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Abstract Two-fluid ideal plasma equations are a generalized form of the ideal MHD equa-
tions in which electrons and ions are considered as separate species. The design of efficient
numerical schemes for the these equations is complicated on account of their non-linear
nature and the presence of stiff source terms, especially for high charge to mass ratios and
for low Larmor radii. In this article, we design entropy stable finite difference schemes for
the two-fluid equations by combining entropy conservative fluxes and suitable numerical
diffusion operators. Furthermore, to overcome the time step restrictions imposed by the stiff
source terms, we devise time-stepping routines based on implicit-explicit (IMEX)-Runge
Kutta (RK) schemes. The special structure of the two-fluid plasma equations is exploited by
us to design IMEX schemes in which only local (in each cell) linear equations need to be
solved at each time step. Benchmark numerical experiments are presented to illustrate the
robustness and accuracy of these schemes.

Keywords Two-fluid plasma flows · Balance laws · Finite difference methods · Entropy
stable methods · IMEX schemes

1 Introduction

An ensemble of plasma consists of ions, electrons and neutral particles. These particles in-
teract through both short range (e.g. collisions) and long range (e.g. electromagnetic) forces.
Plasmas are increasingly used in spacecraft propulsion, controlled nuclear fusion and in cir-
cuit breakers in the electrical power industry.
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Under the assumption of quasi-neutrality (i.e. charge density difference between ions
and electrons is neglected), the flow of plasmas is modeled by the ideal MHD equations
(see [8]). Although, the ideal MHD equations have been successfully employed in modeling
and simulating plasma flows, this model is derived by ignoring the Hall effect and treating
plasma flows as single fluid flows. These effects are very important for many applications,
e.g. space plasmas, Hall current thrusters, field reversal configurations for magnetic plasma
confinement and for fast magnetic reconnection.

In this article, we consider the more general ideal two-fluid model (see [9, 13, 15]) for
collisionless plasmas. In the ideal two-fluid equations, electrons and ions are treated as dif-
ferent fluids by allowing them to posses different velocities and temperatures. Assuming
local thermodynamical equilibrium, we write the two-fluid equations as a system of balance
laws (see [9]):

∂tu + div f(u) = s(u), (x, t) ∈ R
3 × (0,∞). (1.1)

Here, u = u(x, y, z, t) is the vector of non-dimensional conservative variables,

u = {ρi, ρivi ,Ei, ρe, ρeve,Ee,B,E, φ,ψ}�. (1.2)

Here, the subscripts {i, e} refer to the ion and electron species respectively, ρ{i,e} are the
densities, v{i,e} = (vx

{i,e}, v
y

{i,e}, v
z
{i,e}) are the velocities, E{i,e} are the total energies, B =

(Bx,By,Bz) is the magnetic field, E = (Ex,Ey,Ez) is the electric field and φ,ψ are the
potentials. The flux vector f = (fx, fy, fz) can be written as,

f(u) =

⎧
⎪⎨

⎪⎩

fi (ui )

fe(ue)

fm(um)

⎫
⎪⎬

⎪⎭
, where fα(uα) =

⎧
⎪⎨

⎪⎩

ραvα

ρivαv�
α + pαI

(Eα + pα)vα

⎫
⎪⎬

⎪⎭
, (1.3)

with α ∈ {i, e}, and

fm(um) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

T (E) + κψI

−ĉ2 T (B) + ξ ĉ2φI

ξE

κĉ2B

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

, where T (K) =
⎡

⎢
⎣

0 Kz −Ky

−Kz 0 Kx

Ky −Kx 0

⎤

⎥
⎦ , (1.4)

for any vector K = (Kx,Ky,Kz). Here uα = {ρα,ραvα,Eα}�, α ∈ {i, e}, um =
{B,E, φ,ψ}�, p{i,e} are the pressures, ξ, κ are penalizing speeds (see [14]) and ĉ = c/vT

i

is the normalized speed of light. Also, vT
i is the reference thermal velocity of ion. Writ-

ing the flux in component form (see (1.3), (1.4)), we observe that the first two compo-
nents of the flux, fα(uα), α ∈ {i, e}, are the nonlinear ion and electron Euler fluxes and the
third component is the linear Maxwell flux. So, the homogeneous part of (1.1) is hyper-
bolic.
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The source term s is given by,

s(u) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
1
r̂g

ρi(E + vi × B)

