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Abstract Working memory is a core concept in cognition,
predicting about 50% of the variance in IQ and reasoning
tasks. A popular test of working memory is the complex
span task, in which encoding of memoranda alternates with
processing of distractors. A recent model of complex span
performance, the Time-Based-Resource-Sharing (TBRS)
model of Barrouillet and colleagues, has seemingly
accounted for several crucial findings, in particular the
intricate trade-off between deterioration and restoration of
memory in the complex span task. According to the TBRS,
memory traces decay during processing of the distractors,
and they are restored by attentional refreshing during brief
pauses in between processing steps. However, to date, the
theory has been formulated only at a verbal level, which
renders it difficult to test and to be certain of its intuited
predictions. We present a computational instantiation of the
TBRS and show that it can handle most of the findings on
which the verbal model was based. We also show that there
are potential challenges to the model that await future
resolution. This instantiated model, TBRS*, is the first
comprehensive computational model of performance in the
complex span paradigm. The Matlab model code is
available as a supplementary material of this article.
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Working memory has often been characterized as a system
for the simultaneous maintenance and processing of
information. This working definition is reflected in the
complex span paradigm, which has become the most
popular method for psychometric measurement of working
memory capacity (Conway et al., 2005) and which also
serves in many experimental investigations of working
memory processes (e.g., Barrouillet, Bernardin, & Camos,
2004; Friedman & Miyake, 2004; Towse, Hitch, & Hutton,
2000). The complex span paradigm is a generalization of
the reading span task (Daneman & Carpenter, 1980). In
reading span, participants read a series of sentences and try
to remember the last word of each sentence. The number of
sentences in each series is gradually increased, and a
participant’s span is determined as the maximum number of
sentence-final words they can recall correctly in the order of
presentation on at least 50% of trials. Thus, people alternate
between a processing task (i.e., reading the sentences, often
accompanied by a judgment about each sentence) and
encoding items for later recall (i.e., encoding each
sentence’s last word). Other researchers have developed
arithmetic variants of the task and versions in which the to-
be-remembered items are separated from the to-be-
processed material (Turner & Engle, 1989). For instance,
participants alternate between reading a sentence and
encoding a letter for later recall, or between verifying an
arithmetic equation and encoding a word.

Reading span and its relatives have turned out to be good
predictors of complex cognitive performance such as text
comprehension and reasoning; their predictive power is
typically larger than that of comparable simple span tasks,
which ask for immediate serial recall of a list without
interspersed processing demand (Ackerman, Beier, &
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Boyle, 2005; Conway, Kane, & Engle, 2003; Daneman &
Merikle, 1996). The importance of working memory is
underscored by the fact that there is a strong relationship
between general fluid intelligence (Gf, often measured by
Raven's Progressive Matrices test, Raven, Court, & Raven,
1977) and performance in complex span tasks, as well as
other tasks that measure working memory capacity (WMC).
In an extensive review of 14 data sets, Kane, Hambrick,
and Conway (2005) found the correlation between WMC
and Gf to be .72—that is, general intelligence shares 50%
of the variance with people’s ability to perform a fairly
straightforward memory task. By implication, a better
understanding of complex span performance may yield an
insight into the very core of cognition, viz. intelligence.

Further work has shown that the nature and the difficulty
of the processing task has no bearing on the validity of
complex span tasks as indicators of working memory
capacity (Conway & Engle, 1996; Lepine, Barrouillet, &
Camos, 2005). Rather, the validity of span tasks increases
with the degree of experimental control over people’s
strategies (Turley-Ames & Whitfield, 2003) and over how
much time they assign to the processing component
(Friedman & Miyake, 2004; Lepine et al., 2005).

Barrouillet, Camos, and their colleagues have developed
the complex span paradigm into a tool that affords better
control over people’s cognitive processes than the original
reading span task (Barrouillet et al., 2004; Barrouillet,
Bernardin, Portrat, Vergauwe, & Camos, 2007; Barrouillet
& Camos, 2001). In their variant of complex span, the task
is entirely computer paced. Presentation of each memory
item (e.g., a letter) for a fixed time is followed by a brief
processing period, which we will refer to as a burst. The
processing task is broken down into a number of steps, each
of which is prompted by a separate stimulus for a fixed time
(we will refer to this stimulus as a distractor). For instance,
participants are given an initial digit, followed by a series of
arithmetic updating instructions (e.g., “+3”, “-2”). Partic-
ipants must respond to each instruction by verbalizing the
intermediate result within the allotted processing time.
After several such processing steps, the next memorandum
is presented, followed by the next series of processing
steps. After all the memoranda and processing stimuli have
been presented, people are asked to recall the memory
items in order without time constraint (see Fig. 1 for an
illustration of the complex span paradigm).

The complex span task clearly draws on a large number
of cognitive processes, ranging from memory encoding and
retrieval to task switching and arithmetic processing—or
indeed any other type of processing associated with the
distractor task. Any explanation of performance in this non-
trivial task must therefore also involve a number of
components: At the very least, a theory must specify how
items are encoded, how they are maintained or forgotten, and

how they are retrieved at the end. In addition, a theory must
state what happens to memory while the distractor task is
carried out. To date, this has presented a formidable theoretical
challenge that only a few models have attempted to tackle.

Barrouillet et al. (2004) presented a theory of mainte-
nance and processing in working memory that explains a
number of findings from their refined version of the
complex span paradigm. Their theory, called the time-
based resource-sharing (TBRS) model, has proven very
successful in accounting for behavior in that paradigm.
Unlike other theories of working memory that remain at a
more global level (e.g., Cowan, 1995; Kane & Engle,
2000), the TBRS is the first attempt to specify the processes
underlying complex span performance. Specifically, the
TBRS relies on the interplay between two opposing
processes, namely temporal decay and compensatory atten-
tional “refreshing” of memory traces. Refreshing competes
with other cognitive operations for a general processing
bottleneck and serves to restore the integrity of memory
traces that inexorably decay during distractor processing. So
far, the TBRS has been presented only as a verbal theory,
and its predictions are derived by intuiting the effects of
decay and refreshing in the complex span task. Like all other
verbal theories, the TBRS is thus susceptible to numerous
conceptual risks and potential pitfalls that beset purely verbal
theorizing (Hintzman, 1991; Lewandowsky, 1993).

This article provides a computational implementation of
the TBRS. The purpose of this computational implementa-
tion is threefold. First, by implementing the theory as a
computational model we make explicit many assumptions
about details of the mechanisms of working memory on
which the verbal theory is silent. Thus, our computational
implementation raises theorizing about working memory to
a new level of precision. To date, there exists no detailed
and comprehensive computational process model of perfor-
mance in working-memory tasks. Second, the computa-
tional implementation serves as a validity check for the

Fig. 1 Schema of the complex span paradigm. Subjects remember
the consonants (K, Z), which must be recalled at the end of the trial.
Memoranda are separated by a processing task; in this instance,
subjects read aloud the arithmetic operations and their running
results
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assumptions underlying the TRBS: The fact that our
instantiation of the theory at least approximately reproduces
people’s behavior reassures us that the assumptions are
mutually consistent and viable. Third, the computational
model of the TBRS allows us to derive unambiguous
quantitative predictions for further empirical tests. In what
follows, we first introduce the TBRS theory, then explain
our modeling strategy, followed by a presentation of the
model itself and an exploration of its behavior.

The time-based resource-sharing theory

The TBRS theory makes the following basic assumptions:
Representations in working memory decay over time, but
they can be refreshed by directing attention to them.
Attention is conceptualized as a domain-general mechanism
that can be devoted to only one process at a time, and hence
creates a bottleneck. In tasks like the complex span task, the
cognitive system must devote attention to carrying out each
step of the processing task interleaved with encoding of the
memoranda. In between processing steps, however, the
attentional mechanism can be used to refresh memory items.
Thus, during each processing period the attentional bottleneck
is assumed to rapidly switch between carrying out a
processing step and refreshing one or more memory items.

Barrouillet and colleagues have condensed these
assumptions into a formula for cognitive load, defined as
the proportion of time T during which the attentional
mechanism is captured by the processing task, and thus the
proportion of time during which the memory traces decay
without being refreshed. Cognitive load can be expressed
by the equation:

Cognitive Load ¼ taN=T ;

where ta is the duration for which attention is captured by a
processing step, N represents the number of processing steps,
and T the total time available for the processing period
between two memoranda. If the processing period T is divided
equally among all steps, this equation reduces to ta/t, where t
is the presentation time for each individual processing step. Its
inverse, 1/t, is referred to as the pace of processing steps.

To illustrate, suppose that memoranda are separated by 2 s,
during which people must process two arithmetic steps (e.g.,
“+1” and “-2”) to compute a running total, each of which takes
600 ms. Cognitive load would be equal to 600 × 2 / 2,000 or
0.6. Now suppose the time available is doubled: Cognitive
load would be cut in half because 600 × 2 / 4,000 = 0.3. If the
number of operations were then doubled in turn, cognitive
load would be back to its original value; 600 × 4 / 4,000 = 0.6.
These examples illustrate that cognitive load represents the
balance between competing effects; viz. the detrimental effect

on memory of the processing steps and the memorial
restoration afforded during the breaks. The examples also
point to a limitation of the testability of the TBRS: Whereas
the theory stipulates that cognitive load derives from the
duration of attentional capture associated with the processing
task, it is difficult to measure that duration directly. In most
cases, the duration of attentional capture is estimated from
the time taken to respond to a distractor stimulus without a
memory load (i.e., “offline” in a separate sequence of test
trials). Although this indirect measure is satisfactory in most
cases, we turn to situations later in which attentional capture
might not be fully reflected in overt processing latencies.

Support for the TBRS comes from experiments with the
complex span paradigm that have revealed four consistent
regularities: (1) The addition of a processing component
after encoding of each memory item leads to a substantial
drop in recall accuracy, relative to a comparable simple
span task in which the memory items are presented
uninterrupted. The drop in performance can be large even
with a fairly simple and brief processing period – for
instance, saying aloud a single word after encoding of each
letter can reduce recall accuracy by 20% (Oberauer &
Lewandowsky, 2008). (2) Memory accuracy depends on the
pace of processing steps; faster paced processing steps lead
to worse recall (Barrouillet et al., 2004; Barrouillet et al.,
2007). (3) Holding processing pace constant, a more
difficult processing task results in worse memory (for an
illustration, see Fig. 2). Difficulty of the processing task per

Fig. 2 Schematic illustration of four levels of cognitive load. The
initial grey rectangle (labeled M) represents the presentation time of a
memory item (1.5 s), of which the initial part (shaded rectangle, 0.5 s)
is assumed in our model to be spent on encoding the item, the
remainder being spent on refreshing. The following burst of four
processing operations is subdivided into periods during which the
operations are carried out (operation duration, shaded rectangles) and
periods spent on refreshing (white rectangles)
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se, however, is not critical. Rather, difficult tasks capture
attention for longer time during each processing step, and if
processing pace is reduced accordingly, memory perfor-
mance can be higher with a difficult than with an easy
processing task (Barrouillet et al., 2004; Barrouillet et al.,
2007). (4) When processing difficulty and rate are held
constant, the number of processing steps following each
memory item has been reported to have no effect on
memory accuracy (Barrouillet et al., 2004). This does not
always hold, however, a point to which we will return in the
last section of this article.

The TBRS explains the first finding by the assumption
of decay during the processing periods that cannot be fully
compensated by rehearsal. The remaining three findings
follow directly from the cognitive load equation: Thus, as
pace increases, t is reduced, implying higher cognitive load
and thus a decrease in complex span performance.
Likewise, as the processing task becomes more difficult,
ta increases, implying higher cognitive load. Finally, when
attentional capture and pace are held constant (i.e., ta/t is
constant), the number of operations plays no role for
cognitive load and hence should not affect memory. Across
several experiments varying processing rate, processing
difficulty, and the number of processing steps, cognitive
load has been shown to be an excellent predictor of
people’s span (Barrouillet et al., 2004; Barrouillet et al.,
2007; Vergauwe, Barrouillet, & Camos, 2009).

Attention-based refreshing in the TBRS must be distin-
guished from rehearsal as conceptualized in other theories
of working memory, in particular Baddeley’s (1986)
concept of articulatory rehearsal in the context of the
phonological loop model. Articulatory rehearsal is a
domain-specific mechanism for recreating phonological
memory traces by reproducing them through covert speech.
Refreshing, in contrast, is a domain-general mechanism of
reviving memory traces by attending to them (cf. Raye,
Johnson, Mitchell, Greene, & Johnson, 2007); it does not
involve articulation.

A study by Hudjetz and Oberauer (2007) provides direct
evidence that the beneficial mechanism described as
refreshing in the TBRS must be different from articulatory
rehearsal. Hudjetz and Oberauer used a version of the
reading span paradigm in which people read several
sentences aloud and tried to remember the last word of
each sentence. The pace by which sentence segments were
presented was varied, and people’s span was larger with the
slower pace, as predicted by TBRS. Critically, this benefit
of slower pace was obtained regardless of whether
participants were allowed to read at their own rhythm—
with pauses in between articulations—or had to read
continuously to the pace of a metronome, even though
continuous reading made it much harder to squeeze in
articulation of additional material. The advantage of the

slower processing pace thus does not hinge on the
opportunity for articulatory rehearsal. Whatever the nature
of the beneficial mechanism that improves memory at a
slower processing pace, it must be able to operate
concurrently with overt articulation of unrelated material.

Further evidence on the nature of refreshing in TBRS
comes from a study by Barrouillet et al. (2007). They
showed that memory span declines linearly with increasing
cognitive load when the processing period consisted of a
series of choice reaction time trials, but remained constant
(and high) when it consisted of simple reaction time trials.
Research in the dual-task literature using the psychological
refractory period (PRP) paradigm has revealed that people
have difficulties performing two unrelated speeded choice
tasks at the same time, whereas simple reaction time tasks
produce essentially no dual-task costs (Pashler, 1994).
These findings point to a processing bottleneck for response
selection, that is, the selection of one out of several
responses, as required in choice reaction time tasks but
not simple reaction time tasks. The findings of Barrouillet
et al. (2007) therefore support their assumption that the
bottleneck that is presumed to govern processing and
refreshing in the complex span paradigm is the same as
the response-selection bottleneck identified in dual-task
studies with speeded choice tasks.

