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Abstract. This paper presents an overview of the recent advances in the

pricing of American-style securities by simulation. In addition to general

considerations related to the use of Monte Carlo simulation in the

context of derivatives pricing, five approaches that address the valuation

of early-exercisable options are presented: the regression approach, the

parametric approach, the stratification approach, simulated trees, and

stochastic meshes. The paper provides a brief discussion of each

approach with references to the most significant contributions in the

academic literature.

1. Introduction

The valuation of early-exercisable options, or

American-style options, is a task of major impor-

tance when pricing a number of financial instru-

ments such as equity options, foreign-exchange

derivatives, credit and interest-rate derivatives, de-

rivatives on commodities, callable corporate and

sovereign bonds, convertible bonds, and mortgage-

linked securities. While the economic urge of

coping with early-exercisable options is enor-

mous, few pricing techniques can deal in a satis-

factory way with this feature. So far, the financial

literature has only provided analytical formulae of

American-style options for special cases, when

early exercise can a priori be ruled out and the

American feature is worthless. Although some

authors have presented analytical approximations

for certain early-exercisable options (e.g., GESKE

and JOHNSON (1984) and BARONE-ADESI and

WHALEY (1987)), exact closed-form solutions

are in general not available for this class of instru-

ments. Therefore, the pricing of American-style

securities is typically accomplished my means of

numerical methods. Traditionally, two approaches

are used for pricing American style options: finite

difference methods and binomial trees. Surpris-

ingly, until the mid nineties, Monte Carlo Simu-

lation was explicitly considered not suitable for

pricing American-style derivatives. In this current-

research survey, we review the major arguments

and contributions that have led to a change of this

paradigm. However, in view of the growing body

of literature in the field of numerical option

pricing, this article does not claim or attempt to

be exhaustive.

2. Monte Carlo Simulation

Before we start exposing different approaches for

pricing American-style securities, it is useful to

focus on some general aspects of simulation-based

option pricing. The core of Monte Carlo Simula-

tion is the calculation of an expected value of

discounted payoffs, bV 0, over a space of sample-

paths,
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where N is the number of simulation paths, r is the

interest rate, C*i is the optimal stopping time in

path i, Xi is the value of the state variable(s) in

path i, and h(Xi, C*) is the payoff generated by the

option when exercised at the optimal stopping time.

Equation (1) is an approximation of an integral

over the risk-neutral density of state variables. The

simulation error, i.e., the difference between the

Monte Carlo estimate, bVV0, and the true expected

value, V0, is approximately normally distributed as:
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where AV is the standard deviation of payoffs and N

is the number of simulation paths. Thus, simulation

techniques deliver at very low computational cost

an estimate of the pricing (in)accuracy. In fact, AV

can be estimated as the sample standard deviation

of the option payoffs. From equation (2) it is clear

that the simulation error decreases with the square

root of the number of simulation paths. This means

that one decimal point of additional precision

requires 100 times as many simulation paths.

Although this error convergence rate is rather slow

if compared to alternative pricing techniques,

pricing options by simulation offers a number of

decisive advantages:

First, the convergence rate of the simulation

approach is mostly independent of the number of

state variables, which makes Monte Carlo Simu-

lation computationally appealing for pricing prob-

lems with multiple sources of risk, if compared to

conventional binomial trees or finite difference

methods. Second, Monte Carlo Simulation is

highly flexible with respect to the evolution of the

state variables. Instead of relying on conventional

processes such as geometric Brownian motions,

simulation techniques offer the opportunity to price

derivatives with more complex and realistic pro-

cess dynamics.[1] Third, while some path-depen-

dent option features can hardly be priced by

traditional lattice methods, they can easily be

included in a Monte Carlo pricing framework.

Fourth, intermediate cash flows such as coupon

payments and dividends occur discretely in time

and can much easier be modeled. Finally, Monte

Carlo Simulation is a general, intuitive, and

versatile pricing method, which makes it particu-

larly appealing for practical purposes.

