i.e. invariant under
rescaling of the monetary unit, and that it coincides with PT for ε → 0.

Proposition 1 Let SPTε(p) be given by Eq. 6. Then limε→0 SPTε(p) = PT(p).
Moreover, SPTε is invariant under affine rescaling.

The main purpose of incorporating the editing phase into the mathematical
formalism was to avoid the discontinuity of the original theory. The next
theorem shows that SPT is in fact continuous:

Theorem 3 Let pk and p be probability measures with pk �
⇀ p, then SPT(pk)→

SPT(p), i.e., smooth prospect theory is continuous.

We prove this result in Appendix 2.
SPT still allows for violations of stochastic dominance.
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Remark 5 Although SPT is continuous, it can still violate the stochastic domi-
nance principle if ε > 0 is chosen small enough.

In fact, one can show that for every fixed ε > 0, the stochastic dominance
principle can be violated for some lotteries. Hence the “collecting” of similar
outcomes by itself is not a sufficient explanation for the avoidance of domi-
nated lotteries. The proof of this is relatively easy: one just needs to construct
a lottery with outcomes being apart at least ε and so low probabilities that
the overweighting still leads to a stochastic dominance violation similar to
the initial example. However, the number of cases with stochastic dominance
violations decreases, when ε increases.

One main advantage of incorporating the editing phase into the functional
form is that it allows us to obtain the non-discrete generalization of PT that we
have already derived in the previous section via arbitrary approximations. In
fact, we can study the same limit for SPT that we have studied for the discrete
form of PT in the previous section, where now at the same time we let ε go to
zero. We will see that the resulting limit is again the non-discrete version of PT
defined above. The importance of this result is that we do not need any more
restrictions on the sequence of approximating measures. This underlines that
the limit functional (5) is indeed the natural generalization of discrete PT:

Theorem 4 Let p be an absolutely continuous probability measure5 and p(x)

its probability density on R with at least exponential decay at infinity. Let pk be

a sequence of probability measures with pk �
⇀ p. Assume that v ∈ C1(R) has at

most polynomial growth and that for the weighting function w : [0, 1] → [0, 1]
there exists some α ∈ (0, 1) and some C > 0 such that limδ→0 w(δ)δ−α = C.
Then, for all sequences k(ε) → ∞ that converge sufficiently slowly as ε → 0,
the SPT utility of pk converges to PT(p), i.e.:

lim
ε→0

SPTε(pk(ε)) = PT(p) =
∫

v(x)p(x)α dx
∫

p(x)α dx
.

The proof is based on the previous convergence results, see Appendix 2.
In the following section we discuss the properties of the variants of prospect

theory and compare them with experimental findings.

3 A comparison of the PT-family

Prospect theory and cumulative prospect theory have been accepted as the
most competitive alternative theories of expected utility theory to describe
decision under risks. Although CPT is often considered to have mathematically

5This result can be generalized in the spirit of Remark 1.
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more elegant properties, empirical evidence sometimes suggests that the orig-
inal PT may capture certain psychological processes that cannot be predicted
by CPT.

In Table 1, we compare several mathematical properties of PT, SPT and
CPT to the empirical evidence (see also Wu, Zhang and Abdellaoui 2005). We
see that the formulation of PT by Karmakar (1978) has certain advantages over
the formulation by Schneider and Lopes (1986), in particular violations of in-
ternality and (in the two outcome cases) of stochastic dominance are avoided.
Moreover, we have seen that the formulation by Karmakar (1978) can be
extended to continuous outcomes, whereas the non-normalized version cannot
(compare Theorem 1 and Theorem 2). SPT outperforms PT in that it does not
violate continuity and predicts that closer outcomes are less overweighted than
very distinct outcomes, which is psychologically very plausible. Compared to
other PT theories, the rank-dependent property of CPT is more consistent with
empirical evidence. However, it fails to predict that distinct outcomes receive
more weights than aggregated outcomes, which has been found in experiments.