1
r̂g

ρi(E · vi )

0

− λm

r̂g
ρe(E + ve × B)

− λm

r̂g
ρe(E · ve)

0

− 1
λ̂2
d
r̂g

(riρivi + reρeve)

ξ

λ̂2
d
r̂g

(riρi + reρe)

0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (1.5)

with the charge to mass ratios rα = qα/mα, α ∈ {i, e} and the ion-electron mass ratio
λm = mi/me . Two physically significant parameters appear in the source term namely, the

normalized Larmor radius r̂g = rg

x0
= miv

T
i

qiB0x0
and the ion Debye length (normalized with re-

spect to the Larmor radius) λ̂d = λd/rg =
√

ε0v
T 2

i /n0qi/rg . Here, B0 is the reference mag-
netic field, ε0 is the permittivity of free space and x0 is the reference length. The ion mass
mi and ion charge qi are assumed to be 1. In addition, we assume that both the ion and the
electron satisfies the ideal gas law:

Eα = pα

γ − 1
+ 1

2
ρα|vα|2, α ∈ {i, e}, (1.6)

with gas constant γ = 5/3. In the above equations, we use the perfectly hyperbolic form
of the Maxwell equation (see [14]), which represent the evolution of magnetic field B and
electric field E.

The design of numerical schemes for systems of balance laws has undergone rapid devel-
opment in the last two decades, see [12] for a detailed description of efficient schemes. The
standard paradigm involves the use of finite volume (conservative finite difference) schemes
in which the solution is evolved in terms of (approximate) solutions of Riemann problems at
cell interfaces. Higher order accuracy in space is obtained by non-oscillatory interpolation
procedures of the TVD, ENO and WENO types. An alternative is to use the Discontin-
uous Galerkin (DG) approach. High-order temporal accuracy results from strong stability
preserving (SSP) Runge-Kutta (RK) methods. Source terms are included by using operator
splitting approaches.

Although the two-fluid equations are a system of balance laws, standard discretization
techniques may fail to provide a robust approximation. Two major difficulties are present in
the numerical analysis of the two-fluid equations: 1) the design of suitable numerical fluxes
and 2) treatment of the source term that becomes increasingly stiffer as more realistic charge
to mass ratios or more realistic Larmor radii (Debye lengths) are considered.

Given the above challenges, very few robust numerical schemes exist for the two-fluid
equations. In [15], the authors derive a Roe-type Riemann solver. Time updates are per-
formed by treating the stiff source term implicitly and the flux terms explicitly. The result-
ing non-linear equations are solved using Newton iterations. This method might be diffusive
and may require many iterations for each time step. In [9], the authors propose a wave prop-
agation method (see [12]) for the spatial discretization. For time updates, a second-order
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operator splitting approach is used. A similar approach is taken in [11, 13], where spatial
discretization is based on discontinuous Galerkin (DG) methods and time update is based
on SSP-RK methods. Both of these approaches are easy to implement but can be computa-
tionally expensive, especially for realistic charge to mass ratios.

Given the state of the art, we propose numerical schemes for the two-fluid equations with
the following novel features:

• First, we design entropy stable finite difference discretizations of the two fluid equations.
The basis of our design is to ensure entropy stability as the two fluid equations satisfy an
entropy inequality at the continuous level. We use the approach of [17] by constructing
entropy conservative fluxes and suitable numerical diffusion operators to ensure entropy
stability. Second-order entropy stable schemes are constructed following the framework
of a recent paper [6].

• We discretize the source term in the two-fluid equations by an IMEX approach: the flux
terms are discretized explicitly whereas the source term is discretized implicitly. The main
feature of our schemes is their ability to use the special structure of the two-fluid equations
that allows us to design IMEX schemes requiring the solution of only local (in each cell)
linear equations at every time step. This is in contrast to the schemes proposed in [15]
that required the solution of non-linear iterations. The local equations that result from our
approach can be solved exactly making our schemes computationally inexpensive.