3. Simulation Approaches

In this section, we briefly present and discuss the

most important approaches for pricing American

derivatives by simulation.[2] To facilitate the

exposition we sometimes refer to standard put

options as a simple, yet representative, example of

American-style security. In fact, the majority of

articles on numerical option pricing employ

standard put and call options to relate the per-

formance of new models to existing ones.

3.1 The Regression Approach

In many cases of interest, it is straightforward to

express the conditions under which an American-

style option is exercised in terms of the relationship

between the value from immediate exercise and the

continuation value, i.e., the value of the option

given it is not immediately exercised. Clearly, it is

optimal to exercise the option only if the continu-

ation value is lower than the value of immediate

exercise. The regression approach aims at model-

ing the early-exercise feature by finding, at each

point in time and for any value of the state vari-

ables, the correct value of continuation of the

security under scrutiny. This goal is achieved by

exploiting the information contained in the cross

section of simulated sample paths, while working

backwards from maturity to time zero. More pre-

cisely, the core of the approach consists of regress-

ing, at each point in time, the cross section of future
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discounted cash flows on a number of basis func-

tions (e.g., polynomials) of the state variables. The

systematic relationship obtained from this regres-

sion is called conditional-expectation or continua-

tion-value function. It enables one to determine

the continuation value of an option given a certain

value of the state variables. CARRIERE (1996)

proposes the use of non-parametric regression tech-

niques for pricing American call and put options.

LONGSTAFF and SCHWARTZ (2001) show how

a least-squares regression technique can be used

for pricing a range of financial instruments in-

cluding American put options (with and without

jumps), American-Bermuda-Asian options, cancel-

able index amortizing swaps, and swaptions. KIND

and WILDE (2003) use a similar least-square re-

gression method to price convertible bonds with

multiple embedded options and additional path-

dependent features. TSITSIKLIS and VAN ROY

(1999, 2001) stress the close relationship between

the American option pricing task and problems in

the field of neuro-dynamic programming. They

further provide a technical treatment of the

regression-based pricing approach and present

convergence proofs.

3.2 The Parametric Approach

The main idea of the parametric approach is to

represent the exercise behavior of the investor as a

parametric function of state variables (e.g., the stock

price) and time. The complexity of the pricing

problem is reduced by choosing the best exercise

behavior among a specific class of functions. The

parameterization of the exercise behavior can

either be obtained by a parametric class of stopping

times or by a parametric class of exercise regions.

Since these two parameterizations are in principle

equivalent, we can focus on the latter for a brief

exposition of the methodology. The space of all

possible values of state variables is split into

several disjoint regions, each related to a different

behavior of option holder. For the simple case of

an American put option with constant interest

rates, at each point in time, two regions for the

underlying stock price are defined: one where the

option is exercised and one where it is not. Over time,

these two regions can be separated by a so called

exercise boundary. When the stock price falls

below the exercise boundary, the put option is

exercised. Thus, the exercise behavior of the

investor is fully described by the exercise bound-

ary. Since the optimal exercise boundary is un-

known, it is critical to allow for a wide range of

possible exercise policies. The parametric ap-

proach achieves this by defining a flexible class

of parametric functions. For instance, GARCIA

(2003) presents numerical results obtained by

connecting three values of the exercise boundary,

for three different maturities, through cubic-spline

interpolation. JU (1998) approximates the exercise

boundary by a piecewise exponential function.

Most authors agree that even a simple approxima-

tion of the exercise region generates fairly accurate

pricing results, as the sensitivity of option prices on

the shape of the exercise boundary is not very high.

Knowledge about the optimal exercise policy

derived from option theory can be included in the

pricing approach by restricting the shape of the

exercise boundary. For instance, it is known that

an American put option is exercised at maturity

whenever the stock price falls below the strike

price. The aim of the parametric pricing approach

is to find the optimum exercise strategy, which

generates the highest value of the option, by

numerically maximizing over a parameter space.

For this reason, the parametric approach is often

referred to as an optimization approach. Besides

finding the price of the option, the parametric

approach delivers an exercise rule valuable for the

investor. It is worth noting that the parametric ap-

proach is the only one that does not require back-

ward induction: The option value is determined

by simulating forward path wise until either the

state variables cross the exercise boundary and fall

into the exercise region or maturity is reached.

