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Abstract Connexins are members of a large family of
transmembrane proteins that form hemichannels or gap
junctions. These channels allow the exchange of ions and
small metabolites between the cytosol and extracellular
space or between neighboring cells. Connexins are impor-
tant in vascular physiology; they support radial and
longitudinal cell-to-cell communication in the vascular
wall. Four connexins are expressed in the vascular wall:
Cx37, Cx40, Cx43, and Cx45. Their expression is not
uniform in all blood vessels and varies with vascular
territory and species. Significant changes in the expression
pattern of vascular connexins have been described during
the development of atherosclerosis, a progressive inflam-
matory disease. In this review, we provide an overview of

(1) the tools used to study the involvement of connexins in
atherosclerosis, (2) the participation of connexins in
atherogenesis, (3) the increasing interest of a polymorphism
in the human connexin37 gene as marker of cardiovascular
disease, and (4) the possible therapeutic implications of
connexins.
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ADP Adenosine diphosphate
AMI Acute myocardial infarction
ApoE Apolipoprotein E
ATP Adenosine triphosphate
CAC Carotid artery compliance
CAD Coronary artery disease
CL Cytoplasmic loop
CT COOH-termini
Cx Connexin
ECs Endothelial cells
EL Extracellular loop
ECM Extracellular matrix
FMD Flow-mediated dilatation
GFP Green fluorescent protein
GJIC Gap junctional intercellular communication
HMG-CoA 3-Hydroxy-3-methylglutaryl-CoA
IMT Intima-media thickness
LDLR Low density lipoprotein receptor
MC Monocytes/macrophages
NT NH2-termini
PCI Percutaneous coronary intervention
SMCs Smooth muscle cells
TNF-alpha Tumor necrosis factor-alpha
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Introduction

Atherosclerosis is a progressive disease characterized by
accumulation of lipids, macrophages, T lymphocytes, and
smooth muscle cells (SMCs) in large- and medium-sized
arteries. Clinical and experimental observations have led to
the notion that the initiating step of this disease is an
endothelial dysfunction [1]. This dysfunction leads to an
increase in the expression of various cell adhesion
molecules and to the secretion of chemoattractants. As a
consequence, monocytes transmigrate between endothelial
cells (ECs) to infiltrate into the arterial intima where they
propagate and mature. These intimal macrophages ingest
lipids and transform into macrophage foam cells, forming
the earliest atherosclerotic plaque. This initial atheroscle-
rotic lesion is then covered by SMCs that migrate from the
media to the intima. In the intima, SMCs proliferate and
secrete extracellular matrix (ECM) components that partic-
ipate to the formation of a strong fibrous cap. In the
advanced atherosclerotic plaque, foam cells die and release
lipids that form the necrotic core of the lesion. In time, the
fibrous cap might rupture inducing the formation of a
thrombus at the site of the lesion [2, 3]. This process is
implicated in 60% of sudden death by thrombosis [4].

It is now well recognized that inflammation is central in
all stages of atherosclerosis [5, 6]. Similar to other
inflammatory diseases, paracrine intercellular communica-
tion involving cytokines, chemokines, and growth factors is
known to play an important role in the development of the
atherosclerotic lesions. In this review, we summarize the
evidence that another form of intercellular communication
involving connexins (Cx) might also be implicated in the
development of the disease.

Connexins, connexons, and gap junctions

Connexins

Connexins are members of a family consisting of 20
proteins in mice and 21 in humans. Cx genes are composed
of a 5′-untranslated exon, an intron of variable length, an
exon harboring the complete coding region, and the 3′-
untranslated exon [7]. In some cases, the untranslated exon
can be spliced. Two nomenclatures exist to distinguish the
different Cx. The first one is based on the molecular mass
deduced from their cDNA sequences (for example, the
protein with a molecular weight about 43 kDa is called
Cx43) The second one is based on sequence similarity and
length of the cytoplasmic loop (CL) and separates Cx in
four groups: alpha, beta, gamma, and delta (in this system,
Cx43 is named “alpha 1” because it has been the first alpha
Cx found) [8, 9]. As shown in Fig. 1, a Cx exhibits four

α-helical transmembrane domains (M1–M4), two extracel-
lular loops (EL1 and EL2) that are linked by two disulfide
bonds, a short CL, and cytoplasmic NH2- and COOH-
termini (NT and CT, respectively). The EL1 and EL2 have
highly conserved amino acid sequences and are involved in
docking and recognition of compatible Cx [10]. In contrast,
the CL is more variable. The CT is characteristic for each
Cx; it varies significantly in both length and composition.
This domain acts as a substrate for specific kinases or as a
partner for other proteins. As a consequence, this domain is
involved in the modulation of channel activity in response
to appropriate biochemical stimuli [11–14]. Cx work in
concert and may have some overlap in function, but the
function of one Cx can often not be replaced completely by
another Cx isoform [15–17].