For a verbal theory, the TBRS is impressively clear and
easy to intuit. Nevertheless, it leaves unspecified a number
of details that have important implications for what the
theory actually predicts—for example, how exactly does
refreshing proceed? In what order are items refreshed? And
at what rate? Even seemingly simple verbal models require
numerous decisions to be made when instantiated compu-
tationally. For example, Lewandowsky and Farrell (in
press, Chapter 2) showed that the phonological loop model
of Baddeley (1986) could be instantiated in at least 144
different ways—thus, far from being “a” model, verbally
stated theories typically are compatible with a whole family
of instantiations, and detailed decisions must be made when
the verbal theory is translated into a computational model.
Because some of those decisions can have substantive
consequences, we note them thoroughly while we present
our instantiation.

TBRS*: a computational model of time-based resource
sharing

The TBRS has so far only been applied to the complex span
paradigm, so we focus on this paradigm at the outset. The
methodological antecedent of the complex span task,
immediate serial recall, has been the target of several
computational models (Brown, Neath, & Chater, 2007;
Brown, Preece, & Hulme, 2000; Burgess & Hitch, 1999,

Psychon Bull Rev (2011) 18:10–45 13



2006; Farrell & Lewandowsky, 2002; Henson, 1998b; Page
& Norris, 1998). We will draw on these existing theoretical
achievements to guide and inform our modeling.

Our modeling strategy was to build a generic model of
serial recall, using mechanisms from existing models of that
task, and add to it mechanisms specific to the TBRS,
namely time-based decay and refreshing. We aimed for
parsimony during model construction to ensure that the
model’s behavior is governed by the core theoretical
assumptions rather than any peculiarities of the implemen-
tation. Nevertheless, even a simple computational imple-
mentation of memory for serial order requires a number of
decisions, and adding an attentional mechanism that rapidly
switches between processing and refreshing, as assumed in
the TBRS, brings with it a number of further modeling
decisions. The most important modeling decisions are
summarized in Table 1.

A first pair of decisions concerned the representation of
items and their order. On pragmatic grounds, we opted for
localist rather than distributed representations of items; that
is, each item was represented by a single unique unit in a
neural network, rather than as a pattern of activation across
units. This simple representation is sufficient because the
TBRS in its original formulation (Barrouillet et al., 2004)
makes no assumptions about the internal structure of items
or the similarity between them. We use 81 units to represent
81 different items, each item being represented by a unique
active unit with all other units off.1

Regarding representation of order, we considered two
options, chosen on the basis of their proven prowess in
modeling serial recall (Farrell & Lewandowsky, 2004). One
is coding of order by a primacy gradient (Grossberg &
Pearson, 2008; Grossberg & Stone, 1986; Page & Norris,
1998), and the other is coding order by associating each
item to a positional marker (G. D. A. Brown et al., 2000;
Burgess & Hitch, 1999; Henson, 1998b). We investigated
both options, but were successful only with the latter. Our
failure to implement the TBRS using a primacy gradient to
represent order illuminates principled limitations of
primacy-gradient models, which we explain in Appendix
A. We therefore opted for a model that uses position coding
to represent order. This approach proved successful, and we
next present this model, TBRS*.

Model architecture

The architecture of TBRS* is a two-layer connectionist
network with one layer dedicated to the representations of

positions and the other to the representation of the items.
The two layers are fully interconnected, and their weights
initialized at zero. To facilitate exposition of the theory,
Table 2 lists the principal symbols used in our formal
description of TBRS* and briefly outlines their function.
Table entries are in the order in which symbols are
introduced in what follows.

Position coding means that each item is associated to a
“position marker.” Position markers are pre-defined repre-
sentations of serial position (e.g., Burgess & Hitch, 1999).
Typically, neighboring position markers are assumed to
be similar to each other. We use distributed representa-
tions of positions among which similarity (i.e., the
degree of overlap of their activation patterns) decreases
with distance. Specifically, we generate a random pattern
for the first position, and derive each next position by
changing a random subset of the features of the
preceding pattern. In this way, the similarity between
positions falls off by an exponential gradient, governed
by a free parameter P, the proportion of units maintained
from each position to the next.

Timing of cognitive processes

The TBRS model places great emphasis on the time-bound
nature of all cognitive processes. To reflect this emphasis, we
implemented every process (i.e., encoding, recall, refreshing,
and distractor processing) as an exponential growth over time
of some latent variable (e.g., learning strength, or evidence for
a response), expressed generically as

x ¼ 1� expð�rtÞ: ð1Þ

Here, x is the latent variable, r is the rate of processing
(clipped at a minimum of 0.1 to avoid negative values), and
t is the time spent on processing. The process finishes when
the latent variable has reached a criterion τ. This basic
model is borrowed from accumulator models of response
time (S. Brown & Heathcote, 2005; Ratcliff & Smith, 2004;
Usher & McClelland, 2001).

We do not simulate the accumulation process step by
step. Rather, we use Eq. 1 and variants thereof to compute
the duration of each processing step by solving for t. We
treat t as a random variable and thereby simulate a
distribution of process durations. This is accomplished by
drawing processing rates r from a Gaussian distribution
with mean R and standard deviation s [r ∼ N(R, s); we use
capital letters for means and corresponding lower case
letters for random variates]. In some applications of Eq. 1
we start from the mean processing rate R as a free
parameter. In other applications we start from an estimate
of the mean process duration T and work backwards to
calculate R from it, then forward again to calculate

1 The number 81 is arbitrary and makes little difference as long as
there is a sufficiently large number of items that are not included in a
given memory list, thus enabling extra-list intrusion errors (i.e., recall
of items that were not on the list).
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Table 2 Symbols in the formal notation of TBRS*, their meaning, and their function

Symbol Meaning Function

P Position marker overlap Free parameter; proportion of units maintained from each position to the next

η Learning strength Determined by time available for encoding or refreshing (Eq. 3)

L Weight asymptote Asymptote for weights connecting context to items, set to 1/9 (there were 9 units
in each context marker) throughout

r Momentary memory processing rate Determines unfolding of learning strength (η) over time (Eqs. 3 and 3a) for initial
encoding and refreshing, and speed of recall; r is distributed normally with mean
R and standard deviation s, and minimum .1

τE Criterion for encoding strength Free parameter, determines learning strength during encoding via Eq. 3a

R Mean memory processing rate Free parameter governing mean speed of encoding, refreshing, and recall

s Standard deviation of processing rates Free parameter governing variability in the duration of all processes (i.e., encoding,
refreshing, distractor processing, and recall)

te Encoding time for an item Obtained by Eq. 3a based on R, s, and τE
θ Retrieval threshold Free parameter that determines minimum level of activation required for an overt

retrieval

σ Standard deviation of Gaussian noise
added to item activations at retrieval.

Free parameter that determines likelihood of extra-list intrusions

ηal Strength of anti-learning Determines strength of response suppression; set to L

D Decay rate Free parameter that determines rate of decay of weights towards zero

τR Criterion for refreshing strength Determines learning strength during attentional refreshing, derived from Tr and
R via Eq. 7

Tr Mean time taken to refresh an item Free parameter that determines the mean duration of each refreshing step

tr Time for an individual refreshing event Obtained by Eq. 3a based on R, s, and τR
rop Momentary distractor processing rate Determines rate of evidence accumulation and hence time of attentional capture

of a distractor processing step (Eq. 8); rop is distributed normally with mean Rop

and standard deviation s

Rop Mean distractor processing rate Computed through Eq. 8a from estimates of mean processing duration, Ta, and τop
τop Response criterion for processing Processing finishes when evidence accumulator reaches this value. Set to τE
Ta Mean duration of attentional capture

by distractor processing steps
Estimated from measured response times or set according to theoretical assumptions

ta Momentary duration of attentional
capture by a distractor

Computed by solving Eq. 8

Table 1 Decisions for implementing TBRS as a computational model

Feature Options Option chosen

Representation of items Localist/distributed Localist

Representation of order Primacy gradient/position coding Position coding

Schema of overlap of
position markers

Moving windows/exponential decline Exponential decline

Encoding dynamics Instantaneous/time-dependent Time-dependent

Encoding strength Bound by asymptote/unbound Bound by asymptote

Decay function Linear/exponential/... Exponential

Use of item presentation time Entirely devoted to encoding/partially used for refreshing Partially used for refreshing

Mechanism of refreshing Boost whole weight matrix/boost section of weight matrix
associated to one position marker/retrieve and re-encode item/...

retrieve and re-encode item

Schedule of refreshing Refresh last item encoded/refresh randomly selected item/
cumulative in forward order

Cumulative in forward order (resume
with 1st item after every interruption)

Response suppression after
overt recall

None/removing item from weight matrix/suppress item in
item layer

Remove item from weight matrix

Response suppression after
retrieval for refreshing

None/removing item from weight matrix/suppress item in
item layer

None
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individual processing durations t, as described in more
detail below in the context of each particular process.

Encoding

When an item is presented, its representation—a single unit
representing that item—is activated in the item layer, and at
the same time, the representation of the current list position—
that is, the current positional marker—is activated in the
position layer. The item is associated to the position by
Hebbian learning:

Δwij ¼ ðL� wijÞhaiaj; ð2Þ
where wij is the connection weight between unit i in the
position layer and unit j in the item layer, ai is the activation
of unit i, aj is the activation of unit j, and η represents the
learning strength (determined by Eq. 3 below). The product
of the activations in the two layers is multiplied by (L – wij)
so that over multiple learning events the weight grows
towards an asymptote L. For all our simulations, L was set to
1 divided by 9, the number of active units in each position
marker.2 Activations ai and aj were always 0 or 1 during
encoding, for units that were off or on, respectively.
Because we use localist representations of items and
distributed representations of positions, each item-
position association consists of strengthening the weights
between several position-layer units and a single item-
layer unit.

We model the duration of each encoding event by using
a variant of Eq. 1 in which learning strength η figures as the
latent variable that increases with time:

h ¼ 1� expð�rteÞ: ð3Þ

Here, r is the rate of memory encoding, and te is the time
spent on encoding. By Eq. 3 the learning strength has an
asymptote of 1, so that in combination with Eq. 2, the strength
of connection weights grows towards an asymptote L.

We assume that each encoding event proceeds until the
growth of learning strength η has reached a criterion level
τE. As stated above, encoding duration te is a random
variable that varies from one encoding event to the next.
This variability is implemented by drawing the encoding
rate r from a Gaussian distribution with mean R and
standard deviation s; R and s are free parameters of the
model. We obtain the duration of each encoding event by

setting η = τE in Eq. 3, inserting the value of r drawn from
the Gaussian distribution, and solving for te:

te ¼ � logð1� tEÞ
r

ð3aÞ

As long as te, computed by Eq. 3a, does not exceed the
presentation time for an item, the growth of η will have
reached the criterion τE when encoding stops, so that we
can set η = τE in Eq. 2 to compute the change of connection
weights. In those cases where te exceeds the presentation
time, it is clipped to the presentation time, and η is
computed from Eq. 3. Figure 3 presents an illustration of
the relation between te, R, and τE.

To summarize, in the simulations we use R, s, and τE as
free parameters. For each encoding event we draw a
random value r (r ∼ N(R, s) and r ≥ 0.1), compute te from
it using Eq. 3a, and insert τE for η in Eq. 2 to determine the
learning strength (except for te > presentation time, when η
is computed from Eq. 3). We assume that the system tries to
encode the items strongly, so we set τE to 0.95 for all
simulations. Jolicoeur and Dell'Acqua (1998) showed that
consolidation of information in short-term memory is com-
pleted after about 0.5 s, which implies that the limiting value
of τE, .95, should be achieved after 0.5 s. It turns out that this
corresponds to a mean rate of R = 6. Thus, the value of this
crucial parameter was set on the basis of independent

0.0 0.5 1.0 1.5

0.0

0.2

0.4
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Fig. 3 The exponential growth of learning strength η as a function of
time. The hatched area represents the distribution of 100 curves
generated from 100 samples of rate r drawn from a normal distribution
with mean R = 6 and standard deviation s = 1, representing 100
different occasions. The continuous line represents one such occasion
selected at random. The duration of this event, t, is determined by the
time it takes the curve to reach the criterion, τ. This dynamic applies
equally to encoding and recall (with τE as the criterion τ), refreshing
(with τR as criterion), and distractor processing (with τE as criterion
and Rop instead of R)

2 Defining the learning asymptote as the inverse of the number of
active units in the retrieval cue (i.e., the positional marker) has the
advantage that activation strength of any unit in the item layer when
retrieved through the weight matrix has a maximum of 1, reached
when the item unit is associated to all units of the cue with the
maximum weight.
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empirical findings. We set the standard deviation of encoding
rates (s) to 1, which results in a standard deviation of
encoding times of approximately 0.095 s.

In many experiments items are presented for much
longer than 0.5 s. Barrouillet et al. (2004), for instance,
used 1.5 s per item. We assume that when encoding of an
item is completed, the cognitive system uses the remaining
presentation time for refreshing in the same way as it uses
free time periods in between processing operations (more
on refreshing below).

Recall

When it comes to recalling the items, the position markers
are again activated in the position layer one by one in
forward order. Each position marker forwards activation
through the weight matrix to the item layer, thus generating
a profile of activation across the item units:

aj ¼
Xn

i¼1
aiwij: ð4Þ

Here, aj is the activation of a unit in the item layer, ai the
activation of a unit in the position layer, wij the weight
connecting them, and n the number of units in the position
layer. Typically, the unit representing the item that was
actually presented in a given position receives the highest
activation, and units of other items that were associated to
neighboring positions also receive some activation. The
unit with the highest activation is selected and recalled.
Occasionally, the unit representing a different item receives
the highest activation, resulting in an error.

Item errors

Unless further assumptions are made, the recall process just
described cannot generate item errors, such as omissions (a
“pass” response) or intrusions (recall of a non-presented
item). This limits the applicability of the model to experi-
ments that minimize item errors (i.e., using a small closed
pool of items and forcing participants to give a response at
every position). We therefore augmented the basic item-
selection process to allow for the occurrence of item errors.
In the first step, we introduced a threshold for retrieval as a
new parameter, θ. If after cueing no item’s activation
exceeds the threshold, an omission error occurs. This model
produced a substantial number of omission errors but still
no extralist intrusions. Extralist intrusions can occur only if
an item not on the list accrues a positive activation value at
retrieval, so that it can surpass all list items’ activation. The
model architecture with 81 units in the item layer affords
localist representations of 81 different items, thus providing
room for extralist intrusions. However, the units represent-
ing extralist items are not associated to any position

representation, and thus receive no activation through
the weight matrix. One straightforward way to activate
extralist items at retrieval is by adding noise to all units
of the item layer at every retrieval attempt. This required
a further parameter, σ, which specified the standard
deviation of this Gaussian noise. Except where noted
otherwise, we set θ = 0.05 and σ = 0.02 in the simulations
reported in this article.

