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Abstract Surprisingly effortless is the human capacity

known as ‘‘mentalizing’’, i.e., the ability to explain and

predict the behavior of others by attributing to them inde-

pendent mental states, such as beliefs, desires, emotions or

intentions. This capacity is, among other factors, depen-

dent on the correct anticipation of the dynamics of facially

expressed emotions based on our beliefs and experience.

Important information about the neural processes involved

in mentalizing can be derived from dynamic recordings of

neural activity such as the EEG. We here exemplify how

the so-called Bayesian probabilistic models can help us to

model the neural dynamic involved in the perception of

clips that evolve from neutral to emotionally laden faces.

Contrasting with conventional models, in Bayesian models,

probabilities can be used to dynamically update beliefs

based on new incoming information. Our results show that

a reproducible model of the neural dynamic involved in the

appraisal of facial expression can be derived from the

grand mean ERP over five subjects. One of the two models

used to predict the individual subject dynamic yield correct

estimates for four of the five subjects analyzed. These

results encourage the future use of Bayesian formalism to

build more detailed models able to describe the single trial

dynamic.

Keywords EEG � Bayesian � Mentalizing �
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Introduction

The ability to infer the mental states (beliefs, thoughts,

and intentions) of others in order to predict and explain

their behavior depends on cues extracted from many

modalities. The tone of the voice, the gestures or the

direction of others gaze are examples of the cues that

needs to be combined to correctly infer the feelings of the

person that we are interacting with. The accurate detec-

tion of others feelings is therefore a first step to anticipate

others reactions. From a Bayesian perspective, these two

problems, i.e., detection and prediction are not indepen-

dent. Errors made in the prediction step can be used to

evaluate the accuracy of the detection and refine it in a

dynamical process. Also, depending on our present

inferences (part of our internal beliefs) we might decide

to differently weight the cues to better update our esti-

mate of the others mental states. Consequently, the idea

that the Bayesian formalism can be used to appropriately

model the process of ‘‘mentalizing’’ or the way in which

the brain combines multisensory cues for mental state

detection is starting to emerge [7, 9].

R. Grave de Peralta Menendez (&) � S. Gonzalez Andino

Electrical Neuroimaging Group, Department of Clinical

Neuroscience, Geneva University Hospital, Geneva, Switzerland

e-mail: Rolando.Grave@hcuge.ch

R. Grave de Peralta Menendez � A. Achaı̈bou � P. Vuilleumier �
S. Gonzalez Andino

Department of Neuroscience and Clinic of Neurology,

University Medical Centre, Geneva, Switzerland

R. Grave de Peralta Menendez

Neurodynamics Laboratory, Department of Psychiatry and

Clinical Psychobiology, University of Barcelona, 08035

Barcelona, Catalonia, Spain

A. Achaı̈bou � P. Vuilleumier

Laboratory for Neurology and Imaging of Cognition, Geneva,

Switzerland

P. Bessière

CNRS - IMAG/GRAVIR, Grenoble, France

123

Brain Topogr (2008) 20:278–283

DOI 10.1007/s10548-008-0047-4

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/159150896?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Some authors have proposed that the brain’s mirror-

neuron system [12] is at the core of the mentalizing pro-

cess. The idea that there is a mirror system in the brain

arises from the observation that the same brain areas are

activated when we observe another person experiencing an

emotion as when we experience the same emotion our-

selves (see e.g. [19]). The brain’s mirror system might help

to explain how the first inference about others states is

created. Emotions are contagious, i.e., the observers tend to

imitate and feel the emotions of the persons they are

interacting with. For example, through the observation of

others facial expressions we can experience the emotional

states of another person and help to shape and update our

beliefs about his/her feelings [15].

How can then Bayesian decision theory frame the

mentalizing process? A hidden state which is not directly

observable, the agent’s feelings, has to be inferred by the

observer on the basis of new upcoming evidence extracted

from multisensory cues. The new cues are combined with

the present estimate of the state (that depends upon a

combination of our experience and the incoming informa-

tion) to update the beliefs in a sort of iterative procedure.

As such Bayesian formalism provides an elegant solution

to the problem of mentalizing by predicting that we are

constantly assigning probabilities to our internally stored

belief about others mental states and updating such beliefs

in the measure that new information is obtained. This will

give to the neural system the capacity to assign a given

probability to transitions in others emotional states

according to a combination of experience in social com-

munication and incoming information.

While the model is sound, the challenge is to demon-

strate that the brain actually relies on a Bayesian

framework to perform the process of mentalizing. Such

evidence can only arise from trying to model neural data

using this framework and evaluating each of the many

multiple models of the same process that can be accom-

modated within the broad Bayesian formalism. For

instances, the amount of multisensory cues that can be

added as variables to model the mentalizing problem is so

large that might quickly lead to mathematically untreatable

problems. All these factors explain why the Bayesian

formalism remains as an appealing theory to model men-

talizing without formal experimental support.