Connexons

Cx are synthesized in the endoplasmic reticulum where
they form hexameric connexons. This process is completed
in the Golgi apparatus after which connexons traffic to the
plasma membrane (for reviews, see [10, 18]). The con-
nexon is named homomeric when made of identical Cx and
heteromeric when multiple Cx isoforms are involved.
During intracellular transit, connexons are associated with
microtubules to improve the efficiency of the delivery
process [19, 20]. During this process, connexons likely
remain in the closed configuration to avoid exchange
between cytosol and intracellular compartments.

Once integrated in the plasma membrane, the connexons
generally stay in a closed configuration under normal
conditions, but they may open upon different stimuli such
as removal of extracellular calcium, hypoxic or ischemic
stress, mechanical stimulation, and dephosphorylation
[21, 22]. These hemichannels allow the passage of ions
and small molecules (~1,000 Da) such as ATP or NAD+

between cytoplasm and extracellular space (Fig. 1). Such
exchanges are implicated in regulation of cell volume, in
paracrine or autocrine signaling, and activation of survival
pathways [23].

Gap junction intercellular channels

Once inserted in plasma membrane, connexons can
diffuse laterally and dock with another connexon from a
neighboring cell. This association between two connexons
occurs via noncovalent interactions between the extracel-
lular loops and permits the formation of a gap junction
intercellular channel. The channel is named homotypic if
connexons are identical and heterotypic if the two
connexons are different. These gap junction channels
allow the exchange of ions, small metabolites, second
messengers, linear peptides, or small silencing RNA
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between connected cells [23–25] (Fig. 1). Connexins have
a half-lives ranging from 1 to 5 h [25]. Gap junctional
intercellular communication (GJIC) allows not only for
fast coordinated activities such as contraction of cardiac
cells or transmission of neuronal signals at electrical
synapses but also for slower physiological processes such
as cell growth and development.

Tools to study connexins

Chimeric connexins

Chimeric connexins are Cx tagged at the CT with
different compounds like, for example, chemiluminescent
aequorin or green fluorescent protein (for reviews, see
[10, 26]). These protein reporters induce an increase of
the molecular mass of the Cx and may limit the flexibility
of the CT. However, these tags do generally not change
the trafficking characteristics of the proteins and do also
not inhibit the formation of gap junction channels.
Chimeric connexins have been used to visualize the
intracellular trafficking of Cx on their way to form gap
junctions.

Transfected cells

Transfection of cultured cell lines is often used to study gap
junction channel characteristics and possible functions of Cx.
In general, experiments are realized with communication-
incompetent HeLa cells [27], N2A cells [28], or SKHep1
cells [29] transfected with human or mouse Cx. In these cell
lines, specific permeability and charge selectivity of each
type of gap junction channel is conserved. In the case of the
study of atherosclerosis, Wong et al. [30] performed
transfection of H36.12j mouse peritoneal macrophage cell
line to prove the implication of Cx37 in monocytic cell
adhesion.

Transgenic mice

In vivo studies toward atherosclerosis are currently
performed by the use of two well-characterized mouse
models: the apolipoprotein E (ApoE−/−) knockout mice and
the low-density lipoprotein receptor knockout mice
(LDLR−/−). ApoE−/− mice present high plasma cholesterol
concentration (400 to 500 mg/dL) and develop spontane-
ously foam cell-rich depositions throughout the arterial tree
[31]. LDLR−/− mice have a lower increase of plasma
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Fig. 1 Schematic representation of connexin topology, a connexon,
and a gap junction channel. Connexins have four transmembrane
domains (M1, M2, M3, and M4), two extracellular loops (EL1 and
EL2), a cytoplasmic loop (CL), and cytoplasmic NH2- and COOH-
termini (NT and CT, respectively). Connexons or hemichannels are

formed by the association of six connexins. They mediate trans-
membranous exchange of ions and small metabolites. The associations
of connexons from two neighboring cells form gap junction channels.
They allow exchange of metabolites or second messengers up to 1-
kDa molecular mass between cells in contact
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cholesterol level (175 to 225 mg/dL) and they develop only
minimal atherosclerotic lesions in aortic roots when fed a
normal chow diet [32]. Upon feeding these mouse models
with a high-cholesterol diet, they both rapidly develop
advanced lesions throughout the vascular tree. Atheroscle-
rosis is also studied in Watanabe heritable hyperlipidemic
rabbit or in pigs. However, mice are preferred because they
can be interbred with other knockout mice to study the
effects of those specific molecules.