Response suppression

After overt output, the recalled item is suppressed, which
minimizes its accessibility for the remainder of the recall
episode. There is widespread agreement that some form of
response suppression is needed to accommodate a variety
of findings in serial recall (e.g., Farrell & Lewandowsky,
2002; Page & Norris, 1998). For example, erroneous
repetitions of items during recall are exceedingly rare, and
even when list items are repeated, people are often unable
to report both occurrences of the repeated item (the
Ranschburg effect, see, e.g., Henson, 1998a). We instanti-
ated response suppression by Hebbian anti-learning (Farrell
& Lewandowsky, 2002): Whereas in Hebbian learning,
the product of activations in position layer and item layer
is added to the weight matrix, in anti-learning it is
subtracted:

Δwij ¼ �halaiaj: ð5Þ

For calculating the weight changes for response sup-
pression, only the activation of the item selected for output
is maintained in the item layer; all other activations are set
to zero to avoid suppressing items that were not recalled.
The learning strength for anti-learning, ηal, was set equal to
the asymptote of learning, L, to make sure that anti-learning
removed an item at least as strongly as it has been encoded.

Recall takes time. Data from serial recall experiments
point to latencies between 0.5 and 1 s per item for spoken
recall (somewhat longer for typed recall), with the
exception of the first item, which takes considerably longer
to recall (Dosher & Ma, 1998; Farrell & Lewandowsky,
2004; Maybery, Parmentier, & Jones, 2002). Recall times in
complex span tasks have rarely been measured, and they
seem to depend on the specific version of complex span,
with longer recall times for reading span or listening span
than for counting span (Cowan et al., 2003). Recall times
are potentially important in the TBRS because during recall
memory continues to decay. For our simulations we set
mean recall duration per item to a lower bound estimate of
0.5 s, thus potentially underestimating the amount of decay
during recall. The recall times were simulated as random
variables in the same way, and using the same parameter
values, as the encoding times.
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Decay and refreshing

Because memory for a list is represented in the weight
matrix, we assume exponential decay with rate D to affect
the weights wij,

dwij

dt
¼ �Dwij: ð6Þ

Decay is applied to the whole weight matrix during
every time interval of the simulation. For most of our
simulations we set the decay rate D = 0.5 (all parameter
values used in all simulations are summarized in Table 3)
because this value enabled a satisfactory reproduction of
the cognitive-load effect, as shown below.

Refreshing is modeled as retrieval followed by (re-)
encoding of the retrieved item. In every period of free time,
the attentional mechanism attempts to refresh as many
items as possible one by one. Each refreshing step starts
with retrieving an item exactly as for recall, with the
exception that no response suppression through anti-
learning is applied. Response suppression during refreshing
would undermine the purpose of refreshing because it
removes the very memory trace that should be strength-
ened. The item that is retrieved at each refreshing step is
strengthened by associating it to the current position marker
exactly as during encoding of new items, the only
difference being that the system takes less time for
refreshing each item than for its initial encoding. The
duration of each refreshing step is governed by the same
process that governs duration of initial encoding, expressed
by Eq. 3a. We used the same rate, R, for refreshing and for
encoding, because we assume that refreshing strengthens
memory at the same rate as initial encoding. However, as
we will demonstrate below, refreshing must be assumed to
proceed very rapidly from one item to the next. For that
reason we did not use the criterion of initial encoding, τE,
but introduced a separate criterion τR (τR << τE) to govern

the duration of a refreshing step, replacing τE in Eq. 3a.
Thus, refreshing proceeds at the same rate as initial
encoding but finishes much earlier, after reaching a much
lower criterion. For the simulations we found it conve-
nient not to treat the criterion τR as a free parameter, but
rather to use the mean duration of a refreshing step, Tr , as
a free parameter and compute τR from it and the mean
processing rate R:

tR ¼ 1� expð�RTrÞ: ð7Þ

Equation 7 is another variant of our basic model of
latencies as expressed in Eq. 1, this time written in terms
of variable means (i.e., inserting R for r, Tr for t, and τR,
the value of learning strength reached when the refreshing
step finishes, for x). This form of the equation is
convenient because it enables the computation of τR
from Tr. We set Tr to 0.08 s per item, implying a value of
τR = 0.38 for refreshing. Thus, each refreshing step
increases the strength of the refreshed item with a learning
strength of 0.38, considerably less than the learning
strength at initial encoding, which typically equals the
criterion τE = 0.95.

Refreshing within a burst proceeds in a cumulative
fashion, that is, it starts from the first list item and proceeds
in forward order until the end of the list as encoded so far,
then starting over at the beginning. Whenever refreshing is
interrupted by a processing operation or a new item, it starts
again with the first list item when resumed.

Processing

In between encoding of items, a series of processing
operations must be carried out (e.g., simple arithmetic
computations or two-alternative forced-choice tasks). We
determine the processing duration ta (i.e., the time for
which a processing step captures attention) by another
variant of our basic accumulator model, assuming that an

Table 3 Parameter values for simulations

Parameter Sim. 1 Sim. 2 Sim. 3 (TBRS0) Sim. 4 (8y/14y) Sim. 5 Sim. 6 Sim. 7

Position marker overlap (P) 0.3 0.3 0.3 0.3 0.3 0.3 0.3

Criterion for encoding (τE) 0.95 0.95 0.95 0.5/0.55 0.95 0.95 0.95

Processing rate (R) 6 5 6 6 6 6 6

SD of processing rate (s) 1 1 1 1 1 1 1

Decay rate (D) 0.5 0.5 0.5 0.5/0.4 0.35 0.31 0.5

Refreshing duration (Tr, in ms) 80 80 80 80 80 80 80

Threshold for retrieval (θ) 0.1 0.1 0 0.1 0.1 0.05 0.1

Noise (σ) 0.02 0.02 0 0.02 0.02 0.02 0.05

Note: Sim = simulation, 8y = 8-year-old children, 14y = 14-year-old children. All simulations other than Simulation 3 involve TBRS*
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evidence accumulator e for the chosen response grows over
time, driven by the processing rate rop:

e ¼ 1� expð�roptaÞ: ð8Þ

The operation is completed when the accumulation value
e reaches a criterion τop, which for simplicity we set to
0.95, the same value as τE. The rate rop is drawn from a
Gaussian distribution with mean Rop and standard deviation
s. Experiments and experimental conditions differ in the
difficulty of the operations to be carried out, and we model
the difficulty of operations through variation of Rop.

To calculate the necessary variables for the simulations,
we start from an estimate of mean processing duration Ta
for a given experimental condition. Where available, we
used measured response times (Ta) as an estimate of the
mean duration of attentional capture by an operation,
following Barrouillet et al. (2007) and Portrat, Camos, &
Barrouillet, (2008). However, we do not use the mean
duration as the duration of each individual processing step,
because we want to simulate a distribution of durations of
attentional capture, analogous to the distribution of dura-
tions of other processes (i.e., encoding, refreshing, recall) in
TBRS*. Therefore, the next step is to calculate the mean
processing rate Rop, using Eq. 8. Specifically, we set the
accumulated evidence e in Eq. 8 to the value it has reached
when processing finishes, τop , solve for rop, and replace rop
by its mean, Rop.

Rop ¼ � logð1� topÞ
Ta

: ð8aÞ

Finally, the duration of each individual operation is
computed from Eq. 8: We set e to τop, the value that the
accumulator has to reach for an operation to finish. We
draw a momentary processing rate rop from a normal
distribution [rop ∼ N(Rop, s)]. With these values we solve
Eq. 8 for ta to obtain the time at which the evidence
accumulator reaches the criterion and the operation finishes.

Process scheduling

The complex span paradigm requires many modeling
decisions about which processes occur when. Among the
most important initial decisions is a consideration of the
nature of task switching in a complex span task. Any
complex span task involves at least two tasks, namely
encoding of the memoranda and processing of the dis-
tractors. In the TBRS, there are possibly additional task
switches between encoding of an item and its refreshing,
and also between processing and refreshing. How are those
switches best modeled in light of the extensive task-
switching literature? There is pervasive agreement that
any switch between tasks involves a cost, usually measured

by the additional time it takes to complete a new task as
opposed to another round of the same one (Monsell, 2003).
Recently, Liefooghe, Barrouillet, Vandierendonck, and
Camos (2008) provided evidence that the attentional
bottleneck is occupied during that switch time; decisions
about how task switching is to be modeled are therefore
crucial to our instantiation of the TBRS.

We assume from here on that switching between
encoding, processing, and refreshing occupy the attentional
bottleneck for some non-negligible duration. Unless spec-
ified otherwise, in all simulations that follow we subsume
this switch cost within the duration of distractor processing,
which thus reflects a composite of (1) task switching to the
processing task from encoding or refreshing, (2) switching
away from the processing task to refreshing or encoding the
next item, and (3) doing the processing task proper, that is,
selection of a response to the current distractor. A further
decomposition into those separate components is typically
unnecessary; an exception will be Simulation 7.

We next make explicit the processes that are engaged at
each point during a trial of the type of complex span task
used by Barrouillet et al. (2004, 2007). The model readily
generalizes to other tasks that interleave memorization and
processing; generalization beyond that family of tasks to
other working-memory paradigms such as running memory
(Bunting, Cowan, & Saults, 2006; Pollack, Johnson, &
Knaff, 1959) or memory updating (Ecker, Lewandowsky,
Oberauer, & Chee, 2010; Kessler & Meiran, 2006) require
more substantial modifications and therefore more theoret-
ical decisions on what is assumed to happen, and when, and
we therefore do not apply the model to those tasks here.

A temporal trace of activity

The events during a complex span trial can be illustrated by
the trace of an example trial. Figure 4 shows two such
traces of memory strength over time for each item in a
seven-item list. Memory strength is defined as the strength
of association of each item to the representation of its list
position, which in turn determines the activation of that
item in the item layer when cued by its list position (as per
Eq. 4). Each panel of Fig. 4 shows seven items being
encoded, each followed by a burst of processing, and some
items being successfully recalled (recall begins at the point
where activations fall below baseline owing to response
suppression; i.e., at t = 37 and t = 48 in the top and bottom
panels, respectively.)

Each trial begins with the encoding of the first memory
item by associating it to the first position marker. Encoding
continues until the encoding criterion (τE in Eq. 3a) has
been reached. The remainder of the presentation time is
devoted to refreshing. After encoding of the first item,
refreshing can only apply to that item, so refreshing
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effectively means continued encoding of the first item,
which is of little consequence because the item has
reached nearly asymptotic memory strength already.
During the presentation time of later memory items,
refreshing in the remaining presentation time includes
earlier items and thereby contributes to counteracting
decay of these earlier items.

After presentation of each memory item, a varying
number of processing operations are carried out (e.g., a
series of simple arithmetic operations). The duration of

each processing operation is determined by the mean
processing rate, which is the same for each operation in a
trial, together with the random variation on processing rate.
The attentional bottleneck is occupied for the duration of
each operation. In the free time between processing
operations, which arises if the actual processing time falls
short of the total allotted time, attention is devoted to
refreshing memory items. The time schedule of one
processing burst is illustrated in Fig. 2 for different levels
of cognitive load.
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Fig. 4 Traces of memory strength over time for a seven-item list with
four operations of 0.7 s each following each list, and free-time periods
of 0.1 s (top panel) or 0.6 s (bottom panel) following each operation.
Memory strength is defined as the strength of association between the
position marker at position p and the list item presented at position p;
different line types represent strengths of different items across the
seven positions. Each item rapidly gains strength during encoding
(within about 0.5 s of its presentation time). The remaining
presentation time is devoted to refreshing of all items encoded so
far. During a processing operation, all memory items decay, noticeable
by the steep decline of all strengths. During the following period of

free time, memory items are refreshed. Refreshing rapidly cycles
through all currently encoded items, and this is reflected in the tiny
peaks and troughs of each item during the periods of refreshing: Each
item peaks when it is refreshed and drops again while other items are
refreshed. Occasionally, an item fails to be retrieved for refreshing and
drops out; the gradual decelerated decline illustrates the effect of
decay when unbridled by refreshing. After the final burst of
processing operations, items are recalled and then suppressed (which
can reduce their strength to be below baseline; thus the beginning of
recall can be identified by the “below-zero” dips of activation). During
recall of each item, the remaining items continue to decay

20 Psychon Bull Rev (2011) 18:10–45



The strength traces in Fig. 4 show how during each
operation, memory strength decays, and during each period
of free time, strength partially recovers through refreshing.
Occasionally, however, an item is lost to irrevocable
decline. This happens when during a refreshing attempt in
position p the item originally presented in position p fails to
be retrieved because another item q has achieved stronger
activation during retrieval. As a consequence, refreshing
strengthens item q in position p, thus giving it a further
advantage over the correct item p. When that happens, it
becomes extremely difficult to recover the lost item: Every
time the representation of position p is re-instated as a
retrieval cue, item q will most likely come out with higher
activation than item p.

Examination of refreshing schedules

We instantiated a refreshing schedule that started from the
first list item and proceeded in forward order, resetting to
the first item whenever refreshing was interrupted. The
decision to use this refreshing schedule was not arbitrary
but the selection was based on consideration of several
alternative refreshing schedules; because refreshing is
pivotal in the TBRS, some of those alternatives—including
those that failed—deserve to be highlighted. In a variant of
the scheme just described, cumulative refreshing continues
with the next list item after being interrupted by an
operation and starts over with the first item only when a
new item is encoded. This variant generated very similar
data patterns to the one we adopted, but with slightly
reduced overall performance and more pronounced non-
monotonicity in the span-over-load curve (discussed be-
low). Other refreshing schemes resulted in more drastic
changes. For instance, it could be assumed that refreshing
during each processing burst focuses on the last item
encoded. This would leave the list-initial item to decay
once later items have been encoded, thus resulting in a
strong recency effect but no primacy effect, contrary to the
data (shown below). Another scheme would be to pick
items for refreshing at random with equal probability for all
items encoded so far. This scheme would refresh recent
items as much as earlier items, and because earlier items
had more time to decay, their memory strength would be
weaker than that of more recent items, resulting again in a
pronounced recency effect with little or no primacy,
contrary to the data. Another option, which appears
plausible at first glance, is to refresh only those items that
were below maximal activation, skipping over those whose
activation had already reached asymptote. However, this
selective-refreshing scheme would still require a stepping
through the list to retrieve the items in order before their
strength can be ascertained. Thus, the processing steps of
the selective-refreshing approach are identical to the one we

implemented, and its outcome is identical as well, because
items whose strength is close to asymptote do not gain
strength from refreshing whether they are skipped or not.