The widely distributed character of the mirror system,

not tied to any particular brain region, suggest that evi-

dences in favor of the Bayesian framework should rely on

global rather than local measures of neural activity. One

global measure of neural activity able to capture the full

dynamic of neural processes at millisecond resolution is the

scalp EEG. Therefore, to evaluate the adequacy of

Bayesian formalism we carried out the analysis of EEG

data recorded from five healthy volunteers during passive

viewing of clips showing dynamic expression sequences.

In the clips an initially neutral face was gradually trans-

formed into an emotional face either portraying a happy

(towards to happy) or an angry (towards to angry)

expression. This is a particularly interesting experiment

since contagion is considered a first step in mentalizing [7].

EMG activity recorded on the dataset analyzed here

demonstrated that subjects covertly imitated the facial

expressions they were observing [2].

Here, two concrete Bayesian models are proposed to

model one specific component of the mentalizing process,

i.e., inferring other feelings from facial expressions. It is

assumed that the EEG dynamics contains information

about how the observer updates his/her beliefs about the

agent’s feelings. The models are built from the grand

average data and its capability to reproduce the dynamic is

evaluated by their possibilities to predict/identify the class

of facial expressions observed by the individual subjects.

Note that this goal is totally different from most neuro-

imaging studies that have addressed the neural substrates of

mentalizing (see e.g., [1, 14] for reviews).

Material and Methods

Subjects and Recordings

Five healthy volunteers (2 males, mean age = 26.1 years,

age range 22–35 years) were selected for the analysis

presented here. For a more detailed description of the

experiment, the grand-mean ERPs and the EMG see [2].

Movie clips of dynamic facial expressions (anger or

happy) were generated in E-Prime using morphed pictures

[4]. The selected faces correspond to 10 different identities.

Subjects passively viewed 5 blocks of 50 movies each.

Each block contained 25 clips that evolved from neutral to

happy faces and 25 clips that evolved from neutral to angry

faces. Each clip lasted 1,460 ms. Clips were separated by

an average 4 s ITI.

EEG and EMG data were simultaneously recorded

during the task on a darkened room. EEG data were sam-

pled at 2,048 Hz using a 64-channel Biosemi ActiveTwo

system with sintered Ag–AgCl active electrodes. The

analysis of the data was carried out using custom built in

software programmed in Matlab. The data was down-

sampled to 512 Hz before posterior analysis.

Bayesian Models

In this section we formulate two Bayesian models for the

EEG sequence maps recorded during the observation of the

movie-clips displaying either happy or angry facial expres-

sions. The models consider the scalp maps topography as a
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whole rather than the independent dynamic of each elec-

trode. The idea is to build the models based on the grand

mean over subjects and to evaluate the goodness of the

models by testing how well they describe the dynamics on

the mean ERP of the single subjects. Importantly, the pri-

mary goal of these models is the description of the dynamic

of the process allowing, as a secondary goal, the identifica-

tion of the class (angry or happy face) generating the data.

This is to be contrasted with pattern recognition methods that

focus mainly in the classification of unseen data.

In the following we will denote the potential map by V

and the state variable by X. Subscripts will be used to

denote the value at a single time point (Vt) or set of time

points (V0:t).

The first model (B1) aims at describing the temporal

dynamics of state variable and can be applied to the EEG

maps as follows. Given the EEG maps sequence Vt,

t = 0,1,2,...T, the labeling of its corresponding facial

expression class can be represented as a temporally accu-

mulated posterior probability at time t, p(Xt|V0:t), where the

state variable Xt represents the class label of a map

(towards happy or towards angry). Assuming that the

measurement Vt is completely determined by current state

Xt, the estimation of the class Xt , {2} corresponding to

the two classes of movie clips (i.e. happy and angry) can be

obtained from a Bayesian perspective in the following way:

pðXt=V0:tÞ ¼
pðVt=XtÞpðXt=V0:t�1Þ

pðVt=V0:t�1Þ
ð1Þ

Assuming conditional independence of the state variable

Xt with respect to past measurements Vt, t = 0,1,2,...T-1

given Xt-1 is equivalent to say that the state Xt is complete

[16]. In other words, completeness entails that knowledge of

past states or measurements carry no additional information

that would help us to predict the future more accurately. We

would note that this definition of completeness does not

require the future to be a deterministic function of the state

but just that no variables prior to Xt may influence the

stochastic evolution of future states, unless this dependence

is mediated through the state Xt. In our particular case, this

means, the perception of the class (clip) at time t depends on

the class at t-1 but not on the EEG maps previous to Vt. In

mathematical parlance it is expressed by the following

equation:

pðXt=Xt�1;V0:t�1Þ ¼ pðXt=Xt�1Þ ð2Þ

Then the accumulated prior probability of Xt given the

past measurements can be computed from:

pðXt=V0:t�1Þ ¼
Z

pðXt=Xt�1ÞpðXt�1=V0:t�1ÞdXt�1 ð3Þ

That allows rewriting Eq. 1 as a Bayes filter algorithm

without control data:

pðXt=V0:tÞ ¼
Z

pðXt�1=V0:t�1Þ
pðVt=XtÞpðXt=Xt�1Þ

pðVt=V0:t�1Þ
dXt�1

ð4Þ

We can define the initial probability p(X0|V0) = p(X0) =

1/N, where N = 2 is the number of classes and estimate the

p(Vt|Xt) and the p(Xt|Xt-1) from a given data set (learning

set). Then the model given by Eq. 4 can be applied

recursively to compute the state variable at each time point.

We would note that in this model, the only (and weak)

connection between successive scalp maps and/or states is

the one induced by Eq. 2 and thus this model ignores

potential temporal dependencies between scalp maps.

The second Bayesian model proposed here (B2), is a

combination of a Bayesian classifier with a law describing

temporal dependencies within the class. That is, model B2

uses the output of previous time point to estimate the state

at current time point. As for previous model we start from

Bayes equation relating the state Xt and the observation Vt

at current time point:

pðXt=VtÞ ¼
pðVt=XtÞpðXtÞ

pðVtÞ
ð5Þ

Now defining p(Xt) = p(Xt-1|Vt-1) we can rewrite (5) as

pðXt=VtÞ ¼
pðVt=XtÞpðXt�1=Vt�1Þ

pðVtÞ
ð6Þ

where p(X0|V0) = p(X0) = 1/N, with N = 2 is the number

of classes and p(Vt|Xt) can be determined from a given data

set (learning set).

Equation 6 defines a recursive process to compute the

posterior probability of the class label at each time point

using as prior probability the output of previous time point.

This could be interpreted as accumulation of evidences

where the new decisions in favor or against one of the

classes are proportional to the past experiences.

Implementation

In this paper, the learning set is defined as a temporal

window selected from the two grand means over subjects

for the happy and angry classes. The temporal window

used for the learning set was the interval between 500 and

1,500 ms. From 500 ms onwards the EMG responses to the

analyzed facial expressions was significantly different for

both muscles: the zygomaticus major (ZM) that elevates

the lips during a smile, and the corrugator supercillii (CS)

that knits the eyebrows during a frown [2]. Consequently,

at period selected for the learning set the subjects already

identified and mimicked the observed facial expression.

The probability p(Vt|Xt) used in both models was defined

as a Gaussian distribution with means and covariance

matrix computed from the learning set , that is,
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pðVt=Xt ¼ kÞ ¼ g � expð�ðVt � lkÞ
0RkðVt � lkÞ ð7Þ

where k = 1,2 denotes the class and g is a normalization

constant. Note also that the terms in the denominator of

Eqs. 4 and 6 do not need to be computed explicitly because

they do not involve the state variable. Mean and covariance

matrices for each class were computed as the maximum

likelihood estimators. Transition probability in Eqs. 3 and 4

was computed from the output of Eq. 5 assuming p(Xt) =

1/N and the model (7) and using the grand means.

Grand mean for each movie clip class was computed as

the mean of the average evoked potential from the 5 sub-

jects. This EEG data was then used as training set to

compute the parameters of models B1 and B2.

The output of the method was defined as the class to

which the procedure converged after the whole sequence,

i.e., at 1,500 ms. Thus, we consider a correct identification

if the class identified at the end of the sequence is the

correct class, i.e., the probability observed at 1,500 ms is

larger than 0.5.

Results

Figure 1 depicts for each subject (row) the probability of

each class as a function of time using the Bayesian filter

algorithm of model B1. As can be seen the model fitting of

B1 to the individual subjects suggest a dynamic behavior.

The probabilities of correctly identifying the evolving to

happy clip when this was the actually shown clip substan-

tially vary over time. For subject 1, the probabilities of

identifying the current class are close to one over the whole

sequence and for both classes. The situation is different for

subject 3 (third row). For the case of evolving to happy clips

(left column) the probabilities remain close to 0.5 for nearly

the whole period and are close to zero at the end of the

sequence. This indicates that the model failed to identify the

correct class in this case. The model also fails for subjects

two and five during visualization of the evolving to angry

clips. According to our definition of correct identification

that considers the convergence at the end of the sequence,

this model B1 fails in capturing the correct perception of the

subjects in three out of ten situations.