To date, 20 Cx have been identified in mice, and 18 Cx-
deficient mice exist [33]. An important problem with mice
knockout for vascular Cx is that these deletions are often
lethal. For example, Cx43−/− and Cx45−/− die in utero or
shortly after birth. Cx45 knockout mice display normal
vasculogenesis but subsequent transformation into mature
vessels is interrupted [34]. Cx43 knockout mice present a
swelling and a blockage of the right ventricular outflow
tract from the heart that lead to failure in pulmonary gas
exchange [35]. As a consequence, heterozygous Cx43 mice
have been used to study the implication of Cx43 in
atherosclerosis. Cx43+/− mice express 50% of the normal
Cx43 level [36]. Cx40−/− mouse are viable but sometimes
develop arrhythmias [37, 38]. Indeed, Cx40 is prominent in
the atrium and its lack leads to a slow conduction within the
atrium increasing the risk for atrial flutter. Furthermore, the
absence of Cx40 in the His-Purkinje system may lead to a
bundle branch block, preferably in the right bundle. In
addition, these mice are hypertensive [39]. Cx37−/− mouse
are viable as well and their heart function is normal, but
females are infertile [40]. Cx37 and Cx40 are co-expressed
in ECs. As a consequence, a double deletion of these Cx
induces embryonic lethality in these mice due to an
excessive dilation of blood vessels [41]. Gene deletion of
Cx in mice is frequently used to study disease processes;
however, the absence of one Cx may lead to a decreased or

increased expression of another Cx. Cx are differentially
expressed in different vascular cell types (see below), and
cell-specific Cx deletion may be used to study the
implication of the Cx in a particular cell type. For example,
the Cre-loxP system under the control of the Tie2 promoter
has been used to create mice in which Cx40 or Cx43 has
been deleted from the endothelium only [42–44].

Connexin antisense, blocking peptides, and enhancing
peptides

Different compounds such as heptanol, octanol, 18α-
glycyrrhetinic acid, carbonoxolone, or oleamide are known
to inhibit GJIC, but their actions are nonspecific [45–47].
As a consequence, specific peptides to block Cx have been
generated. These short peptides have a sequence homology
with the conserved extracellular loops of Cx, and they can
selectively inhibit the activity of one type of gap junction
channels in cells containing multiple Cx [48]. They have a
rapid and reversible mode of action, and they are nontoxic
for the cells (for review, see [49]). Initially, two blocking
peptides have been designed, Gap26 and Gap27,
corresponding respectively to the sequence of the first and
the second extracellular loop of Cx43 (Fig. 2). These
blocking peptides have been used in studies toward gap
junctional communication between ECs and SMCs and
between ECs and macrophages [50–52]. Derivatives of
these first blocking peptides have been created to be more
or less specific for Cx37 and Cx40 (Fig. 2). They are
efficient in both rodent and human cells, thus reflecting the
high degree of amino acid conservation in the extracellular
loops. In a study concerning atherosclerosis, blocking
peptides have been used to prove the implication of Cx37
in the adhesive property of macrophages [30]. Furthermore,
reducing conductivity of Cx43 channels with 43Gap26
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Fig. 2 Connexin-specific blocking peptides. Gap26 and Gap27 sequences correspond, respectively, to the sequence of the first and the second
extracellular loops (EL1 and EL2) of connexins. These synthetic peptides inhibit direct intercellular communication in a connexin-specific manner
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decreased the adhesion of neutrophils to ECs in vitro and
reduced neutrophil recruitment in a mouse model of acute
lung inflammation in vivo [53].

There is increasing attention for peptides that selectively
open gap junctions. Such peptides might be of particular
interest to treat cardiac arrhythmias [54]. More than a
decade ago, the first peptide enhancing gap junctional
communication (AAP10) has been identified [55, 56].
Stable analogs have been developed since then (ZP123,
rotigaptide), although the exact molecular target of AAP10-
derived peptides remains to be identified [57]. Moreover,
Shibayama et al. [58] identified by phage display a series of
RXP peptides capable of binding to the CT of Cx43. One of
these peptides, RXP-E, prevents heptanol- and acidosis-
induced closure of Cx43 gap junction channels in trans-
fected cells and neonatal cardiomyocytes [58, 59].