BOSSAERTS (1989) was the first to propose a
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parametric approach to price American options.

Since then, several other authors have refined and

expanded this technique to price a wide range of

derivative securities. GRANT et al. (1997) apply a

version of the parametric approach to value

American-style Asian options. ANDERSEN

(2000) uses a parametric approach for pricing

Bermudan swaptions. AMMANN et al. (2005) use

a parametric technique to perform an empirical

pricing study on convertible bonds. GARCIA

(2003) focuses on potential pricing biases and

presents numerical examples for American call

options and options on the maximum of two and

five assets, often called rainbow options.

3.3 The Stratification Approach

Similarly to the regression approach presented

above, the stratification approach simulates paths

for the state variables and applies a backward-

induction procedure for determining the optimal

exercise behavior in each node. However, the con-

ditional expectation function is computed by means

of a stratification of the sample space. The different

contributions mainly differ with respect to the ways

this stratification is performed and the associated

dynamic programming algorithm is solved. Exam-

ples of these approaches applied to standard

American options and options on the maximum of

multiple assets are provided by TILLEY (1993),

BARRAQUAND and MARTINEAU (1995), and

RAYMAR and ZWECHER (1997)

3.4 The Simulated Tree Approach

The graphical representation of a simulated tree, or

random tree, strongly resembles a non-recombin-

ing multinomial tree: b branches depart from an

initial node with the current value of the state vari-

able. Each of these branches represents a distinct

change of the state variable. From each of these b

branches, again b new branches are simulated.

This compounded simulation procedure is repeat-

ed n times until maturity. However, unlike non-

recombining trees, the branches of simulated trees

are sampled randomly from an appropriate condi-

tional density and are not determined by a

deterministic rule. The price of the put option is

determined via backward induction. At maturity,

the payoff of the put option in Max(KjST, 0),

where K is the strike price and ST is the stock price

at maturity. In each node before maturity, the

decision whether to exercise or not is based on the

relationship between the continuation value and

the value from immediate exercise. The continu-

ation value is determined as the average of the

payoffs generated by the option in the following b

nodes. While the described algorithm produces an

upward-biased estimate of the true option value, a

downward-biased variant can be achieved as well.

Due to the extensive branching, computational

costs grow exponentially with the number of exer-

cise dates, making this approach only suitable for

pricing problems with up to five exercise dates.

Nevertheless, BROADIE and GLASSERMAN

(1997), the proponents of this approach, stress

the two positive features of this pricing technique.

First, random trees do not rely on approximations

of the early exercise strategy or conditional ex-

pectation functions. Second, the method allows,

through appropriately tailored backward induction

algorithms, the generation of two option price

estimates, one biased low and one biased high,

both converging to the true option value as b tends

to infinity. By combining these two estimates it is

possible to build a conservative confidence inter-

val very similar to one based on a truly unbiased

estimator. Building on the basic algorithm for

simulated trees, BROADIE et al. (1997a, b) pro-

pose a series of enhancements to improve the ef-

ficiency of this pricing technique.

3.5 The Stochastic Mesh Approach

The stochastic mesh approach developed in

BROADIE and GLASSERMAN (2004) and
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BROADIE et al. (1997a, b) is a very general

derivative pricing technique. For instance,

GLASSERMAN (2004) shows that stochastic

mesh methods nest the regression method of

LONGSTAFF and SCHWARTZ (2001). A sto-

chastic mesh can be obtained by simulating path

wise the relevant state variables until maturity

(independent-path construction). However, when

moving backwards from maturity, the continua-

tion value is calculated as weighted average of the

payoffs occurring in all nodes of the following

time step. As noted by GLASSERMAN (2004), it

is precisely the choice of the weights used for

relating each node to the next ones that crucially

differentiates the various versions of stochastic

meshes. It is worth noticing that in each node the

branching resembles a simulated tree. However,

unlike simulated trees, the number of nodes at

each point in time is constant, which is computa-

tionally appealing.