The rest of this article is organized as follows: In the following Sect. 2, we obtain an
entropy estimate for the ideal two-fluid equations (1.1). This result at the continuous level
is then used to design an entropy stable finite difference scheme in Sect. 3. In Sect. 4, we
present IMEX-RK schemes for the temporal discretization. The resulting, algebraic system
of equations is then solved exactly. In Sect. 5, we simulate the nonlinear soliton propagation
in the two-fluid plasma and a stiff Riemann problem to demonstrate the robustness and
efficiency of these schemes.

2 Analysis of Continuous Problem

It is well known that solutions of (1.1) consists of discontinuities, even for smooth initial
data. Hence, we need to consider the solutions of (1.1) in the weak sense. However, unique-
ness of the solutions is still not guaranteed and we need to supplement (1.1) with additional
admissibility criteria to obtain a physically meaningful solution. This gives rise to concept
of entropy. The standard thermodynamic entropies for ion and electron Euler flows are,

eα = − ραsα

γ − 1
with sα = log(pα) − γ log(ρα), α ∈ {i, e}. (2.1)

For the electromagnetic part we consider the quadratic entropy i.e. electromagnetic energy,

em(um) = |B|2 + φ2

2
+ |E|2 + ψ2

2ĉ2
. (2.2)

We obtain the following entropy estimate,

Theorem 2.1 Let u = {ρi, ρivi ,Ei, ρe, ρeve,Ee,B,E, φ,ψ}� be a weak solution of the
two-fluid equations (1.1) on R

3 × (0,∞). Furthermore, assume that there exist constants
ρmin

α , ρmax
α and pmin

α such that,

0 ≤ ρmin
α ≤ ρα ≤ ρmax

α , pα ≥ pmin
α > 0, α ∈ {i, e},
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then

d

dt

∫

R3
(ei + ee + em)dx dy dz ≤ C1

∫

R3
(ei + ee + em)dx dy dz + C2, (2.3)

with constant C1 and C2 depending only on ρmin
α , ρmax

α , and pmin
α .

Proof Let us first consider the fluid part of the equations. The entropy fluxes corresponding
to the flow entropies (2.1) are,

qα = −ραsαvα

γ − 1
= vαeα, α ∈ {i, e}. (2.4)

Assuming that u is a smooth solution of (1.1), the densities ρα and the pressures pα , satisfy,

∂tρα + vα · ∇ρα = 0,

∂tpα + γpα∇ · vα + vα · ∇pα = 0.

Using the expression for sα , we get

∂t sα + vα · ∇sα = 0.

Combining this with density advection we get entropy conservation, i.e.

∂teα + ∇ · qα = 0. (2.5)

Observe that (2.5) implies that the source term does not effect the evolution of fluid en-
tropies. For weak solutions, (2.5) reduces to entropy inequality,

∂teα + ∇ · qα ≤ 0. (2.6)

Integrating over R
3 and adding,

d

dt

∫

R3
(ei + ee)dx dy dz ≤ 0. (2.7)

For controlling the electromagnetic energy, we use the following inequality,
∫

R3

(
ρ2

α + |ραvα|2 + E2
α

)
dx dy dz ≤ C3

∫

R3
eαdx dy dz + C4, (2.8)

for some constants C,C. The proof of (2.8) is a simple consequence of the positivity of
density and pressure and the use of the relative entropy method of Dafermos [5]. We multiply
(1.1) with the vector,

{

010,B,
E
ĉ2

, φ,
ψ

ĉ2

}�

and note that flux terms are still in divergence form. Integrating over the whole space and
using Cauchy’s inequality on the right hand side, we get,

d

dt

∫

R3
emdx dy dz ≤ C5

(∫

R3
emdx dy dz +

∫

R3
(ei + ee)dx dy dz

)

+ C6. (2.9)

Combining it with (3.22) we obtain (2.3). �
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Remark 2.2 Note that above proof of the theorem also gives a bound on the fluid energy of
the system.

3 Semi-discrete Schemes

In the last section, we showed that solutions of the two-fluid equations satisfy the entropy
estimate (2.3). In this section, we will design (semi-discrete) numerical schemes for the
two-fluid equations that satisfy a discrete version of the entropy estimate.