The function of connexins in tissues or cells is also
investigated using siRNA or antisense oligonucleotides. In
experiments toward skin repair, a Cx43 antisense has been
prepared in a gel and used in combination with various
types of skin lesion. The application of the Cx43 antisense
decreased inflammation, lessened scarring, and improved
wound closure [60, 61]. In a recent work, we tested Cx43
antisense to inhibit in vitro the dedifferentiation and
migration of SMCs, processes implicated in restenosis after
ballooning injury [62].

Connexins and gap junctions in healthy vessels

Vascular function is dependent on radial and longitudinal
cell-to-cell communication in the vascular wall [63, 64]. It
has been extensively reviewed how paracrine molecules
such as nitric oxide and prostaglandins secreted by ECs
control the vascular tone by their effects on SMCs [65, 66].
In addition, cell-to-cell communication via gap junctions
may also be implicated in the control of vascular function
[67, 68]. Homomeric and heteromeric channels and
homocellular and heterocellular gap junctions are described
in the vascular wall (EC–EC, SMC–SMC, EC–SMC gap
junctions) [64, 69, 70]. Four Cx are expressed in the
vascular wall: Cx37, Cx40, Cx43, and Cx45. Their
expression is not uniform in all blood vessels and varies
with vascular territory and species. Usually, Cx37 and Cx40
are co-expressed in ECs, whereas Cx43 and Cx45 are
present in SMCs (for a review, see [64]). Nevertheless,
Cx37 and Cx40 are also found in SMCs of small elastic or
resistance arteries or during development [71, 72], and
Cx43 is described in ECs at branch points of arteries [73].
The importance of vascular gap junctions has been
demonstrated by the fact that Cx deletion alters normal
vascular functioning (as described above). Thus, gap
junctions interconnecting neighboring ECs allow the spread

of signals along the vessel wall, which serve to coordinate
vessel behavior. For example, Cx provide the molecular
basis for ascending dilatations (i.e., conducted dilations) in
arterioles that are required for substantial increases in blood
flow during exercise [74, 75]. Among the vascular Cx
known to be expressed in ECs, Cx40 appears to play a
central role in the arterial conducted response [76, 77]. This
is supported by evidence showing that Cx40-deficient mice
display impaired conduction of vasodilatation along arterio-
les in mouse cremaster muscle. Of note, the effect of the
absence of one Cx on the expression of other Cx is unclear.
In a study on mouse aorta, deletion of Cx40 induced a
decrease of Cx37 in ECs, but an increase of Cx37 and Cx43
in the media [78]. In contrast, other investigators reported
that deletion of Cx40 was associated with upregulation and
redistribution of Cx37 in ECs [79]. Finally, the deletion of
Cx37 did not significantly modify the expression of Cx40
in the mouse aortic endothelium [30].

Thus, Cx and gap junctions are central in vascular
physiology. In addition, the expression of Cx is modified
and implicated in pathological situations such as diabetes,
hypertension, or atherosclerosis.

Connexins in atherosclerosis

As mentioned earlier, atherosclerosis is usually studied in
mouse deficient in ApoE−/− or for the LDLR−/− [80]. The
additional deletion of Cx37, Cx40, and Cx43 in these
atherosclerotic-susceptible mice permits to determine the
implication of each Cx in atherogenesis. Moreover, the use
of the Cre-LoxP system [81] allows for studying the
importance of Cx in specific cell types. As shown in
Fig. 3, significant changes in the expression pattern of
vascular Cx have been described during the formation of
atherosclerotic plaques (reviewed in [82]). Moreover, the
expression of Cx in vascular wall is influenced by
atherosclerotic risk factors, such as turbulent flow, hyper-
tension, and hypercholesterolemia, which act on ECs, on
SMC activation, and proliferation and on the inflammatory
process (for a review, see [64]). By affecting Cx expression,
these risk factors modify gap junction channel- or
hemichannel-mediated communication between cells and
influence the progression of atherosclerosis.

Connexin37

Cx37 is expressed in healthy ECs, but disappears from these
cells in the advanced atherosclerotic plaque [83]. A similar
observation has been reported in mice subjected to a high-
cholesterol diet for several months [84]. Moreover, Cx37
expression is found in macrophages in early and late
atheroma [83, 85]. Taking into account that ECs and
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monocytes/macrophages have central roles in atherogenesis,
Cx37 was expected to play a role during atherosclerotic
lesion development. Although Cx37−/− mice are infertile due
to the absence of ovulation [40], their vascular function is
normal [77] and they can be used to study atherosclerosis.