Our exploration of various refreshing schedules confirms
an earlier analysis (Oberauer & Lewandowsky, 2008) that the
exact effects of rehearsal are tied to the particular scheme
being implemented, and that a blanket appeal to rehearsal or
refreshing as a panacea for memory restoration is inadvisable.

One consequence of cumulative refreshing is that the
distribution of refreshing time over memory items across a
trial is very uneven. Before the second item is presented, all
refreshing is concentrated on the first item. After presenta-
tion of the second item, refreshing time is divided roughly
equally between the first two items; after presentation of the
third item, refreshing time is divided roughly equally
between the first three, and so on. Still the first item
receives more refreshing than later ones because often a
cycle of refreshing steps starts with the first item but is
interrupted before reaching the current end of the list. This
uneven distribution of refreshing is the reason why we
imposed an asymptote to the strength of associations, and
thus on the strength of memory representations in the
model. Without that asymptote, refreshing could boost an
item’s strength without bounds, and this would imply that,
during the processing burst in between presentation of the
first and the second item, the first item is strengthened to a
degree far beyond that reached by its initial encoding
(especially when cognitive load is low). As a consequence,
the strength of the first item becomes so overbearing that it
intrudes in retrieval of the second item (due to overlap of
the second with the first position marker). In overt recall,
intrusions from preceding items are typically avoided by
response suppression, but for reasons discussed above (and
in Appendix A), response suppression has to be switched
off during refreshing. Therefore, successful refreshing of a
list of items requires that the memory strengths of
neighboring items are not very different, which implies
the need for an asymptote in memory strength.

Recall schedule

After the last processing burst, recall commences immedi-
ately. Items are recalled in forward order, each with the
same mean duration. The assumption of equal mean recall
times is a simplification, because recall times vary between
list positions. In particular, latency of recall for the first list
item is much longer than that of later list items (Farrell &
Lewandowsky, 2004). We investigated model versions that
spend one second on refreshing the whole list before
commencing recall to account for the much longer latency
of the first item, but that assumption had no noticeable
impact on the model’s behavior, so we dropped it for
simplicity.
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Each recalled item is suppressed; the time for suppres-
sion is included in the duration of recall. Suppression can
be witnessed in Fig. 4 as the sharp drop of an item’s
strength slightly below baseline (beginning at t = 37 and
t = 48 in the top and bottom panels, respectively).

Simulation of benchmark findings with complex span

In what follows we present several simulations to test the
model. In the present section we investigate how well
TBRS* predicts benchmark findings that have been cited in
support of the TBRS. Simulation 1 applies the model to a
hypothetical experiment with the complex span paradigm
combining the three experimental variables that, when
manipulated separately in different experiments, created
these benchmark findings. Simulation 2 applies the model
to the experiment with the most extensive variation of
cognitive load so far, Experiment 7 in Barrouillet et al.
(2004). This is followed by a detailed analysis of the
model’s behavior in terms of serial-position curves and
types of errors, including a downscaled version of the initial
model without the additional apparatus for item errors
(TBRS0; Simulation 3). In the following section, we present
applications of TBRS* to the development of working
memory (Simulation 4), to the Brown-Peterson paradigm
(Simulations 5 and 6), and to a series of experiments with
the complex span task that challenge the notion of decay
(Simulation 7). Table 3 presents a summary of the
parameter values for all simulations.

Simulation 1: A comprehensive complex span experiment

As noted earlier, four benchmark findings provide the core
empirical support for the TBRS: (1) Adding a processing
demand to a serial-recall task, thus turning simple span
into complex span, impairs memory. (2) Slowing the
processing pace in a complex span task benefits memory.
(3) More difficult and therefore longer processing steps
result in worse memory. (4) As long as cognitive load is
held constant, the number of operations does not affect
memory.

Simulation 1 applies the model to a hypothetical
experiment that manipulates the three variables responsible
for these findings: Number of processing steps in each burst
(with levels 0, 1, 4, and 8); task difficulty, operationalized
as the duration of each processing step (parameter ta in the
cognitive-load equation, with three levels, easy: 0.3 s,
medium: 0.5 s, and hard: 0.7 s); and the free time following
each processing step, during which attention can be devoted
to refreshing, with five levels: 0, 0.1, 0.6, 1.2, and 2.0 s.
The cognitive load is the ratio of processing duration ta to
the processing time t available for each step, where t equals

ta plus the free time. Our experiment does not emulate the
earlier experiments of Barrouillet and colleagues, in which
processing pace was manipulated while holding the total
available processing time constant (i.e., by varying the
number of processing steps squeezed into that time) or
while holding the number of processing steps constant (i.e.,
by varying the total time available for all processing steps
of a burst). That approach necessarily confounds two of the
three experimental variables. Our hypothetical experiment
varies these three variables independently. One way to
accomplish this in practice is to measure processing
duration ta online through people’s response times in each
processing step and add a fixed interval of free time after
each response, as done by Portrat, Camos, and Barrouillet
(2008). Alternatively, mean processing duration ta for each
condition can be measured offline, and the total time for
each processing step is determined by adding the desired
free time to that mean (Barrouillet, Gavens, Vergauwe,
Gaillard, & Camos, 2009).

By crossing three levels of processing duration and five
levels of free time, we obtained 15 levels of cognitive load,
varying from 0.13 to 1.0 (disregarding the simple span
condition with 0 processing steps, for which cognitive load
is undefined). Table 4 summarizes the 15 levels of
cognitive load together with the operation durations and
free times that jointly constitute each level. The simulation
involved 200 simulated subjects, each of which went
through a span procedure for each condition; the span
procedure was modeled after Barrouillet et al. (2004). For
each condition there were three trials for each list length
from 1 to 9. The subject received 1 credit for each list
reproduced perfectly in order, and 0 for each erroneous list.
Credits were averaged within list lengths and summed

Table 4 Levels of cognitive load for Simulation 1 and Appendix B

Load Operation duration (s) Free time (s)

0.13 0.3 2.0

0.20 0.3 / 0.5 1.2 / 2.0

0.26 0.7 2.0

0.29 0.5 1.2

0.33 0.3 0.6

0.37 0.7 1.2

0.45 0.5 0.6

0.54 0.7 0.6

0.75 0.3 0.1

0.83 0.5 0.1

0.88 0.7 0.1

1.0 0.3 / 0.5 / 0.7 0

Note: Combinations of operation duration and free time that result in
the same cognitive load are listed in a single row.
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across list lengths. On this scoring technique, the maximum
span that could be achieved was 9.

Simulation 1 evaluated TBRS* on the comprehensive
complex span experiment described above. The most
important results are shown in Figs. 5 and 6. Figure 5
shows span as a function of cognitive load (top). The
simple span condition (number of operations = 0) is plotted
as a reference for all levels of cognitive load. The figure
shows that span declines in a roughly linear fashion with
increasing cognitive load. Only at the lowest level of load
does complex span approach simple span.

Memory performance is also often expressed as propor-
tion of items recalled in correct position (e.g., Vergauwe et

al., 2009). Therefore, Fig. 5 (bottom) plots this alternative
dependent variable as a function of cognitive load. Again,
memory performance declines in an approximately linear
fashion with increasing cognitive load. Thus, TBRS*
generates the most important prediction derived from the
verbal TBRS by its authors, the roughly linear decline of
memory performance with increasing cognitive load. The
simulation enables us to investigate the processes leading to
this prediction in detail, and this is what we do next.

Three observations are worth noting in Fig. 5. First, the
data points for simple span (at the top of each of the panels)
reflect 15 identical replications that differ only with respect
to randomization. The variation between those data points
thus reflects the degree of random noise in the simulated
spans. It is clear from the figure that random variability is
quite small.

Second, the decline of memory performance with
cognitive load is not entirely monotonic. The deviations
from monotonicity arise from the fact that the effects of
operation duration and of free time on memory are not
linear, as shown in Fig. 6. In particular, increasing free time
has diminishing returns, so that at a low level of cognitive
load (towards the right in the figure), where free time is
already relatively large, adding more free time leads to only
small benefits for memory. At the same time, increasing
operation duration still incurs a substantial decay cost even
at high levels of free time—compare the lines for operation
durations 0.7 s vs. 0.3 s. Thus, when a long free time is
combined with a long operation duration, the span
predicted by TBRS* is lower than the span predicted by
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interpolating from a linear function of cognitive load. This
explains the discontinuities in the span-over-load function:
Those cognitive-load levels for which performance dips
below what would be expected from a linear function of
load are the ones with the longest level of free time (see
Table 4).

The diminishing benefit of free time together with the
continuing cost of longer operation durations implies that
refreshing cannot fully compensate decay. This observation
points to the limited power of refreshing and rehearsal that
we already noted in a previous modeling study (Oberauer &
Lewandowsky, 2008). Refreshing is not the inverse
operation of decay. Rather, the effect of refreshing depends
on the accuracy of retrieving each item in its correct
position – to the degree that retrieval fails, refreshing will
strengthen the wrong item-position association and thereby
damage memory rather than improving it. Longer operation
durations imply longer decay and thereby make it more
likely that an item cannot be retrieved during the next
attempt at refreshing it. If that happens, the item is
irrevocably lost, and no addition of free time can resurrect
it (see Fig. 4). For those items that still are retrieved
correctly, increasing free time is beneficial only up to a
point. As their strength approaches asymptote, further
refreshing adds increasingly little strength, while still
carrying the (albeit tiny) risk of retrieval failure. Taken
together, increasing free time yields diminishing returns
because it cannot help items that have already decayed
beyond recovery, whereas those that can still be retrieved
soon cease to need help.

The final observation to be made with respect to Fig. 5 is
that memory performance declines with increasing number
of operations. This effect is hardly noticeable at low levels
of cognitive load but becomes substantial at higher levels of
load. This is a point where the prediction of TBRS*
deviates from the predictions that Barrouillet et al. (2004)
derived intuitively from the verbal formulation of their
theory. The intuitive prediction is that span is determined
only by cognitive load, and as long as cognitive load is held
constant, the number of operations does not matter. This
intuition derives from the idea that at a given level of
cognitive load, decay and refreshing will keep a balance
that is stable over repeated decay-refreshing cycles, and
therefore does not change with the number of operations.
This intuition is approximately true at low levels of
cognitive load, where refreshing nearly completely reverses
the effect of decay, thus approximately restoring the state
before decay. At higher levels of cognitive load, however,
refreshing falls short of restoring the pre-decay state of
memory. Rather, the net effect of decay during one
operation and refreshing during one interval of free time
after that operation is negative, and adding more operations
therefore results in worse memory.

At first glance, this behavior of the theory stands in
conflict with published data that show that adding more
operations in between memory items does not affect
performance, even at very high cognitive loads (Oberauer
& Lewandowsky, 2008). We revisit the issue of the number
of operations later while discussing some additional recent
data (Simulation 7); for now, it suffices to note that with
some auxiliary assumptions TBRS* can handle at least
some aspects of these results, permitting us to set aside that
discrepancy for the time being.

Figure 7 shows the dynamics of decay and refreshing
close up. The line traces the strength of one item during a
burst of eight operations, starting at 1 and decaying during
operations, being refreshed in the free time in between. The
free time is assumed to be shared equally between five
items, so that only 1/5 of the nominal free time is dedicated
to refreshing the plotted item. The four panels show four
levels of cognitive load. At low load (top left panel),
refreshing nearly entirely compensates decay, and the item’s
strength does not decline over successive processing
operations. At higher load (other three panels), in contrast,
refreshing fails to fully compensate for decay, and strength
gradually declines over successive operations. Irrespective
of the values of D and R, which differ between panels, the
decline eventually levels off, reaching a steady state.
Therefore, once a number of operations have been
completed, adding more operations makes increasingly
little difference for memory strength. The reason for this
convergence to a steady state lies with the nonlinear
dynamics of decay and refreshing. As memory strength
gets closer to zero, the loss through decay per unit time
becomes smaller, and the gain through refreshing per unit
time becomes larger, until they reach equilibrium where the
amount of strength lost during one operation is equal to the
amount gained during one free-time interval. This analysis
implies that the intuition of Barrouillet et al. (2004) is
approximately correct under certain circumstances: Once
enough operations have been completed so that memory
strength has come close to the equilibrium for the given
level of cognitive load, adding further operations with the
same cognitive load has virtually no effect on memory
strength. The equilibrium is reached after few operations
when cognitive load is low, but requires more operations
when cognitive load is high, as can be seen by comparing
the two panels in the top row of Fig. 7. This is the reason
why the number of operations matters most at high
cognitive load, and produces the largest drop in memory
performance between one and four operations, and rela-
tively little further loss between four and eight operations.

It is important to note that the analysis of the dynamics
in Fig. 7 reveals the inevitability of a shift in the point of
equilibrium with cognitive load. That is, there can be no
fixed set of parameter values that could create an

24 Psychon Bull Rev (2011) 18:10–45



equilibrium—and hence a null effect of adding further
operations—at the same point at all cognitive loads. This
runs counter to the intuitive predictions that have been derived
from the verbal model that regardless of cognitive load the
number of operations has no effect (Barrouillet et al., 2004).

Discussion of Simulation 1

Simulation 1 demonstrates that our computational imple-
mentation, TBRS*, generates the main prediction of the
verbal TBRS: Memory performance, measured as span or
as proportion correct, declines in an approximately linear
fashion with increasing cognitive load. This finding
increases confidence that our implementation accurately
reflects not only the meaning of the verbal theory, but also the
intentions of its authors. Successful instantiation of a verbal
model is far from trivial: As mentioned before, the meaning of
a verbal theory—that is, the mechanisms described—leaves

open many possibilities for a computational implementation
(Lewandowsky, 1993). Most of these implementations,
however, do not reflect the intentions of the authors, in that
they generate predictions that are at odds with the intuitive
predictions derived by the authors (as well as, typically, the
data; see Lewandowsky & Farrell, in press, Chapter 2).

There is no guarantee that the meaning of a verbal theory
is compatible with the predictions that the authors derive
from it. One goal of a computational implementation of a
verbal theory is to investigate whether there is a model of
the theory that actually produces those predictions. In this
regard Simulation 1 provides some comfort by showing that
there is at least one model of the TBRS theory that
generates its most important, and empirically most often
confirmed, prediction.