Figure 2 depicts for each subject (row) the probability of

each class as a function of time using the recursive

Bayesian classifier of model B2. In this case, the model

assumes that the probability of observing a given class at

time t depends on the class observed at time t-1. This

assumption can be considered as more realistic given the

known similarities of maps on grand mean data.

The dynamics of this model on the single subject basis is

more rigid, i.e., exhibit less temporal variability. The model

is however able to identify the correct class of clips in 9 out of

10 situations studied. The model only fails to converge to the

correct class for the evolving to happy clip of subject number

three.

Discussion

We here present two different Bayesian temporal models that

aim to describe from EEG data how subjects dynamically

Fig. 1 Probability of the model B1 of predicting that class was happy

when the actual clip evolves to happy (left plot) or to predict that clip

was angry when the actual clip evolves towards angry (right).

Probabilities are displayed as a function of time (seconds) from clip

onset. One subject is depicted on each row. Probability values near to

one indicate that the correct class was identified for the subject

Fig. 2 Probability of the model B2 of predicting that class was happy

when the actual clip evolves to happy (left plot) or to predict that clip

was angry when the actual clip evolves towards angry (right).

Probability values near to one indicate that the correct class was

identified for the subject
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perceive or make inferences about others mental states from

their facial expressions. The second model B2 yielded a high

recognition rate (9/10) of the facial expression towards

which the clips evolved. This suggests that the mean ERP

used to train the model contains information which is con-

sistent at a single subject level. While model B2 assumes that

the present state of the class (i.e. the type of facial expression

being observed) depends explicitly only on previous state,

this induces a strong temporal dependency between con-

secutive scalp maps. The model also show a rigid temporal

dynamic that contradicts our expectancies about the exis-

tence of a sequence of perception states which transits from

uncertainty at the beginning of the sequence towards a

clearly defined percept at intermediate and final stages. On

the contrary, model B1 shows a more flexible dynamic but

fails to show good generalization properties since the rec-

ognition rates at the single subject level are lower (7/10).

None of the models is however able to provide a fully sat-

isfactory description of the dynamics of subjects perception.

The temporal evolution fails to show the transition from

uncertainty (probabilities near 0.5) about the facial expres-

sion towards which the clip will evolve to complete certainty

information around 500 ms (where the EMG data revealed

significant differences).

The differences between both models to describe the

individual temporal dynamic are due to their different

underlying assumptions. Model B2 assumes an explicit

dependency between the classes observed at consecutive

time points. This means, the probability that subjects

perception is a ‘‘towards to happy clip’’ depends not only

on current map but also on the class observed at previous

instant. On the other hand, model B1 includes temporal

dependencies during the computation of the transition

matrix. Consequently, model B1 assumes that state tran-

sitions detected from the grand mean should arise also at

the single subject level. The explicit incorporation of a

dynamic law inherited from the grand mean might explain

its variability and the slower temporal convergence

towards the correct class. In contrast model B2 yields faster

but rigid temporal behavior. Each model integrates the

temporal information differently. While B1 is mainly

dominated by previous time point, model B2 takes into

account all precedent results into the a priori probability,

then apparently little increases in the a priori probability

might yield strong posterior probabilities and thus faster

convergence.

We should mention, however, that the high recognition

rates achieved are encouraging to continue with the

refinement of Bayesian models in the study of neural

activity. The idea behind Bayesian probabilistic models

that accept uncertainty as a natural component of neural

processes is appealing. It might for example be used to

incorporate the influence of non-measurable internal states,

in perception which should ultimately lead to descriptions

at the single trial level.

The use of Bayesian/probabilistic models for EEG anal-

ysis and synthesis is at its infancy. Hitherto, most

applications of the Bayesian framework are oriented to the

solution of the electromagnetic inverse problem [3, 5, 8, 17]

and the introduction of temporal constraints to model sources

dynamic [6]. Bayesian models have been also applied to the

problem of classifying single trials within one or more

classes within the framework of Brain Computer Interfaces

[10, 13]. The goal of the models described here is, in a given

sense, more ambitious than the simple identification of the

correct class as in Brain Computer Interface or the seg-

mentation of neural data into stable mental states [11, 18].

The ultimate goal is to identify and characterize the dynamic

of a non-observable variable (subject’s internal perception

and prediction) from the measured EEG. To achieve such

ambitious goals, the models could be refined to explicitly

incorporate the temporal dependencies between scalp maps

and their transitions using the Bayesian formalism.

One interesting question to be explored in the future is if

the incorporation of multimodal cues could lead to better

but still mathematically treatable models of the mentalizing

process. The models developed here are restricted to the

problem of making inferences about others mental states on

the sole basis of facial expression. Therefore, future work

will focus on developing more sophisticated models that

consider a more complex dynamic and probably employ

auxiliary channels, e.g., EMG as control variables.
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