In a study performed in our laboratory, Cx37−/− mice
have been crossed with ApoE−/− mice and subjected to a
high-cholesterol diet for 10 weeks [30]. The deletion of
Cx37 accelerated atherosclerotic lesion development in
thoracic–abdominal aorta and in aortic sinus in comparison
with control (Cx37+/+ApoE−/−) mice. Thus, Cx37 appeared
to have a protective effect against atherosclerosis in
ApoE−/− mice. The initiating event in atherosclerosis is
endothelial dysfunction that leads to monocyte recruitment
at the site of the injury in response to chemotactic factors.
Monocytes adhere to the ECs, transmigrate across them,
and penetrate in the arterial intima where they proliferate,
mature, and accumulate lipids to finally progress into
macrophage foam cells. As Cx37 is expressed in ECs and
monocytes and gap junctions between ECs and leukocytes
have been demonstrated (for reviews, see [85, 86]), the role
of Cx37 in transmigration was then investigated. For this
purpose, fluorescent control and Cx37-deficient monocytes
or macrophages were introduced by adoptive transfer in
control and Cx37-deficient hypercholesterolemic mice, and
the number of fluorescent leukocytes within atherosclerotic

plaques was determined [30]. These experiments showed
that the deletion of Cx37 in monocytes/macrophages
increased the number of leukocytes in atherosclerotic
plaques. Interestingly, the presence or the absence of
Cx37 in ECs did not influence the transmigration of
leukocytes. Thus, the recruitment of leukocytes appeared
dependent on the presence of Cx37 in monocytes/macro-
phages rather than on the existence of gap junction between
these cells and ECs, or on intercellular communication
within the endothelium. Next, in vitro experiments showed
that the deletion of Cx37 in monocytes/macrophages
enhanced adhesion of these cells. Similar results were
obtained using α-glycyrrhetic acid and connexin blocking
peptides. Together, these results demonstrated the implica-
tion of functional hemichannels in the adhesion of
monocytes/macrophages during atherosclerotic plaque de-
velopment. Inflammation is mediated in part by extracellu-
lar purines (ATP, ADP, adenosine), and ATP is known to
pass through various types of gap junctions and hemi-
channels [87]. The absence of Cx37 or the inhibition of
Cx37 by blocking peptides reduced the release of ATP by
monocytes/macrophages and increased their adhesion [30].
The use of extracellular ATP scavenger confirmed this
result. We therefore proposed that Cx37 protects against
atherosclerosis by regulating ATP-dependent monocyte
adhesion [30].

Fig. 3 Evolution of connexin expression during atherosclerosis
progression. Atherosclerosis is a progressive vascular pathology
implicating endothelial cells (ECs), monocytes/macrophages (MCs),
and smooth muscle cells (SMCs). Four connexins are expressed in the

vascular wall. Cx37, Cx40, and Cx43 have dynamic expression
patterns in healthy vessels and during atherogenesis. Relatively little
information is available on Cx45
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Cx37 is also expressed in medial SMCs beneath
advanced atherosclerotic lesions in mice [83]. A similar
Cx37 expression pattern is observed in advanced athero-
sclerotic plaques in human carotid artery. The role of Cx37
in these SMCs remains to be established.

Connexin40

Similar to Cx37, Cx40 is present in ECs of healthy vessels,
and this Cx disappears from the endothelium covering
advanced atherosclerotic plaques [83]. Endothelial Cx40
expression and function is influenced by different factors
such as oxidative stress, prothrombotic molecules, pro-
inflammatory cytokines, and classic cardiovascular risk
factors [88]. Recent studies have shown that abrupt
reoxygenation following hypoxia reduces gap junctional
coupling between microvascular ECs of wild type but not
of Cx40-deficient mice. The reduction in GJIC involves a
protein kinase A-dependent pathway and reactive oxygen
species [89]. Hyperhomocysteinemia is associated with
impaired endothelial-dependent vasodilation and increased
risk of atherosclerosis and thrombosis. In a rat model of
hyperhomocysteinemia, a downregulation of Cx40 mRNA
is described [90]. Tumor necrosis factor alpha (TNF-alpha)
is a potent pro-inflammatory cytokine that activates ECs
during pathological situations. In human umbilical vein
endothelial cells, TNF-alpha treatment decreases Cx40 [91].
Furthermore, a recent study on streptozotocin diabetic mice
suggests that downregulation of Cx40 expression and the
resultant inhibition of GJIC contribute to coronary vascular
dysfunction in diabetes [92].