The comfort is not complete, however, because our
simulation also pointed to an instance where a prediction
generated by the simulation deviates from that derived from
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Fig. 7 Development of memory strength over time within a burst of
distracting operations, each followed by a period of free time (plotted
using a 10 ms time base). Strength decays during operations and is
restored through refreshing during free times. Each panel shows a
combination of operation duration and free time, which together
determine cognitive load (indicated by “CL” in each panel), together
with decay rate (D) and refreshing rate (R). When cognitive load is
low (top left panel), refreshing fully compensates decay, and the

number of operation has hardly any effect. When cognitive load is
high (remaining three panels), refreshing initially fails to fully
compensate decay. Eventually an equilibrium is reached, so that
adding further operations does not affect strength any more. When
decay rate and refreshing rate are large (bottom right panel), the
equilibrium is reached earlier than when they are both small (bottom
left panel). Therefore, the combination of smaller decay with smaller
rate implies a larger effect of the number of operations
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the verbal theory by its authors: At high levels of cognitive
load, our simulation showed a detrimental effect of the
number of processing operations on memory, whereas
Barrouillet et al. (2004) predicted no such effect. This
discrepancy could be interpreted as a failure or as a success
of our modeling effort. It would be a failure if we simply
missed an implementation that does predict no effect of the
number of operations (as well as a decline of span with
cognitive load). It is a success, however, if the modeling
uncovers principled reasons for why no such model can
exist. We have shown above that there is a principled
reason why the combination of decay and refreshing must
lead to more forgetting over longer bursts of operations
when cognitive load is relatively high. Therefore, the
discrepancy between the prediction of Barrouillet et al.
(2004) and the prediction generated by our simulation is a
discovery about what the verbal assumptions of the TBRS
imply; we discuss this discovery vis-à-vis some recent data
below in the context of Simulation 7.

Simulation 2: Experiment 7 of Barrouillet et al. (2004)

Our second simulation used the same model and largely the
same parameter values as Simulation 1 to reproduce the
data from a key experiment demonstrating the effect of
cognitive load on span. Barrouillet et al. (2004, Experiment
7) measured complex span with one of two processing
tasks, saying aloud the syllable “ba” or reading aloud
numerals. All processing tasks were computer paced by
presenting the syllable “ba” or the numeral to be read at an
even pace on the screen. For reading numerals span, nine
levels of cognitive load were created by crossing three
levels of processing time per burst (6, 8, or 10 s) with three
levels of number of operations per burst (4, 8, or 12 digits),
resulting in 12 different reading paces with the available
time per numeral ranging from 2.5 s to 0.5 s. For baba span,
only three levels of load were created: four “ba” in 10 s,
8 “ba” in 8 s, or 12 “ba” in 6 s. Span for recall of consonant
lists was the dependent variable. The results, reproduced in
Fig. 8 (left-hand panel), show a roughly linear decline of
span with increasing rate of processing steps per time, with
a steeper slope for reading numerals than for saying “ba.”

Barrouillet et al. (2004) did not compute actual cognitive
load, as defined in later writing by those authors, but rather
used the number of processing operations per time as the
predictor of span. The two processing operations, reading a
numeral and saying “ba,” are likely to differ in duration,
and this difference could explain the difference in the span-
over-load functions for the two tasks. For computing
cognitive load we need estimates for the processing
durations. In their later work, Barrouillet and colleagues
measured the time for reading aloud digits (Barrouillet et
al., 2007), obtaining a mean duration of 424 ms. Measure-

ment of the duration of saying “ba” in the second author’s
laboratory yielded a mean duration of 260 ms. It is not
certain that these measures of speaking duration accurately
reflect the duration for which each processing step occupies
the attentional bottleneck. We nevertheless use them as
estimates for the processing duration in Simulation 2 for two
reasons. First, when we plotted the data of Experiment 7 in
Barrouillet et al. (2004) as a function of cognitive load,
computed on our estimates of processing duration
(Lewandowsky, Geiger, Morrell, & Oberauer, 2010a),
reading-numerals span and baba span fell on a single
regression line, as they should according to the TBRS
(Fig. 8, right-hand panel). Note that this replotted figure
shows the data in the format favored by Barrouillet and
colleagues in their more recent writing (e.g., Barrouillet et al.,
2007). Our duration estimates thus facilitate a pleasingly
simple explanation of the data by our computational model—
unlike previously thought, seemingly all types of processing
task fall onto the same cognitive load function. Second, our
demonstration does not depend on the precise values for the
processing durations – if the true durations are smaller than
our estimates, that could easily be compensated by, for
instance, increasing decay rate, reducing the encoding rate
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Fig. 8 Data from Experiment 7 of Barrouillet et al. (2004). The left
panel shows span as a function of number of operations per time
(from Barrouillet et al., 2004). The right-hand panel re-plots the same
data as a function of cognitive load (from Lewandowsky et al.,
2010a). The computation of cognitive load is based on empirical
estimates of the duration of digit reading (424 ms, Barrouillet et al.,
2007) and of uttering the syllable “ba” (260 ms, own data). The left
panel is based on data from Barrouillet et al. (2004). Time constraints
and resource sharing in adults' working memory spans. Journal of
Experimental Psychology: General, 133, 83-100, published by the
American Psychological Association, reprinted with permission
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for refreshing, or assuming longer switch costs between
processing operations and refreshing.

The paradigm used for Experiment 7 in Barrouillet et al.
(2004) differs in one important regard from that assumed
for Simulation 1: Barrouillet et al. (2004) controlled the time
available for each processing operation rather than the free
time after each operation was completed. Thus, the free time
available for refreshing was the total time minus the operation
duration. We changed the simulation accordingly, first
computing the duration of each operation based on a random
choice of the momentary processing rate r and on the
criterion τop, and then computing the free time following
that operation as the experimentally given time minus the
operation duration (or zero if the latter exceeded the former).

For Simulation 2 we maintained all parameter values of
Simulation 1 with the exception of the rate parameter R,
which determines the speed at which learning strength at
encoding and refreshing increases over time. R was lowered
from 6 to 5 for this simulation, because with R = 6 span
increases too steeply with decreasing load. Figure 9 shows
the results. The model reproduced the data well, with one
noticeable exception: The model predicts a deceleration of
the span-over-load function as cognitive load decreases;
this was not observed in the experiment. This prediction
arises because low cognitive load is characterized by very
long free time (i.e., more than 2 s per operation at the
lowest level of load, where 2.5 s are available for reading
each numeral, which takes < 0.5 s), and as shown above,
the model produces diminishing returns from increasing free
time. At present, it is not clear whether this discrepancy
reflects a limitation of the model or of the data. It is possible
that the model makes the wrong prediction at very low levels
of cognitive load or that the experiments carried out so far
were not sensitive enough to pick up the flattening of the
span-over-load function at very low cognitive load.

Serial position curves and types of errors

We next turn to a more fine-grained analysis of the model’s
behavior. Researchers of serial recall have routinely ana-
lyzed their data for serial position curves and types of errors.
The principal results, such as extended primacy accompa-
nied by small (i.e., 1- or 2-item) recency, are highly
reproducible across experiments and have turned into widely
accepted benchmarks for computational models of serial
recall. Therefore, a model of the TBRS should aspire to
explaining serial-position data and error-type data as well.

Serial position curves

Serial position curves plot accuracy as a function of the
serial position of the to-be-recalled item. A typical finding

from immediate forward serial (i.e., simple span) is an
extended primacy effect —i.e., enhanced performance for
items that appeared early on the list—together with a
recency effect typically confined to the last one or two
items. Hardly any analyses of serial-position effects have
been published for complex span, but as we will show
below, the shape of the curve is very similar to that for
simple span.

Figure 10 shows serial-position curves for seven-item
lists from Simulation 1 for simple span (0 operations) and
for complex span with different numbers of operations,
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Fig. 9 Results of Simulation 2, reproducing Experiment 7 of
Barrouillet et al. (2004) in TBRS*. The top panel plots the data as a
function of number of operations per time (as in Barrouillet et al.,
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load (as in Lewandowsky et al., 2010a).
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averaged across levels of cognitive load. These curves
reproduce the typical finding of extended primacy and a
less extended recency effect. TBRS* generates the recency
effect through decay: Because recall is faster than the pace
of item presentation, the last list items have the least time to
decay. The model generates a primacy gradient through
cumulative refreshing: Refreshing starts at the beginning
and continues until it is interrupted by another demand on
the attentional bottleneck; this interruption usually occurs
midway through the list, so that list-initial items receive
more refreshing. The role of refreshing in generating
primacy can be seen directly when free time is reduced to
zero, as shown in Fig. 11.

The top panel of Fig. 11 displays serial position curves
for the complex span data from Simulation 1, broken down
by available free time, averaging across operation duration
and number of operations (1, 4, or 8). When free time is
zero, the primacy effect virtually disappears. With just
100 ms of free time between operations, a strong primacy
effect emerges, but it hardly extends beyond the first item.
As free time increases, the primacy effect extends further
into the list. Note that when free time is zero, it does not
mean that no refreshing occurs at all – the model still
refreshes in the residual item presentation time after
encoding of an item has reached asymptote, but it has no
free time in between operations within a burst. As a
consequence, memory decays unbridled throughout the
burst, which drastically diminishes the strength of the items
encoded so far. This, in itself, would not prevent them from
being recalled, but once the next list item is encoded, it is
relatively much stronger than the preceding items, so that
when one of the earlier items is cued for retrieval, the most

recently encoded item is likely to be retrieved instead. In
other words, early list items must be refreshed fairly
continuously, lest their strength drops too far below that
of more recently encoded items, thus rendering the earlier
items irrecoverable.

The bottom panel of Fig. 11 shows serial position curves
by operation duration. A comparison of Fig. 10 and the two
panels of Fig. 11 reveals that TBRS* makes different
predictions for how manipulations of the number of
operations, of the available free time, and of the duration
of operations affect the serial position curve. Increasing the
number of operations impairs memory primarily in the
middle of the list; decreasing free time reduces and
eventually eliminates the primacy effect, and increasing
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operation duration affects all list items to about the same
degree.

Whereas serial position effects are routinely analyzed in
studies of serial recall, serial-position data from complex
span tasks are scarce, with the data typically being reported
in aggregate fashion (e.g., as span scores). The most
thorough analysis so far has been presented by Unsworth
and Engle (2006). Their data come from the large-scale
study by Kane and colleagues (Kane et al., 2004). In that
study, participants were asked to recall items in correct
order by writing each item into a slot on an answer sheet.
The experimenters did not control the temporal order in
which participants wrote down their responses (Kane,
personal communication, October 15, 2008). Therefore, it
is possible that people deviated from recall in forward
order, for instance by first writing the last item into the last
slot, a common pattern in serial retrieval (Lewandowsky,
Brown, & Thomas, 2009). The lack of control of output
order is unfortunate because output order has a large
influence on accuracy (Cowan, Saults, Elliott, & Moreno,
2002; Oberauer, 2003), and therefore any deviation from
forward recall distorts the serial position curve. This
consideration speaks against using the data from Unsworth
and Engle (2006) as benchmark data for evaluating models
of complex span. Instead, we present in Fig. 12 data from
our own laboratory that were obtained with a computerized
test battery for working memory (Lewandowsky, Oberauer,
Yang, & Ecker, 2010b), which includes reading span and
operation span. Our span tasks are well suited for
comparison with the predictions of TBRS* because they
use fixed, computer-controlled times for each processing
burst (though not for individual operations within a burst),
and they force participants to enter items in forward order.
The top panel of Fig. 12 shows data for reading span and
the bottom panel for operation span; both are taken from
Experiment 2 in Lewandowsky et al. (2010b). Comparison
of the data (for list length 7) with the predicted form of the
serial position curve (Fig. 10) shows qualitative agreement;
the model, like the data, shows extensive primacy and
limited recency.

Unfortunately, the data in Fig. 12 do not include a
manipulation of the number of operations, operation
duration, or free time. We will discuss an experiment
manipulating the number of operations below. We are not
aware of serial-position data from an experiment manipu-
lating operation duration and free time independently, so
the corresponding predictions of TBRS* in Figs. 10 and 11
remain to be tested.

Error types

Two broad categories of errors are distinguished in serial
recall, item errors and order errors. A response is regarded

as an order error if at a given output position a list item
from a different position is recalled. These errors are also
referred to as transpositions. A response is regarded as an
item error if at a given output position no item from any list
position is recalled. Item errors can be either omissions (if
participants are allowed to skip an item) or extralist
intrusions, that is, items that were not presented on the
current list.

Figure 13 displays the predicted proportion of order
errors, omissions, and extralist intrusions as a function of

Fig. 12 Serial position curves for an operation span task (top panel)
and for a sentence span task (bottom panel) for various list lengths.
Data are taken from Experiment 2 of Lewandowsky et al. (2010b) and
involve keyboard recall of lists of consonants, each of which was
preceded by a single arithmetic operation (e.g., 3 + 2 = 5) or a single
sentence (e.g., “All working memory experiments are clever”) that had
to be verified (true or false indicated by keypress)
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serial position. These data are from all complex span
conditions of Simulation 1, averaging across number of
operations and levels of cognitive load. The corresponding
behavioral data are shown in Fig. 14, which are taken from
Experiment 2 in Lewandowsky et al. (2010b)–with reading
and operations span in the top and bottom panel, respec-
tively–for a seven-item list from the same complex span
experiment that produced the serial position curves in
Fig. 12. The experiment did not permit omissions so all
item errors were intrusion errors. TBRS* accurately
predicts the increase of intrusion errors over serial position.

Turning to order errors, Fig. 15 shows the empirical
transposition gradients from the same study (Experiment 2
in Lewandowsky et al., 2010b), and Fig. 16 shows the
corresponding predictions from TBRS* (Simulation 1).
In the figures, each item is identified by its input
position, and the corresponding line in the graph shows
the probability of that item being recalled at each output
position. These plots illustrate the transposition profiles
for a seven-item list in a complex span task averaging
across number of operations (1, 4, or 8). A comparison
of Figs. 15 and 16 clarifies that TBRS* captures the
transposition gradients reasonably well. In particular,
when an item is recalled in the wrong output position
(i.e., a transposition error), it tends to be recalled in a
nearby position. This is a common pattern in serial
recall; our model generates it in the same way as many
previous models (e.g., G. D. A. Brown et al., 2000;
Burgess & Hitch, 1999; Henson, 1998b), through position
representations that overlap more the closer they are to
each other. However, it is also clear from Fig. 16 that the

model predicts more transpositions than were observed in
the data, especially at central serial positions.