Table 1 Comparisons of prospect theory (PT), smooth prospect theory (SPT), and cumulative
prospect theory (CPT)

Properties PTa PTb SPT CPT Empirical
evidencec

Violation of independence axiom Yes Yes Yes Yes Yes
Explanation of Allais paradox Yes Yes Yes Yes Yes
Violation of stochastic dominance No Yes No No No

for lotteries with two outcomes
Violation of stochastic dominance Yes Yes Yes No Yes

(three or more outcomes)
Violation of internalityd No Yes No No No
Inverse S-shaped weighting function Yes Yes Yes Yes Yes

which implies lower- and upper-subadditivity
Distinctive outcomes receive more weights Yes Yes Yes No Yes

(support theory)
Among distinctive outcomes, No No Yes No Plausible

closer outcomes get less weights
Violation of continuity Yes Yes No No —
Can be applied for non-discrete distributions Yes No Yes Yes —

Properties correlating to experimental evidence are italicized.
aAs in Karmakar (1978).
bAs implicitly used in Schneider and Lopes (1986).
cA collection of the experimental evidence regarding these properties can be found by Wu, Zhang
and Abdellaoui (2005). We summarize their report in the form of this table and extend it slightly.
For references on the particular findings compare, e.g., Karmakar (1979), Starmer and Sugden
(1993), Wu (1994), Birnbaum and McIntosh (1996), Humphrey (1995), Luce (1998), Birnbaum
and Martin (2003), Birnbaum (2005).
dThis means, that the certainty equivalent of a lottery can be larger than any outcome of the
lottery. As an example consider v(x) = x and w(0.25) = 0.4, then the certainty equivalent of
the lottery (.25, 100; .25, 90; .25, 80; .25, 0) (expressed in values) in prospect theory as defined in
Schneider and Lopes (1986) is 108, greater than any of the outcomes. For further discussions see
also Gneezy, List and Wu (2006).
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CPT also fails to predict the violation of stochastic dominance documented in
empirical findings (Tversky and Kahneman 1986; Birnbaum 2005).

Another aspect that sometimes plays a role is of a pragmatic nature: In
some applications, in particular in areas such as behavioral finance when one
has to work with huge amounts of data points (e.g., historical stock returns),
an advantage of PT (or SPT) is the reduced computation load as compared
to CPT, because an ordering of the probabilities by their outcomes is not
necessary. This application was previously not possible, since no continuous
model for PT had been available.

4 Conclusions

We have extended prospect theory for the evaluation of non-discrete outcome
distributions, while still preserving the positive features of PT. This extension
is therefore more consistent with some of the patterns observed in experi-
ments than CPT, although it does not require more fitting parameters. The
continuous limit is even to some extent independent of the precise choice
of the weighting function which brings a substantial simplification over CPT,
however, at the same time limits the flexibility of the theory.

The discontinuities of PT can be removed in a natural way by incorporating
a central idea of the “editing phase” by Kahneman and Tversky (1979) into
the functional. The resulting modified theory, smooth prospect theory (SPT)
therefore combines many of the advantages of PT and CPT in one model.

With these improvements for the classical prospect theory, in particular the
extension to non-discrete lotteries, we built a foundation for applications of
PT in financial economics and other areas, where up to now the only possi-
bility was to use the conceptually different and numerically and analytically
harder CPT.
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Appendix

Appendix 1: Probability measures and continuity

We provide some information for non-specialists on a couple of mathematical
concepts that we have applied in the previous sections. We apologize to the
cognoscenti for making a complicated subject seem easy, while at the same
time trying not to be too imprecise.
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Let N ∈ N. We recall that a probability measure p on R
N is a non-negative

measure with ||p|| := ∫
RN dp = 1. A probability measure is absolutely continu-

ous if there exists an integrable function pa such that we can write
∫

RN
f (x)dp(x) =

∫

RN
f (x)pa(x)dx

for every continuous function f . A Dirac mass δx0 is defined by
∫

RN f (x)δx0

(x) = f (x0) for every continuous function f . In particular, we can write
any probability distribution p with only finitely many outcomes x1, . . . xn of
corresponding probabilities p1, . . . , pn as a sum of Dirac weighted masses

p =
n∑

i=1

piδxi .

This formulation enables us to handle the two typical situations of discrete
lotteries (finitely many outcomes) and continuous outcome distributions (e.g.,
normally distributed outcomes) simultaneously.

Of course, a probability measure can be much more complicated. Of practi-
cal relevance is the case where it is a sum of an absolutely continuous measure
and weighted Dirac masses. In this case we have discrete and continuous parts.