As mentioned earlier, Cx40-deficient mice are hyperten-
sive. This hypertension is, in part, due to the requirement of
Cx40 for longitudinal transmission of endothelium-
dependent vasodilator responses [76]. Moreover, blood
pressure is controlled by the renin–angiotensin–aldosteron
system. In the juxtaglomerular apparatus, Cx40 gap
junctions link the ECs of the afferent arteriole to the
renin-secreting cells. Two distinct studies have shown that
the deletion of Cx40 increases the number of renin-
secreting cells and enhances the renal production and
release of renin [93, 94]. The role of Cx40 in the renal
barosensor mechanism controlling renin synthesis and
secretion has been demonstrated with a pharmacological
gap junction blocker [94]. The hypertension observed in
mice with ubiquitous Cx40 deletion prevents an in vivo
study of the implication of Cx40 in atherosclerosis. To
avoid this deleterious effect, we have made atherosclerosis-
susceptible ApoE−/− mice with specific Cx40 deletion in
ECs. Indeed, these mice are not hypertensive and have a
normal heart rate [43]. Preliminary data indicate that the
EC-specific deletion of Cx40 induced increased atheroscle-
rotic plaque development compared to control mice [43].

These results suggest an atheroprotective role of Cx40, but
the mechanisms implicated remain to be investigated.

Connexin43

In healthy vessels, Cx43 is mostly expressed in SMCs.
Coronary arteries of hearts removed from patients under-
going cardiac transplantation show markedly increased
Cx43 expression in gap junctions between intimal SMCs
compared with undiseased vessels [95]. In advanced
atherosclerotic plaques, the intimal expression of Cx43
declines. In LDLR−/− mice fed a cholesterol-rich diet,
Cx43 increased in intimal SMCs in early atherosclerotic
lesions [83]. Cx43 expression was also shown in macro-
phage foam cells of mouse aorta and of human carotid
artery [83, 96], in ECs covering the shoulder region of
atherosclerotic lesions [83], and in ECs at branch points of
large arteries [73].

Atherosclerotic plaques are generally formed at branch
points or at curved areas of large arteries that are regions
associated with turbulent blood flow [97]. Oscillatory shear
stress induces a high and rapid increase of endothelial Cx43
expression [98]. The effects of unidirectional shear stress
on endothelial Cx43 expression are less clear. This shear
stress is associated with an increase or with no change in
Cx43 expression dependent on the experimental conditions
used [98, 99]. Increased hydrostatic pressure does not
modify the Cx43 level in ECs [98].

As previously mentioned, Cx43 knockout mice die in
utero or shortly after birth [35]. As a consequence, we have
studied the implication of Cx43 in the development of the
atherosclerotic plaques by interbreeding atherosclerotic-
susceptible LDLR−/− mice with heterozygous Cx43+/−

mice. The expression of Cx43 was reduced by half in
Cx43+/−mice [36]. Ten-week-old Cx43+/+ LDLR−/− and
Cx43+/−LDLR−/− mice were fed a cholesterol-rich diet for
14 weeks to evaluate the progression of atherosclerosis.
Cx43+/−LDLR−/− mice showed reduced atherosclerotic
plaque development in the thoracic–abdominal aorta and
in the aortic sinus by about 50% in comparison to
Cx43+/+LDLR−/− mice [100]. Moreover, atherosclerotic
lesions in Cx43+/−LDLR−/− mice have smaller lipid cores
and fewer macrophages, whereas leukocyte counts in
peripheral blood were similar between both groups of mice.
In addition, the fibrous cap of atherosclerotic plaques in
Cx43+/−LDLR−/− mice contained more SMCs and intersti-
tial collagen. During the development of the atherosclerotic
lesion, SMCs migrate from the media to the intima where
they multiply and produce components of the ECM. During
this process, SMCs are transformed from the differentiated
contractile state to the activated synthetic state. Curiously,
synthetic SMCs have been described to express higher
levels of Cx43 than the contractile phenotype [62, 101].
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The vulnerability of atherosclerotic lesions to rupture is
dependent of the content of SMCs and macrophages, the
extent of collagen within the lesion and the size of the lipid
core. As plaque rupture might lead to acute myocardial
infarction, targeting Cx43 may be promising for stabiliza-
tion of the plaque. Actually, mechanisms by which Cx43
influences atherosclerotic lesion formation and plaque
stability are not clearly identified. It has been hypothesized
that the effect of Cx43 might depend on specific atheroma-
associated cell types [102]. In ECs, Cx43 might induce or
enhance endothelial dysfunction. In leukocytes, Cx43
might enhance their migration and proliferation, or might
decrease their apoptosis in the atherosclerotic plaque. In
SMCs, Cx43 might limit their activation, proliferation, and
migration from the media to the intima, or might increase
their apoptosis in the plaque. These hypotheses concerning
the effects of Cx43 in ECs, leukocytes, and SMCs during
atherogenesis are currently investigated in mice with cell-
specific deletion of Cx43. Preliminary data showed that
endothelial-specific deletion of Cx43 in mice provided
beneficial effects on both the natural progression and
composition of atherosclerotic lesions [44].