TBRS0 : decay and the relativity of memory strength

Before we move on to show the wider applicability of
TBRS*, we examine the mechanisms of forgetting in our
instantiations. The notion of decay is closely associated to
the image of a memory trace that fades away over time until
it becomes irrecoverable. This image is misleading because
it focuses on the fate of an individual representation,

Fig 14 Types of errors as a function of serial position; data from
Experiment 2 in Lewandowsky et al. (2010b) for sentence span (top)
and operation span (bottom)
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ignoring the role of other representations that interact with
the target representation at retrieval. Decades of research on
human memory have demonstrated time and again that
retrieval depends not so much on the characteristics of the
memory representation to be retrieved but on its relation to
other representations that act as cues or competitors
(Surprenant & Neath, 2009). This principle of relativity is
true also for our instantiation of TBRS. In TBRS*, the
success of an attempt to retrieve a particular item depends
on both that item’s absolute strength and on its relative
strength compared to other list and extralist items. Absolute

strength is important because an item is recalled only if its
activation, after cueing by a position, exceeds the retrieval
threshold, and relative strength is important because an item
is recalled only if its activation exceeds that of all other
recall candidates.

To investigate the roles of absolute and relative
strength, we created a stripped-down version of the
model, which we call TBRS0, in which we set the
retrieval threshold θ and the retrieval noise σ to zero.
Setting the threshold to zero implies that no item can ever
decay below the threshold. Setting noise to zero implies
that no extra-list item can ever acquire non-zero activa-
tion, because they are not associated to any unit in the
position layer and thus receive no input from the
positional cue. As a consequence, TBRS0 cannot commit
any item errors. Thus, during any recall attempt in TBRS0,
the item with the highest activation in the item layer (after
cuing) is recalled, even if that activation is minuscule, and
the item is guaranteed to be from the currently studied list.
Simulation 3 explored the implications of this stripped-
down version, TBRS0, and the results are presented in
Figs. 17 and 18.

Figure 17 shows that TBRS0 can produce plausible
cognitive-load functions (top panel) as well as serial-
position curves (bottom panel). Thus, the most important
predictions of TBRS are generated by a model version in
which no memory trace, looked at individually, ever decays
below a threshold that renders it absolutely irrecoverable.
Figure 18 provides a closer look at order errors produced by
TBRS0. The figure again shows the probability of each item

Fig. 16 Transposition profiles predicted by TBRS*. Data are from
Simulation 1, averaged across numbers of operations (1, 4, or 8), and
across all levels of cognitive load. Input positions are represented by
numbers within plotting symbols

Fig. 15 Transposition profiles for seven-item lists from Experiment 2
in Lewandowsky et al. (2010b). Data are from sentence span (top) and
operation span (bottom). Input positions are represented by numbers
within plotting symbols
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being recalled at each output position. These plots illustrate
the transposition profiles for a seven-item list in a complex
span task averaging across number of operations (1, 4, or
8), for a relatively long free time (1.2 s) in the top panel and
for zero free time in the bottom panel. The plots show one
noteworthy feature of the stripped-down model: There is a
strong tendency for later list items to be recalled too early,
and this tendency is accentuated as free time is reduced.
These anticipation errors arise in the model because decay
creates a recency gradient of strength. Because positional
cues overlap with other nearby position representations,
cuing for recall by a position representation will activate
not only the item in that position but also, to a lesser
degree, items in neighboring positions. The activation that
item n receives at retrieval in the item layer, given that

position m is used as cue, is a function of three variables,
the degree of overlap between neighboring positional
representations P, the distance between positions m and n,
and the strength of association of item n to position n at the
moment of retrieval, wnn. Because overlap decreases
exponentially with distance, the degree of activation of
item n when cued with position m can be expressed as:

anjm ¼ wnn � P m�nj j: ð9Þ

Thus, when item m is cued for retrieval, item n in a later
position can achieve higher activation at retrieval than item
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m if the strength of item n (wnn) is much larger than that of
item m (wmm), so that the difference in strength exceeds the
discounting by positional distance, P|m-n|. This is how
anticipation errors arise from a strong recency gradient as a
consequence of decay. Refreshing serves to battle anticipa-
tion errors by generating a primacy gradient of strength,
and therefore the list-initial items are largely protected from
anticipation errors when there is sufficient free time for
refreshing. When no free time is available, no primacy
gradient is built to stem the flood of anticipation errors, as
shown in the bottom panel of Fig. 18.

This analysis of TBRS0 raises questions about the role of
decay in generating the predictions of TBRS. In TBRS0, an
error of retrieval occurs if and only if the correct item’s
level of activation in the item layer, when cued by its
position, is surpassed by another item’s activation. Thus, it
is the relative level of activation of different items after
cueing with a position that determines retrieval accuracy,
not their absolute level. This means that as long as the
relative levels of activation each item receives when cued for
retrieval remains the same, their absolute level can assume any
value without changing the model’s behavior. Because the
activation levels of items at retrieval is determined by the
connection weights between position layer and item layer, this
means that as long as the relative connection weights do not
change, their absolute values do not matter. How, then, can
decay, which reduces the absolute strength of connection
weights, be responsible for forgetting in TBRS0?

The answer is that decay plays an important role in
causing forgetting, even in the absence of a threshold, but it
can play this role only in collusion with other processes.
One such process is the temporally staggered encoding of
items. When items are encoded at different times, decay
creates differences in strength between items: Earlier items
decay for longer time than later items. Without refreshing,
earlier items end up weaker than later items, creating a
recency gradient of strength. When a list needs to be
recalled in forward order, a recency gradient is unfortunate
because later list items tend to intrude when earlier list
items are cued for recall. To counteract the trend towards a
recency gradient of strength, the cognitive system can
engage in refreshing. Cumulative refreshing preferentially
boosts the list-initial items, thus preventing them from
falling behind. Refreshing evens out the relative strength of
items to some degree, but not perfectly, because there is no
omniscient homunculus that can direct refreshing precisely
to the weakest items at any moment and boost them just
enough for them to catch up. Rather, refreshing proceeds
according to a constant plan – cumulative refreshing in
forward order in our instantiation – regardless of the
“needs” of individual items. As a consequence, refreshing
ameliorates the gross unevenness between earlier and later
items that arises from decay, but at the same time creates

uneven memory strength itself: Some items get refreshed
more often than others. Because refreshing starts with the
first item, the list-initial items tend to get more refreshing
than later ones, thus creating a primacy gradient on
strength. The recency gradient arising from decay and the
primacy gradient arising from cumulative refreshing to-
gether give rise to the U-shaped serial position curve that is
typical for serial recall. Items in the middle of the list are
recalled worse than those at the beginning and the end – not
because they are too weak to be retrieved, but because they
often lose the competition for retrieval to other items that
are stronger. In the majority of cases, the stronger
competitors are later list items, which are thus recalled too
early, whereas earlier list items are typically suppressed
after having been recalled themselves. Only after a failure
to recall an earlier list item can that item become a strong
competitor for recall of a later list item.

To further understand the behavior of the model’s core
properties, we systematically explored the parameter space.
The most interesting results of this effort are summarized in
Appendix B. Within the region of parameter space
explored, we did not find a combination of parameter
values that approximates the benchmark findings as well as,
or better than, the values we used for Simulations 1 and 3.
We are confident that, at least within the range of parameter
values that we explored, there is no set of substantially
different parameter values with which TBRS0 (and TBRS*)
can reproduce the benchmark findings equally accurately.

Having analyzed the core properties of the model’s
architecture, we next turn to applications of our full model,
the TBRS*.

Applications

The following three simulations apply TBRS* to two
experiments with the complex span paradigm and to a
related paradigm, the Brown-Peterson task.

Simulation 4: An application to the development
of working memory

Simulation 4 applies TBRS* to a recent experiment of
Barrouillet et al. (2009). Their first experiment tested
children at four age groups (8, 10, 12, and 14 years) on a
complex span task in which participants had to remember
letters and read aloud digits. Cognitive load was varied by
presenting the digits at a pace of 0.4, 0.8, 1.2, or 2 digits per
second. Span was found to decline approximately linearly
with increasing cognitive load in all age groups, and the
slope of the cognitive load function was steeper in older
children. Barrouillet et al. took the age difference in slope
as evidence that younger children did not refresh memory
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as efficiently as older children, therefore taking less
advantage of the free time periods at low loads. In the
second experiment, Barrouillet et al. (2009) equated
cognitive load between two age groups (8 and 14 years)
by first measuring the average time for reading aloud a digit
(622 and 489 ms in younger and older children, respec-
tively) and then testing complex span with paces for the
digit-reading component adapted to each age group’s speed
of digit reading. That is, three levels of cognitive load were
created by presenting digits for once, twice, or four times
the average digit-reading time for the child’s age group.
Barrouillet et al. (2009) assumed that the digit reading times
reflect the times during which the attentional mechanism is
engaged by digit reading. It follows that both age groups
worked at cognitive-load levels of 1, 0.5, and 0.25.

With cognitive load equated, the older children still had
higher spans than the younger children, but the slopes of
their cognitive load functions were no longer significantly
different. The authors concluded that age differences in the
rate of refreshing, as reflected in the speed of digit reading,
account for part but not all of the age differences in
complex span performance. The remaining age differences
after equating cognitive load must be attributed to another
factor. Barrouillet et al. (2009) eventually identified four
variables that they held responsible for developmental
changes in working memory: rate of processing (i.e., reading
digits), rate of refreshing, speed of decay, and attentional
capacity. The latter is assumed to determine the strength of
encoding of items, as well as the strength of refreshing.

Simulation 4 instantiated Experiment 2 of Barrouillet et
al. (2009). We represented age differences as follows:
Differences in processing rate were reflected in the measure
of digit reading speed that determined the pace of digit reading
for each age group, so we assume that the mean operation
duration for the older children was 0.489 s, and for younger
children, 0.622 s; these values were translated into the
appropriate processing rates by Eq. 8a. Refreshing rate is
reflected in parameter R and decay rate in parameter D. The
strength of encoding is controlled by the encoding criterion
τE. Therefore, we concentrated our efforts to reproduce the
data on variations of these three parameters: We obtained
good results, shown in the top panel of Fig. 19, with values
of D = 0.5, and τE = 0.5 for the younger children, and with
D = 0.4, and τE = 0.55 for the older children. Surprisingly,
reducing R as a function of age turned out to be unnecessary
for obtaining a good fit, and therefore we left R at its default
value of 6.

One interesting outcome of this simulation is the fact
that the refreshing rate was constant between age groups,
which is at odds with the conclusion of the verbal
theorizing offered by Barrouillet et al. (2009). To delineate
that conflict, it must be borne in mind that the parameter R
affects the refreshing rates but not the rates of carrying out

the digit-reading task—because the processing rate for
operations, Rop, is determined solely by the independently
measured processing times (see the earlier discussion
surrounding Eq. 8a). Thus, even though our simulation
kept R constant, it allowed for age-dependent processing
rates, similar to Barrouillet et al. (2009). However, unlike
Barrouillet et al., our simulation showed that refreshing
rates need not change with age—only the processing rate,
the decay rate and the strength of encoding must be
assumed to be age dependent.

We conclude from this analysis that Barrouillet et al.
(2009) identified the correct variables that need to be
manipulated to explain their data – with one exception:
contrary to their assumption, the data of their Experiment 2
do not compel the conclusion that refreshing rate differs
between age groups.3

It does not follow from our modeling that refreshing rate
remains invariant across age. Other findings need to be
taken into account before one might reach that conclusion.
Instead, what our simulations show is that the data of
Experiment 2 of Barrouillet et al. (2009) are by themselves
insufficient to conclude that refreshing speed changes
across age, because they can be fit by the model just as
well without assuming such change. It follows that the issue
as to whether refreshing rate changes with age or is age-
invariant remains open.

3 Our conclusions about the development of working memory come
with a caveat: Barrouillet et al. (2009) did not report how often
children omitted reading a digit in their Experiment 2. If that omission
rate is non-negligible, the actual cognitive load would be lower than
their estimate that we used for the simulations.
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Simulations 5 and 6: Cognitive load in the Brown-Peterson
paradigm

So far we have looked at how the model behaves in the
complex span paradigm for which the TBRS was initially
developed. Here we investigate how TBRS* applies to a
related paradigm, the Brown-Peterson paradigm (J. Brown,
1958; Peterson & Peterson, 1959). The Brown-Peterson
paradigm is similar to complex span in that it combines
memory of short lists—typically no more than three letters or
words—with a period of distractor activity—typically count-
ing backwards aloud by threes from a random three-digit
number. The main difference is that in the Brown-Peterson
task the distractor activity consists of a single burst that
follows presentation of the whole list. For three-item lists, the
typical Brown-Peterson result consists of initially rapid
forgetting as the distractor period is increased (to approxi-
mately 10 s), followed by a leveling off and a reduced
forgetting rate until asymptote is reached at around 15-18 s.

It is plausible to assume that decay and refreshing
operate in the Brown-Peterson paradigm in the same way as
in complex span; indeed, recent research by Barrouillet and
colleagues has used variants of the Brown-Peterson
paradigm (Liefooghe, Barrouillet, Vandierendonck, &
Camos, 2008; Vergauwe et al., 2009). Therefore, Simula-
tion 5 first examines those existing data before Simulation 6
generates new predictions from TBRS* for a broader
examination of the Brown-Peterson paradigm.

Simulation 5 sought to model the results of Experiment 4 of
Liefooghe et al. (2008). In their study, subjects studied lists of
4, 6, or 8 consonants (for 1.8 s each). Presentation of the list
was followed by eight processing stimuli (for 1.2 s each).
Each processing stimulus involved a single digit that had to be
classified either by magnitude (less than or greater than 5) or
parity (odd or even), as cued by the color in which the digit
was presented. Cognitive load was manipulated in two ways:
by varying the number of task switches (from parity to
magnitude or vice versa) within the sequence of 8 stimuli or
by physically degrading the stimuli to impair identification.
Liefooghe et al. argued that both manipulations increase the
duration of attentional capture. The results of the study are
shown in Table 5 together with the predictions obtained from
TBRS*. The simulation instantiated the methodology of
Liefooghe et al. by presenting all memoranda in a row before
administering the processing task, with the simulated opera-
tion duration being the average of the total processing times
reported by Liefooghe et al. for each experimental condition.

The table shows that TBRS* captured the main features
in the data with considerable quantitative precision. Note
that the decay rate (D) had to be lowered to .35 (from its
usual value of .5; see Table 3) for the model to be able to
capture the data. With that single change in parameter
values, TBRS* was able to accommodate the only study

known to us that manipulated cognitive load during the
retention interval (the study by Vergauwe et al., 2009, used
a related procedure but only presented a single item and
used recognition rather than recall.)

We next explored the behavior of TBRS in the Brown-
Peterson paradigm more broadly. Simulation 6 tested serial
recall of five items presented for 1.5 s each. Each list was
followed by 0, 1, 4, 8, or 16 distractor operations. The
number of operations was crossed with two levels of
operation duration (0.3 or 0.6 s) and three levels of free
time (0, 0.5, or 1 s) to generate six levels of cognitive load.
Figure 20 shows the results in the format commonly used to
present results from the Brown-Peterson paradigm. TBRS*
reproduced the standard forgetting curve: proportion correct
recall decreased as a function of number of distractors. The
bottom panel contains a thumbnail sketch of representative
data, taken from Murdock (1961). The slope of the
simulated forgetting curve is strongly modulated by
operation duration and free time, confirming a marked
effect of cognitive load. At the lowest level of load, the
model predicts no forgetting at all.