4. Additional Issues

4.1 Speed and Storage

In the previous section, all the proposed pricing

approaches are presented in form of crude Monte

Carlo Simulation, i.e., without addressing the

possibility of reducing the variance of the estimate

through appropriate techniques. However, given

the computational burden of any pricing solution

based on simulations, the practical success of a

valuation technique critically depends on the abi-

lity to achieve a certain pricing precision within an

acceptable time span. For instance, a trader might

be willing to adopt pricing tools based on

simulation, only if the time to price the instrument

is in the order of magnitude of a couple of

seconds. Since a discussion of variance reduction

techniques is beyond the scope of this article, the

reader might refer to BOYLE et al. (1997) for a

survey on this topic. Further possibilities to speed

up the American option pricing algorithms deal

with the efficiency of the implementation. For

instance, BROADIE et al. (1997a, b), propose

several enhancements to increase the pricing

efficiency of simulated trees. AVRAMIDIS et al.

(2002) investigate the possibility of improvements

in speed when pricing American options with a

stochastic mesh in a parallel environment. They

report nearly perfect efficiency, meaning that

computation time decreases almost linearly with

the number of processors. While computational

costs in terms of time are practically more

important than storage requirements, some atten-

tion is also given to the latter topic. In fact, storage

requirements for pricing American options are

fairly high because calculating the continuation

value often requires information contained in the

cross-section of sample paths. A comparative

study on computational costs of different numer-

ical techniques for pricing American options is

performed in FU et al. (2001).

4.2 Convergence and Biases

Prices generated by Monte Carlo Simulation can

suffer from different sources of biases. High

biases can arise for example from using future

information for determining optimal exercise

decisions or, as discussed in GARCIA (2003), by

the in-sample use of the optimal exercise bound-

ary. Since exercise rules are optimized to achieve

maximum prices on a given set of randomly

generated state variables, the optimal exercise

strategy will BexploitB the random characteristics

of the simulated paths used, especially when the

number of paths is small. Low biases arise from

inaccurately specified or estimated exercise rules.

As of today, several papers have addressed these

pricing biases for standard American options, but

the magnitude of these biases for more complex

American-style derivatives is still an open issue

future research will have to address. The duality

approach proposed by HAUGH and KOGAN

(2004) and ROGERS (2002) reformulates the
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American pricing task in form of a minimization

problem over a class of martingales or super-

martingales and can be used to obtain suitable and

surprisingly tight upper bounds for option prices.

ANDERSEN and BROADIE (2004) apply this

technique and are successful in finding a tight up-

per bound for the least-squares regression approach

of LONGSTAFF and SCHWARTZ (2001). Final-

ly, CLEMENT et al. (2002) prove the convergence

of the least-squares approach by LONGSTAFF

and SCHWARTZ (2001).

5. Summary and Outlook

This current research article provides an over-

view of the most recent advances in simulation-

based option pricing. This field of research is

surprisingly new as the very first contributions

date back to the early nineties. Nevertheless, a

number of valuable approaches has been pro-

posed. They address important issues such as

pricing biases, confidence intervals for pricing

errors, computational costs, and storage require-

ments. Future research will likely concentrate on

further enhancements of existing approaches, on

the comparison of existing methods, and, most

importantly, on empirical studies employing

these techniques for both pricing and hedging.

Overall we can state that, due to its flexibility,

Monte Carlo Simulation is the most valuable tool

for coping with the new pricing challenges

arising from the increasingly innovative structure

of financial securities.

ENDNOTES

[1] KLOEDEN and PLATEN (1992) discuss a variety

of methods for constructing accurate discrete-

time approximations of stochastic differential

equations that may be used for modeling the

dynamics of the state variables.

[2] In general, simulation techniques only allow for a

finite number of early-exercise times. Hence,

these techniques price Bermudan options rather

than continuously exercisable American options.

However, for a fairly large number of early-

exercise dates, the Bermudan price may serve

as an approximation for the price of the American

option.
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