Connexin37 polymorphism and atherosclerosis

Krutovskikh et al. have discovered in 1996 a first
polymorphism in the human Cx37 gene while investigating
lung and breast carcinoma for mutations [103]. This
polymorphism results in an amino acid change at codon
130, which is situated in the cytoplasmic loop of Cx37.
Following this first description of a Cx37 gene polymor-

phism in the human population, Boerma and coworkers
[104] have described a second polymorphism in the human
Cx37 gene in 1999. This polymorphism corresponds to a
cytosine-to-thymine replacement at the position 1019 in the
Cx37 gene, resulting in an amino acid alteration in the CT
of the protein; a proline residue at position 319 (Cx37-
319P) is replaced by a serine residue (Cx37-319S). In this
study, authors showed that Cx37-319P was correlated with
the occurrence of significant atherosclerotic plaques in
carotid arteries in the Swedish population [104]. These
results have been confirmed in coronary arteries in other
studies performed in Taiwan [105] and Switzerland [106].
In contrast, Collings et al. showed that C1019T polymor-
phism was not related with markers of subclinical athero-
sclerosis in young adults in Finland [107]. When
myocardial infarction was used as a clinical endpoint, a
study in Japanese population showed that Cx37-319S was
associated with increased risk in men [108]. This result has
been confirmed in a Sicilian population [109]. Discrepant
results obtained between the different studies might depend
on various reasons such as the chosen clinical endpoint
(coronary stenosis versus acute myocardial infarction), the
sample size, phenotypic heterogeneity, racial differences, or
environment interactions. The different studies concerning
Cx37 polymorphism are listed in Table 1. A recent study
described the influence of smoking on atherosclerosis in
relation with the Cx37-C1019T polymorphism. The authors
observed that variation in the Cx37 gene might modify the
effects of smoking on the vascular function [110].

As previously mentioned, Cx37 interferes with leukocyte
adhesion by releasing ATP. Monocytes transfected with
Cx37-319P or Cx37-319S present different adhesion

Table 1 Cx37 polymorphism studies in relation to artery disease and myocardial infarction

Population Pathology Cx37 polymorphism prognostic marker References

Hypertensive Swedish men Carotid disease P [104]

Taiwanese patients receiving coronary catheterization CAD P [105]

Japanese patients with myocardial infarction MI S in men [108]
No relation in women

Sicilian young men with acute MI MI S [109]

Irish population with premature onset CAD CAD, MI No relation [118]

American patients with acute coronary syndrome 3-year mortality S [119]

Swiss patients requiring angiographic evaluation CAD P [106]

Centenarian Sicilian men MI S [120]

Finnish children and adolescents IMT, CAC, FMD No relation [107]

Northern Han Chinese patients with CAD CAD P in men [121]
No relation in women

The most studied polymorphism in the human Cx37 gene corresponds to a cytosine-to-thymine replacement at the position 1019 (Cx37-1019C
and Cx37-1019T), which leads to a replacement of proline residue at position 319 (Cx37-319P) in the carboxyl tail by a serine residue (Cx37-
319S)

CAD coronary artery disease, MI myocardial infarction, IMT intima-media thickness, CAC carotid artery compliance, FMD flow-mediated
dilatation
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properties and this difference seems due to different ATP
permeability [30]. Indeed, Cx37-319P transfected mono-
cytes release more ATP than Cx37-319S transfected
monocytes and have lower adhesive properties. These
differences may explain the protective effect on acute
myocardial infarction conferred by this polymorphic vari-
ant. In a larger context, other inflammatory pathologies in
which monocytes/macrophages are involved may also be
associated with this Cx37 polymorphism. In general, the
identification of predisposing genetic factors might help to
identify individuals with increased risk for the development
of atherosclerosis or other inflammatory pathologies.