In summary, without introducing any further modifica-
tions, our instantiation of the TBRS can handle the existing
data concerning the role of cognitive load in the Brown-
Peterson paradigm, and it generates quite plausible predictions
for future research in this paradigm. Having shown the basic
feasibility and wide applicability of our instantiation of TBRS,
we conclude by discussing some data that clearly challenge
the basic assumptions of the theory.

Simulation 7: A challenge for the TBRS: constant
vs. changing distractors

Our final simulation addresses a challenge for the TBRS,
and for decay-based models of working memory in general.
This challenge arises from a series of experiments we
carried out to adjudicate between decay and interference as

Table 5 Data and predictions from TBRS* (Simulation 5) for
Experiment 4 of Liefooghe et al. (2008)

List length M

4 6 8

Data

Low-switch .93 .75 .62 .77

High-switch .90 .71 .56 .72

Low-switch degraded .91 .73 .54 .73

Predictions

Low-switch .92 .86 .63 .80

High-switch .91 .76 .57 .75

Low-switch degraded .90 .76 .56 .74
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causes of forgetting. We investigate whether and under
which conditions the TBRS can account for the results of
these experiments.

We used a complex span procedure in which partic-
ipants remembered lists of letters, and the processing task
consisted of speaking distractor words aloud. In the
original experiment, distractors were inserted between
recall attempts (Lewandowsky, Duncan, & Brown,
2004); in later experiments we also inserted distractor
words to follow each item during encoding, as in the
standard complex span paradigm (Oberauer & Lewan-
dowsky, 2008). When the distractor word was the same
throughout a trial, it made no difference for recall whether
that word was spoken once or three times after each item
during encoding. Likewise, the number of distractor words
preceding each item at retrieval had only a negligible
effect on memory (Lewandowsky et al., 2004; Oberauer &
Lewandowsky, 2008). In contrast, when the words were

all different, memory was worse with three distractors per
memory item than with a single distractor (Lewandowsky
et al., 2010a; Lewandowsky, Geiger, & Oberauer, 2008).
In other words, whether the number of operations affects
memory was modulated by the similarity between succes-
sive distractors that accompanied each item. This pattern
of effects is just as predicted from a model based on
interference, rather than decay, as the cause of forgetting,
namely the Serial-Order in a Box (SOB) model (Lew-
andowsky & Farrell, 2008). The findings are not easily
accommodated by the TBRS for two reasons. First, for the
reasons noted earlier (see the discussion surrounding
Fig. 7), at high levels of cognitive load TBRS predicts more
forgetting with more distractor operations, and this was not
observed when distractors were all identical, despite the fact
that the experiments implemented a high level of cognitive
load. Second, TBRS has no straightforward way of explaining
that the effect of number of distractors is modulated by the

Fig. 20 Model predictions for
the Brown-Peterson task at six
levels of cognitive load (Simu-
lation 6). The time for memory
restoration after each operation
is varied between panels, and
two different operation durations
are represented by the two
parameters in each panel. The
thumbnail insert in the bottom
panel shows typical behavioral
data for consonant trigrams as
memoranda (taken from
Murdock, 1961)
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similarity between distractors in a burst because TBRS does
not care about what is processed in a processing burst, only
how long it captures attention.

TBRS* might account for those findings by making
the additional assumption that speaking three different
words captures attention for a larger proportion of the
available time than speaking the same word three times
in a row. With Simulation 7 we applied TBRS* to the
four conditions of Experiment 3 in Lewandowsky et al.
(2010a): After each of five consonants of the memory
list, people had to read aloud (1) no words, (2) a single
word, which was the same across the whole trial, (3)
four times the same word, which again was the same for
all bursts within a trial, or (4) three different words,
chosen at random for every burst. Participants were
instructed to speak the words rapidly and without
pausing; as soon as they finished speaking, the experi-
menter triggered the next display. The mean times for
speaking all the words in a burst were 1.15 s for a single
word per burst, 2.45 s for four identical words, and
2.42 s for three different words.

For Simulation 7 we made the following assumptions
about how these times are divided up: At the beginning of
each burst, attention is captured for 0.4 s to switch from
encoding a letter to reading words; this estimate is based
on unpublished experiments from our laboratory that
provide an estimate for switching costs between encoding
and processing tasks in a complex span paradigm. In
agreement with Liefooghe et al. (2008), this task-
switching component is assumed to occupy the attentional
bottleneck. Reading a word, preparing the speech plan for
it, and initiating speech is assumed to capture attention for
0.3 s per word for a new word.4 For repeated words we
assumed a reduced duration of attentional capture. After some
exploration we found that the most extreme assumption—
namely, that repeated words do not capture attention at all—
results in the best approximation of the mean accuracies of the
four conditions; we therefore set operation duration (ta) for
repeated words to zero.

The resulting time schedule for simulation of the
experimental conditions is as follows: In the single-
distractor condition, 0.7 s of the 1.15 s measured duration
is needed for task switching and word reading, this leaves
1.15 – (0.4 + 0.3) = 0.45 s during which the word is
spoken while attention is free to refresh memory items.
We assume that the same time parameters apply to the first

word of the multiple-word bursts. For the constant
distractor condition, this means that speaking the first
word takes 1.15 s (of which 0.45 s are free time available
for refreshing), leaving 2.45 – 1.15 = 1.30 s for speaking
the remaining three words. Because repeated words do not
engage the bottleneck, this time is assumed to be entirely
free for refreshing. In the changing-distractor condition we
again assigned 1.15 s to speaking of the first word, of
which 0.45 s are free time. The remaining 1.27 s are
evenly divided between the remaining two words, so that
for each word there were 0.3 s during which the bottleneck
is occupied, followed by 0.34 s of free time during which
memory items can be refreshed.

Simulation 7 used the same parameter as Simulation 1,
with the exception of the noise parameter (σ), which we
raised to 0.05 to move overall accuracy into the range of
the empirical data. The results are shown in the top panel
of Fig. 21; the bottom panel shows the experimental data.
At the level of main effects, TBRS* successfully predicts
the relative difficulty of the four conditions: Predicted
performance is best for the control condition without
distractors, and much worse for all three conditions with
distractors. Memory with four identical distractors is
hardly distinguishable from overall memory with a single
distractor. With three changing distractors performance is
predicted to be worst.

However, when the results are considered at the level
of serial position, the predictions differ considerably
from the data. TBRS* predicts that the manipulations of
distractor bursts strongly interact with serial position.
The first list position is predicted to be largely immune
to distractor activity, and the distractor effects increase
toward the end of the list. No such interaction was
apparent in the experimental data. The reason for the
predicted interaction is the cumulative refreshing sched-
ule. Because refreshing starts over at the first list item
after every interruption, the first list item is guaranteed to
be refreshed whenever there is any amount of free time,
but items later in a list have an increasingly smaller
chance of being refreshed before the next interruption.
This analysis raises the question whether a different
refreshing schedule could eliminate the interaction of the
distractor manipulation with serial position. We re-ran
the simulation with the variant of cumulative refreshing
that continues after each operation and jumps back to the
start of the list only after a new item is encoded. This
was the only other refreshing scheme that we found to
generate reasonable predictions of the benchmark find-
ings. With this refreshing scheme, the predictions were
largely the same as those in Fig. 21, with the exception
that a recency effect was also obtained for the different-
distractor condition, thus rendering overall accuracy in
that condition very close to that of the identical-distractor

4 These times for attentional capture by each new word include the
costs of switching away from word reading to refreshing, and back
from refreshing to word reading; we have no empirical estimates for
these switching costs, and we assume here without further justification
that they are comparatively short.
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condition. The model still predicted a strong interaction of
distractor condition with serial position, with hardly any
distractor effect on the first position.

In sum, Simulation 7 has shown that, with some
auxiliary assumptions about the engagement of the atten-
tional bottleneck during distractor articulation, TBRS* can
meet the challenge raised by the findings of Lewandowsky
et al. (2010a) at an aggregate level of analysis; that is, at the
level of mean performance in each condition. However, as
soon as the serial position curves are also considered, the

misfit between the model’s predictions and the data becomes
apparent irrespective of the particular refreshing schedule
being used. Although the mismatch between data and
predictions challenges the instantiation just presented, it also
enhances our confidence about the theory’s testability.

It remains for future research to examine the plausibility
of the added assumptions that are necessary for TBRS* to
handle the data at the level of overall accuracy. The
assumption we made here, that repeated utterance of the
same word does not recruit the attentional bottleneck at all,
contradicts the assumption we had to make in Simulation 2,
where repeated utterance of “ba” was assumed to capture
attention for about 200 ms every time. At present, we have
no independent estimate of the duration of bottleneck
engagement during articulation; this is an issue in need of
empirical clarification.

General discussion

We presented a computational model of memory performance
in the complex span paradigm and related tasks. The model
instantiates the assumptions of the TBRS, namely, that
memory representations inexorably decay unless refreshed
by an attentional bottleneck and that the same bottleneck is
also required to perform the processing task. To our
knowledge, this represents the first computational model
explaining a broad set of benchmark findings with the complex
span task, a paradigm central to most working-memory
research. Before we discuss the theoretical implications of
our work, we briefly review the limitations of our model.

Limitations

The most important limitation of TBRS* is that, by using
localist representations, it does not specify similarity
relations between the memoranda. It follows that TBRS*
cannot handle any of the similarity effects that are known to
occur in short term and working memory. This limitation
has several ramifications.

We have already shown that TBRS* has difficulty with
data that reveal an effect of similarity between distractors:
Lewandowsky et al. (2010a) showed that increasing the
number of distractors in between study items causes
additional forgetting only when each distractor is novel;
that is, when distractors are dissimilar from each other.
When distractors are identical, no effect of the number of
distractors is observed. TBRS* could handle those effects at
the aggregate level only by making auxiliary assumptions,
namely that articulation of an identical word captures
attention for a shorter duration than articulation of a novel
word. Even then, the data of Lewandowsky et al. (2010a)
remain a challenge for TBRS* because it fails to predict the
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correct pattern of interference effects across serial position.
It remains to be seen whether introducing a representation
that captures inter-item similarity to the model enables a
better approximation to those data.

A proper representation of inter-item similarities is also
necessary to address the effects of phonological similarity
within the list (i.e., among memoranda), which are
observed in both simple serial recall and complex span
(Tehan, Hendry, & Kocinski, 2001), and the effects of
similarity between distractors and memoranda. Concerning
the latter, one recent study that used a complex span
paradigm found that similarity between memoranda and
distractors had little, if any, effect on recall performance
(Oberauer, 2009). Whatever small effects were present in the
data resulted from feature overlap rather than similarity—
that is, if each distractor shared a phonological feature of the
preceding memorandum (without however being phonolog-
ically similar to it), then recall was slightly impaired. It
remains to be seen how those effects can be accommodated;
at present, it would be premature to explore potential
alternatives within TBRS* because the verbal theory has to
date remained mute on any matters relating to similarity.

Another limitation of TBRS* is that it only incorporates
one refreshing mechanism. Recently, the verbal version of
the TBRS has been extended to incorporate another
mechanism by which memory can be restored, namely
conventional articulatory rehearsal. Camos, Lagner, and
Barrouillet (2009) argued that both types of restoration
mechanisms operate in the complex span in an additive and
independent manner.

Relationship to other theories

Before we turn to the implications of our modeling, we
briefly place our work into a broader theoretical and
empirical context. TBRS is intended as a theory of working
memory, with rapidly decaying memory traces that support
only temporary maintenance, as opposed to much more
permanent long-term memory. At the same time, it must be
noted that the complex span task shares a number of
features with the continuous distractor task that has been
commonly regarded as reflecting recall from long-term
memory (Bjork & Whitten, 1974). In both tasks, memoranda
are separated by distracting activity, and they thus both
involve the executive control processes required for task
switching. One difference between the paradigms is that the
continuous distractor paradigm requests free rather than serial
recall, but there have been several recent suggestions that free
recall and serial recall are in many regards more similar than
had been commonly assumed (Bhatarah, Ward, Smith, &
Hayes, 2009; Bhatarah, Ward, & Tan, 2008).

It is not surprising, therefore, that TBRS* also shares
theoretical features in common with theories in the long-

term memory arena. For example, the notion of temporal-
context driven retrieval is shared by several theories in
long-term memory, such as the Temporal Context Model
(Howard, Fotedar, Datey, & Hasselmo, 2005; Howard &
Kahana, 2002) and the SAM model (Gillund & Shiffrin,
1984; Mensink & Raaijmakers, 1988) In the two-store
model of Davelaar, Goshen-Gottstein, Ashkenazi, Haar-
mann, and Usher (2005), a context representation is used
for the long-term store, but not for the short-term buffer,
which is based entirely on temporary activation of
representations. As we detail in Appendix A, we have
attempted an implementation of the TBRS in terms of an
activation-based buffer that maintains serial order through a
primacy gradient, but that attempt failed for principled
reasons. Therefore, forming content-context associations
appears to be a necessary feature of a successful imple-
mentation of the TBRS model for complex span. If the
distinction between short-term or working memory on the
one hand and long-term memory on the other is cast in
terms of temporary activation versus associative learning,
as in the model of Davelaar et al. (2005) and many classical
dual-store theories (Atkinson & Shiffrin, 1968; Gillund &
Shiffrin, 1984), then TBRS* looks more like the long-term
than the short-term store.

There are, however, also models of short-term memory
utilizing content-context associations to maintain serial
order (Burgess & Hitch, 1999; Henson, 1998b). TBRS*
can be interpreted as a model in that tradition. The
distinction between working and long-term memory could
then be seen as the difference between associations that can
be formed rapidly and decay rapidly, and others that require
more incremental learning and are more permanent, like the
“fast weights” and “slow weights” in the model of Burgess
and Hitch (1999).

Theoretical implications

The implications of our work are readily summarized. We
have shown that there is at least one computational model of
the TBRS that “works” in that it handles the core data on
which the theory is based: Our model (1) generates roughly
linear span-over-load functions; (2) produces only a negligible
effect when the number of operations is increased from 4 to 8,
(3) produces serial-position curves, transposition gradients,
and item error patterns in good agreement with the data. In
addition, we showed that TBRS* can handle some develop-
mental data reported byBarrouillet et al. (2009), and data with
the Brown-Peterson paradigm by Liefooghe et al. (2008),
suggesting that our instantiation has considerable breadth.
We identified some limits to that breadth when we applied
TBRS* to recent experiments that manipulated the nature of
intra-list distractors (Lewandowsky et al., 2010a) and found
that it could handle the data only with some auxiliary
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assumptions and then only at an aggregate level, without
being able to reproduce the pattern of serial position effects.