A central tool of this article is the approximation of measures by other
measures. To be able to approximate measures, we need to have a notion
of convergence. In other words: we want to define when a measure p is
approximated by a sequence of measures (pn)n∈N. In order to motivate the
mathematical definition, let us consider first the naive approach: we define
an approximation by requiring that pn(x) converges to p(x), i.e. that the
probability pn(x) of every outcome x converges to p(x). This seemingly natural
approach fails for two reasons: first, we are dealing with probability measures
for which it is difficult to define p(x) in a reasonable way. (p is not simply a
function.) Second, we would exclude that pn = δ1/n approximates p = δ0, thus
the convergence property would be too strong.

There is a better approach: We could say that pn converges to p if every
expected utility of pn converges to the expected utility of p. This would imply
that, in the limit, every rational person would be indifferent between p and pn.
This idea motivates the mathematical concept of weak-�-convergence:

Definition 1 (Weak-�-convergence of probability measures) We say that a se-
quence (pn) of probability measures on R

N converges weak-� to a probability
measure p if for all bounded continuous functions f

∫

RN
f (x)dpn(x) →

∫

RN
f (x)dp(x)

holds. We write this as pn
�

⇀ p. The function f is sometimes called a test
function.

To see the correspondence to the intuitive approach sketched above, con-
sider f (x) as a utility function.
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Finally, we recall the concept of continuity. The word “continuous” unfortu-
nately has two quite different meanings in the English language. Since this may
lead to some confusion in this article, we briefly explain the two concepts: First,
continuous means non-discrete. We have already used this notion when talking
about measures (or lotteries). As an example, think on a normal distribution
in contrast to a lottery with finitely many outcomes. Second, continuous means
not discontinuous. We say that a function F is continuous in this sense, if for
all sequences xn converging to x, we have F(xn) → F(x). This second type of
continuity is an important concept in every model. Roughly spoken, we want
a model to be continuously depending on its parameters, since parameters can
usually only be measured with a certain amount of precision. This is the case
even in a mathematically well-sounded area like physics, and even more so
in behavioral decision theory where the precision of experiments is obviously
limited. Whereas PT is discontinuous, EUT, CPT, SPT are continuous, i.e., if
pn

�
⇀ p then, e.g., SPT(pn) → SPT(p).

Appendix 2: Mathematical proofs

Proof of Theorem 1 We first assume for simplicity that the support of p is
bounded and that the union of the intervals [xi, xi+1] covers supp p for all n. We
define hn := |xi − xi+1|. (Remember that, since the decomposition is assumed
to be homogenous, hn does not depend on i.) Since p is absolute continuous,
pi,n := ∫ xi+1

xi
p(x) dx converges to zero as n → ∞. Hence we can use Eq. 4

to prove

lim
n→∞ PT(pn) = lim

n→∞

∑
i w(pi,n)v(xi)

∑n
i=1 w(pi,n)

= lim
n→∞

∑
i C(pi,n)

αv(xi)
∑

i C(pi,n)α

= lim
n→∞

hα
n

∑
i

(∫ x
xi

xi+1 p(x) dx
)α

v(xi)

hα
n

∑
i

(∫ x
xi

xi+1 p(x) dx
)α .

In the next step, we transform the integrals into averages of which we can
finally take the limit n → ∞ (since p is continuous):

lim
n

PT (pn) lim
n

i
xi 1

xi
p(x) dx v(xi)

i
xi 1

xi
p(x) dx

v(x)p(x) dx

p(x)

This concludes the proof of Theorem 1. 
�
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Proof of Theorem 2 Following the same ideas as in the proof of Theorem 1,
we compute:

lim
n→∞ P̃T(pn) = lim

n→∞
∑

i

w(pi,n)v(xi)

= lim
n→∞

∑

i

C(pi,n)
αv(xi). (7)

In the case α = 1, we derive from this

lim
n→∞ P̃T(pn) = lim

n→∞
∑

i

C
(∫ xi+1

xi

v(ξ) dp +
∫ xi+1

xi

(v(xi) − v(ξ))p(x) dx
)

.