Therapeutic implications of connexins in the treatment
of atherosclerosis

Regulation of connexin expression by statin treatment

Reduction of atherosclerosis-related morbidity and mortal-
ity is possible by lowering plasma cholesterol with statins
(inhibitors of 3-hydroxy-3-methylglutaryl-CoA (HMG-
CoA) reductase) [111]. In addition, in vivo and in vitro
studies suggest that statins modulate atherogenesis and
plaque rupture by mechanisms independent of the decrease
of plasma cholesterol concentration [112]. Interestingly,
various types of statins dose dependently inhibited Cx43
expression in human vascular cells [100]. In addition, the
presence of L-mevalonate abolished the effect of statins on
Cx43 expression, confirming that HMG-CoA reductase was
responsible for this reduction. The reduction in Cx43
expression was associated with reduction in GJIC. In mice,
statin treatment does not reduce plasma lipid levels due to a
compensatory upregulation of HMG-CoA reductase. The
maintenance of high plasma lipids allows the study of the
pleiotropic effects of statins independently of their effects on
plasma cholesterol. Statins reduce Cx43 expression in
atherosclerotic plaque of LDLR−/− mice and displays
beneficial changes in plaque morphology [100]. These
observations are comparable to the observations in
Cx43+/−LDLR−/− mice. Otherwise, long-term hyperlipidemia
in mice decreased Cx37 and Cx40 expression in aorta [84].
Treatment with simvastatin reversed this hyperlipidemia-
induced decrease in Cx37 and Cx40. Thus, the statin-
induced regulation of Cx expression might be classified as
one more pleiotropic beneficial effect of these compounds.

Connexin expression and percutaneous coronary
interventions

Coronary atherosclerosis might lead to the occlusion of the
artery and to myocardial infarction. This vascular problem is
often treated by percutaneous coronary intervention (PCI)

consisting of balloon dilatation with or without stent
implantation. Clinical studies have shown, however, that the
long-term efficacy of PCI is limited by restenosis or
renarrowing of the arteries at the site of intervention [113].
Indeed, the stretching of a diseased artery can induce an
exaggerated response to injury that involves the recruitment
and infiltration of leukocytes into the damaged site and a
surge in cytokines and growth factors. Moreover, medial
SMCs undergo a phenotypic modulation from a contractile
to a synthetic phenotype, proliferate, and migrate toward the
intima. Together, these events induce the formation of the
neointima. Drug-eluting stents prevent restenosis by inhibiting
neointimal hyperplasia. Unfortunately, they also delay re-
endothelialization, which increases the period of time during
which the stent remains thrombogenic leading to late in-stent
thrombosis [114]. Yeh and colleagues have described an
upregulation of Cx43 between medial and intimal SMCs after
balloon catheter injury in the rat carotid artery [115]. To
investigate a possible role of Cx43 in neointima formation, we
have performed carotid balloon distension injury in hyper-
cholesterolemic Cx43+/−LDLR−/− mice [116]. This technique
induced endothelial denudation and activation of medial
SMCs. Neointima formation, macrophage infiltration, SMCs
migration, and proliferation were reduced in Cx43+/−LDLR−/−

mice, and endothelial repair was accelerated as compared to
Cx43+/+LDLR−/− mice. Furthermore, recent in vitro studies
showed that Cx43 antisense prevented platelet-derived growth
factor-BB-induced deleterious phenotypic changes of porcine
SMCs [117]. Together, these results suggest that targeting
Cx43 may be a promising strategy for reducing restenosis
after PCI. In this respect, recent in vivo applications of Cx43
antisense gel to increase wound healing and to limit burn
extension in the mouse skin [60, 61] are of particular interest.

Conclusion

In this review, we provide an overview of the implication of
Cx in atherosclerosis and describe pilot work toward
possible future therapeutic strategies involving these pro-
teins. The importance of each Cx is revealed by the use of
transgenic mice, transfected cells, specific blocking pep-
tides, and antisense. Clearly, further investigations are
needed to better understand the exact role of each Cx in
the various cell types involved in atherogenesis. Therapeu-
tic targeting of Cx might become promising to limit
deleterious consequences of percutaneous coronary inter-
ventions. Otherwise, studies toward Cx polymorphisms as
marker of cardiovascular diseases is of increasing interest.
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