What can we learn from our efforts? First, we learned
something about the TBRS theory, and more generally about
theories invoking decay and rehearsal or refreshing as core
mechanisms of working memory. Implementing a theory as a
computational model is an investigation of what the assump-
tions of the theory imply. It is by no means guaranteed that the
theory, when implemented as a model, behaves as advertised.
The TBRS largely does, with one exception: At high levels of
cognitive load the model necessarily predicts worse recall
when the number of distractors is increased from one to a few
(though the effect eventually levels off after several distrac-
tors). Thus, the cognitive load equation of Barrouillet et al.
(2004) is a good approximation to what the assumptions of
the TBRS imply, but it misses at least one detail. Our
implementation of TBRS offers a tool to generate more
adequate and more detailed predictions.

Second, we learned that in the context of a model of serial
recall, decay operates in a way very different from common
intuition. Forgetting is not simply a result of representations
decaying below a threshold. Rather, recall accuracy is
determined by both absolute and relative memory strength
after cueing, which in turn results from the complex interplay
of decay with sequential encoding, refreshing, and retrieval.
This insight should be a warning to those who are attracted to
decay-based theories because they appear simple.

Third, we discovered something about the representations
that are required to maintain order information in working
memory. We showed that a primacy gradient is inadequate
(see Appendix A) and that positional markers must be used
to represent order. This outcome is consonant with previous
results (e.g., Farrell & Lewandowsky, 2004), and it provides
a general constraint on other possible models of complex
span performance. Our analysis in Appendix A applies not
only to the TBRS, but to any model that combines a primacy
gradient with the presence of rehearsal or refreshing.

Fourth, we discovered that only some, but by no means
all, schedules of rehearsal or refreshing provide the benefits
to memory that are promised by numerous verbal models,
including the TBRS. This outcome has considerable
implications beyond the complex span data discussed here,
and it extends an earlier analysis (Oberauer & Lewandowsky,
2008) that likewise found rehearsal to be surprisingly
ineffective in many circumstances. Skepticism may therefore
be advisable when verbal theories purport to explain
phenomena via rehearsal; this explanation may or may not
work when implemented in detail.

In this article, we showed that TBRS* can handle many
existing results, without however providing quantitative fits
to the data. We believe that a quantitative evaluation of
TBRS* would be premature at this point. A quantitative
evaluation of TBRS* must await the development of

competing quantitative theories. At the moment, those
alternative theories are still under development; for exam-
ple, the SOB model (Farrell & Lewandowsky, 2002), is
currently being extended to handle results from the
complex span paradigm. It is only once those promising
beginnings have turned into robust theories that a quanti-
tative assessment of TBRS* becomes meaningful—indeed,
it then becomes mandatory.

Conclusion and outlook

Can we now safely conclude that performance in the
complex span task arises from the balance of decay and
rehearsal, exactly as predicted by the TBRS theory? Not
necessarily: The existence of TBRS* is a necessary
requirement for this to be the case, but it is far from
sufficient. In fact, we believe that one of its core
assumptions, namely that decay causes forgetting in
working memory, is wrong (Lewandowsky, Oberauer, &
Brown, 2009). But then, as George Box famously noted,
“all models are wrong, but some models are useful” (Box &
Draper, 1987, p. 424). We believe that the TBRS model of
Barrouillet and colleagues has already proven to be immense-
ly useful in motivating many insightful experiments with the
complex span paradigm and in providing a comparatively
precise theoretical formulation of the underlying processes.
Likewise, we believe that our computational implementation
of the TBRS model is a useful model because it represents a
first step toward concise modeling of the cognitive processes
in an important class of working-memory tasks.
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Appendix A: Why the TBRS Cannot Be Implemented
with a Primacy Gradient

A primacy gradient codes serial order by activating the
representations of list items at encoding to a decreasing
extent across serial positions. Recall in the order of
presentation is accomplished by competitive cueing: At
any point, the most active item is recalled and recall is
followed by response suppression, that is, deactivation of
the selected item. Thus, at the outset the first item is most
active and therefore is recalled before being suppressed.
The suppression renders the second list item the most active
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one (unless random noise interferes), such that the next
item chosen for recall is the second list item, and so on.

The reason why a primacy gradient is not suited for
representing order in the complex span paradigm is that it
places strong constraints on possible mechanisms of
rehearsal or refreshing. Page and Norris (1998) combined
a primacy gradient with the assumption of decay and
rehearsal in a model of short-term memory, the Primacy
Model. Although their description of rehearsal in the
Primacy Model is rather sketchy (for a critique see
Oberauer & Lewandowsky, 2008), it is the most explicit
published specification of rehearsal (or refreshing) in the
context of a primacy-gradient model. [Although Page and
Norris (1998) consider only articulatory rehearsal, the same
argument applies to attention-based refreshing.] Rehearsal
is assumed to be cumulative; that is, after each presented
item the system rehearses all items encoded so far in their
order of presentation. Rehearsal of each item consists of
retrieving it and encoding it again, thereby building a new
primacy gradient (i.e., activating localist representations of
the retrieved items in a second copy of the bank of units
representing the items). After the whole list presented so far
has been rehearsed, the new primacy gradient, which is
relatively fresh, replaces the old, decayed one.

This scheme is very constraining because items can be
rehearsed only if there is enough time to rehearse the whole
list encoded so far. Rehearsal of only part of the list is not
possible because it jeopardizes the integrity of the primacy
gradient. Imagine, for example, that the partial list ABCD
has been encoded. Activation decreases from A to D with
values 1, 0.9, 0.8, and 0.7, respectively (the numbers are
arbitrary). Over time this primacy gradient decays to
activation levels of about 0.8, 0.7, 0.6, and 0.5, respective-
ly. Assume that now a small time window opens that allows
rehearsing of just two items. Using cumulative rehearsal,
items A and B could be rehearsed. Following this partial
rehearsal, two options exist for the model. One option is
that a new primacy gradient is formed with items A and B
that replaces the old gradient – but then, items C and D are
lost. An alternative option is that rehearsal boosts the
activation level of items in the existing primacy gradient.
This assumption creates two problems. One is that rehearsal
of an item involves retrieval of that item, and in any
primacy-gradient based model, retrieval must be followed
by suppression of the retrieved item. Suppression of an
item, however, is the opposite of what rehearsal or
refreshing is meant to achieve. So the modeler faces a
dilemma: Either the retrieved item is suppressed, in which
case it cannot be refreshed, or the item’s activation is
boosted, in which case rehearsal can never move beyond
the first item because the second item cannot be retrieved.

Even if this problem could be overcome, refreshing by
boosting items in the existing primacy gradient leads to

another problem. Assume, again, that a small time window
allows refreshing of only the first two of four items, so that
the activation of A and B in the existing gradient is boosted,
while that of C and D continues to decay. Now the next
item E is presented, and the question arises how much it
should be activated. One option is to determine the
activation strength of E relative to the current activation
level of the first list item, so that E’s activation is what it
would be according to a standard primacy gradient that
originates from the current activation level—after a re-
hearsal boost—of the first item. However, in that case the
activation assigned to E would surpass the current
activation level of C and D—which have not been
rehearsed—and would therefore perturb the order coded
by the primacy gradient. The other option is to calculate the
activation level for E by continuing the gradient down from
the current activation level of the immediately preceding
non-rehearsed item, D. In that case, E would receive only
an activation of 0.3. This option would maintain the
primacy gradient, but at the cost that the weakest current
activation level sets a ceiling for the encoding of each
additional item, and that ceiling continues to decay.
Therefore, partial rehearsal or refreshing is ill suited to
effectively counteract decay.

This constraint poses a problem that is particularly
severe for the TBRS, which assumes a powerful refreshing
mechanism that uses even tiny temporal gaps in between
two processing steps for refreshing (see Appendix B for a
demonstration of how powerful refreshing must be). Under
conditions of even moderate cognitive load, the attentional
system must switch fairly often between working on the
processing task and refreshing, and the time spent on
refreshing between presentation of one item and the next
will rarely suffice to refresh more than two or three items.
Therefore, a primacy gradient based implementation of the
TBRS has the choice between two unattractive options.
Either it refreshes only when it has time to refresh the
whole list encoded at each point in time, in which case it
will hardly have enough time to refresh at all once more
than the first two or three items have been encoded. Or else
the system engages in partial refreshing, which is fairly
ineffective for the reasons outlined above.

We implemented the TBRS with a primacy gradient,
exploring several refreshing mechanisms and refreshing
schedules, but were unable to obtain any reasonable
approximation to the data pattern implied by the four key
findings mentioned above. We therefore turned our atten-
tion to positional coding.

Appendix B: Exploring the Parameter Space of TBRS0

In a series of simulations using the design of Simulations 1
and 3, we varied the values of four parameters that, in our
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experience with the model, have the largest impact on its
predictions. We completely crossed three levels of decay
rate D (0.3, 0.5, 0.7), three levels of mean processing rate R
(4, 6, 8), three levels of standard deviation of processing
rate s (0.5, 1, 2), and five levels of the duration of a
refreshing step Tr (50, 80, 100, 150, 200 ms). The results
can be summarized as follows.

Unsurprisingly, increasing decay reduces overall perfor-
mance. Increasing mean processing rate improved overall
performance. Both manipulations changed the pattern of
effects of cognitive load and number of operations on
performance relatively little; they mainly shifted the pattern

up and down. One noticeable change in the data pattern was
that with increasing decay rate, and also with increasing
processing rate, the non-monotonicity in the performance-
over-load curve became more exaggerated. This can be
seen in Fig. 22, which shows span-over-load plots for two
new combinations of D and R that generate roughly the
same overall level of performance as the values of
Simulations 1 and 3 (which both used D = 0.5, R = 6).
With a lower decay rate and a lower processing rate, as
shown in the top panel of Fig. 22, the non-monotonicity is
smoothened to some degree, whereas it becomes more
pronounced when decay rate and processing rate are both
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Fig. 22 Span-over-load plots for TBRS0 with decay rate D = 0.3 and
encoding rate R = 4 (top panel), and with D = 0.7 and R = 8 (bottom
panel); all other parameters as in Simulation 3
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Fig. 23 Span-over-load plots for TBRS0 with standard deviation of
rate s = 2 (top panel) and with refreshing duration = 150 ms (bottom
panel); all other parameters as in Simulation 3
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increased, as shown in the bottom panel. The reason for the
increased non-monotonicity is that a high decay rate cannot be
fully compensated by a high processing rate (implying a
high rate of refreshing). As decay rate is increased, items
become increasingly likely to become irretrievable, and if
the correct item cannot be retrieved, no refreshing, no
matter how strong, can save it from obliteration. This is
why in the bottom panel of Fig. 22 span values are
particularly low at points on the cognitive load axis that reflect
long operation durations, which imply long periods of decay.

A monotonic span-over-load function can be regarded as
a desirable feature because in none of the experiments
manipulating cognitive load so far has any systematic
deviation from monotonicity been observed. This consid-
eration makes a combination of relatively small values for
D and R attractive. Against it, however, stands the
observation that with a small decay rate and a slow
processing rate the effect of the number of operations
increases. This is visible in the comparison between the two
panels of Fig. 22, and between the top panel of Fig. 22 and
Fig. 17. The reason for this observation is that the
equilibrium between decay and refreshing is reached faster
when decay rate and refreshing rate are both large. Rapid
decay combined with strong refreshing means that memory
strength moves quickly down (during an operation) and up
again (during free time used for refreshing), thus approach-
ing the equilibrium quickly, after relatively few operations,
so that additional operations after the first one or two have
little effect. With slow decay and weak refreshing, in
contrast, the strength level approaches equilibrium in a
more leisurely pace, so that increasing the number of
operations has an effect even beyond the first one or two
operations. This is illustrated in the bottom panels of Fig. 7.

A small effect of the number of operations is a desirable
feature of the model because it is supported by the data
(Barrouillet et al., 2004; Oberauer & Lewandowsky, 2008),
and this militates against the choice of small values for D
and R. We believe that the values chosen for Simulations 1 and
3 are a good compromise between avoiding non-monotonicity
in the performance-over-load curve and minimizing the effect
of number of operations predicted by the model.

We next look at the effect of varying the standard
deviation of processing rate. Decreasing s to 0.5 had hardly
any discernable effect, apart from a small increase in overall
performance. The effect of an increase of s to 2 is shown in
the top panel of Fig. 23. In addition to dragging down
performance, it led again to an exaggeration of the non-
monotonicity in the span-over-load curve. The reason for
this is that with high variability in R, some operation
durations are bound to be very long, which again increases
the risk for items to become irrecoverable, and this happens
particularly often when mean operation duration is long,

thus affecting particularly cognitive load levels that
combine long operation durations with long free times.
We conclude that, whereas values of s below 1 are viable,
values much above 1 result in undesirable model behavior.

The bottom panel of Fig. 23 shows the effect of
increasing the duration of individual refreshing steps to
150 ms. Relative to the value chosen in Simulation 1
(80 ms), increasing this parameter results in three changes:
First, performance overall suffers; second, we observed
once again an exaggeration of non-monotonicity, because
performance suffers particularly for those levels of cogni-
tive load that reflect long operations followed by long free-
time periods. Third, the span-over-load curve flattens
because performance is particularly depressed at low levels
of cognitive load. All three effects can be traced to a
weakening of the benefit of refreshing: As the duration of
refreshing steps increases, the benefit of free time becomes
smaller. The reason for this is that, as the duration of each
refreshing step increases, refreshing is distributed less
evenly across all items. Within a given window of free
time, fewer items can be refreshed, and these items receive
relatively strong boosts of memory strength because the
amount of boosting is a function of time spent on re-
encoding a refreshed item. As a consequence, memory
strength becomes increasingly uneven across items as
refreshing is concentrated on a smaller subset of items
(primarily those at the beginning of the list). We conclude
that it is essential for the TBRS to work that refreshing is
assumed to be a very rapid process. Whereas it would be
difficult to assume such a fast rate for articulatory rehearsal,
it is conceivable that items are refreshed at that rate by
deploying attention to them.

We conclude from these results that the combination of
parameter values chosen for Simulations 1 and 3 is not only
sufficient for generating predictions in line with existing
data, but also – within certain bounds – necessary for a
good approximation to the existing data.
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