Since |v(xi) − v(ξ)| ≤ |v′(xi)||xi − ξ | + O(|xi − ξ |2) → 0 as n → ∞, for every
converging sequence of xi, we get

lim
n→∞ P̃T(pn) = C lim

n→∞
∑

i

∫ xi+1

xi

v(ξ)p(x) dx

= C · EU(p).

We now consider the case α < 1. From estimate 7 we obtain

lim
n→∞ P̃T(pn) = lim

n→∞
∑

i

C
pi,n

(pi,n)1−α
v(xi).

We estimate (pi,n)
1−α ≤ (sn)

1−α with sn := supi pi,n. Since pi,n → 0 as n → ∞,
we have sn → 0 as n → ∞. Therefore we arrive at

lim
n→∞ P̃T(pn) ≥ C lim

n→∞ sα−1
n

∑

i

pi,nv(xi)

= C lim
n→∞ sα−1

n EU(p),

which is infinite, since EU(p) �= 0.
Let us now check the case when supp p is unbounded. We replace p with its

restriction to the interval [−m, +m] and call this restriction pm. Fixing m and
using what we have just proved for measures with bounded support, we see
that in the case α = 1

lim
n→∞ P̃T

(
pm

n

) = C lim
n→∞

∑

i

∫ xi+1

xi

v(ξ)pm(x) dx

= C ·
∫ +m

−m
v(x)pm(x) dx.

Since
∫ +m
−m v(x)pm(x) dx → EU(p) as m → ∞ (where we allow for infinity as

value of EU(p)), the general case follows.
A similar consideration proves the result for α < 1 with supp p unbounded.


�
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Proof of Proposition 1 If ε > 0 is smaller than mini, j |xi − x j|, then Eq. 6 sim-
plifies to

SPT (p)
n
i 1

xi

xi
w(pi)v(x) dx

n
i 1

xi

xi
w(pi) dx

n
i 1 w(pi)2

xi

xi
v(x) dx

n
i 1 w(pi)2

Since v ∈ C1, we obtain

lim
ε→0

SPTε(p) =
∑n

i=1 w(pi)v(xi)
∑n

i=1 w(pi)
.

A straightforward computation finally shows that SPT is invariant under
affine rescaling of the monetary units. 
�

Proof of Theorem 3 Since pk �
⇀ p, we have for x ∈ R either that

∫ x+ε

x−ε
dpk →

∫ x+ε

x−ε
dp or that p({x − ε} ∪ {x + ε}) > 0. We claim that the latter case can only

happen at most for countably many x ∈ R:
We denote the set of all x for which p({x}) > 0 by S. Since p is a probability

measure and therefore in particular bounded and non-negative, we have

1 =
∫

R

dp ≥
∑

x∈S

p({x}).

This implies that for every δ > 0 there can be only finitely many x ∈ S such
that p({x}) ≥ δ. We can therefore enumerate all x ∈ S by sorting them with
respect to p({x}) in descending order. Therefore S is countable and accordingly
p({x − ε} ∪ {x + ε}) > 0 can only be the case for countably many x ∈ R. This
implies that

∫ x+ε

x−ε
dpk → ∫ x+ε

x−ε
dp for a.e. x ∈ R, since a countable set on R has

measure zero. Since w is continuous and bounded, we obtain w
(∫ x+ε

x−ε
dpk

)
→

w
(∫ x+ε

x−ε
dp

)
and therefore

∫

w

(∫ x+ε

x−ε

dpk
)

v(x) dx →
∫

w

(∫ x+ε

x−ε

dp
)

v(x) dx.

Since
∫

w
(∫ x+ε

x−ε
dpk

)
dx is uniformly positive, the convergence carries over to

the quotient and we have proved the continuity of SPT. 
�
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Proof of Theorem 4 Let pk �
⇀ p, then we know for all ε > 0 that SPTε(pk) →

SPTε(p) as k → ∞, and also that SPTε(p) → PT(p) as ε → 0. We construct
a diagonal sequence (ε, k(ε)) with the desired property as follows:

For every ε > 0 choose k such that |SPTε(pk) − SPTε(p)| < |SPTε(p) −
PT(p)|. Then

|SPTε(pk(ε)) − PT(p)| ≤ |SPTε(pk(ε)) − SPTε(p)| + |SPTε(p) − PT(p)|
< 2|SPTε(p) − PT(p)| → 0 as ε → 0.


�
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