For simplicity, we consider two-fluid equations (1.1) in two dimensions, i.e.,

∂tu + ∂xfx(u) + ∂yfy(u) = s(u). (3.1)

We discretize the two dimensional rectangular domain D = (xa, xb) × (ya, yb) uniformly
with mesh size (�x,�y). We define xi = xa + i�x and yj = ya + j�y, 0 ≤ i ≤ Nx ,
0 ≤ j ≤ Ny , such that xb = xa + Nx�x and yb = ya + Ny�x. The domain is then divided
into cells Iij = [xi−1/2, xi+1/2] × [yj−1/2, yj+1/2] with xi+1/2 = xi+xi+1

2 and yj+1/2 = yj +yj+1
2 .

A standard semi-discrete finite difference scheme for (3.1) can be written as,

dUi,j

dt
+ 1

�x

(
Fx

i+1/2,j − Fx
i−1/2,j

)+ 1

�y

(
Fy

i,j+1/2 − Fy

i,j−1/2

)= Si,j (U). (3.2)

Here, Fx
i+1/2,j and Fy

i,j+1/2 are the numerical fluxes consistent with fx and fy respectively,
and Si,j (U) = s(Ui,j ). We introduce the entropy variables V and entropy potential χk which
corresponds to the entropy e = {ei, ee, em}�

V =

⎧
⎪⎨

⎪⎩

Vi

Ve

Vm

⎫
⎪⎬

⎪⎭
=

⎧
⎪⎨

⎪⎩

∂ui
ei(ui )

∂ue ee(ue)

∂umem(um)

⎫
⎪⎬

⎪⎭
, χk =

⎧
⎪⎨

⎪⎩

χk
i

χk
e

χk
m

⎫
⎪⎬

⎪⎭
=

⎧
⎪⎨

⎪⎩

V�
i f k

i − qk
i

V�
e f k

e − qk
e

V�
mf k

m − qk
m

⎫
⎪⎬

⎪⎭
, (3.3)

where qk
m is the entropy flux for the Maxwell part corresponding to the entropy em and

k ∈ {x, y}. We will follow the framework of Tadmor (see [17, 18]) for designing an entropy
stable scheme for the two-fluid equations. The first step is to design an entropy conservative
flux.

3.1 Entropy Conservative Flux

We require the following notation:

[a]i+1/2,j = ai+1,j − ai,j , ai+1/2,j = 1

2
(ai+1,j + ai,j ),

[a]i,j+1/2 = ai,j+1 − ai,j , ai,j+1/2 = 1

2
(ai,j+1 + ai,j ).

Following [17], an entropy conservative flux F̂ = {F̂x, F̂y} is defined as a consistent flux that
satisfies

[V]�i+1/2,j F̂x
i+1/2,j = [χx]i+1/2,j , [V]�i,j+1/2F̂y

i,j+1/2 = [χy]i,j+1/2. (3.4)
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In general, the relation for conservative flux, (3.4) provides one equation for several un-
knowns. Hence, entropy conservative numerical flux is not unique. We will now describe
entropy conservative numerical fluxes for the fluid part of the two-fluid equations.

In [10], Ismail and Roe have derived an expression for entropy conservative numerical
fluxes for Euler equations of gas dynamics. As the fluid part of (1.1) consists of two inde-
pendent Euler fluxes, we can use the expression derived in [10] for the entropy conservative
numerical flux of the Euler flows of ion and electron. We need to introduce parametric vec-
tors zα , α ∈ {i, e},

zα =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

z1
α

z2
α

z3
α

z4
α

z5
α

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
√

ρα

pα

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

vx
α

vy
α

vz
α

pα

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, α ∈ {i, e}. (3.5)

Then the entropy conservative numerical flux in x-direction is given by F̂x
α,i+1/2,j =

[F̂x,1
α,i+1/2,j , F̂x,2

α,i+1/2,j , F̂x,3
α,i+1/2,j , F̂x,4

α,i+1/2,j , F̂x,5
α,i+1/2,j ]�, with,

F̂x,1
α,i+1/2,j = z2

α,i+1/2,j z
5
α

ln
i+1/2,j

,

F̂x,2
α,i+1/2,j = m5

α,i+1/2,j + m2
α,i+1/2,j F̂x,1

α,i+1/2,j ,

F̂x,3
α,i+1/2,j = m3

α,i+1/2,j F̂x,1
α,i+1/2,j ,

F̂x,4
α,i+1/2,j = m4

α,i+1/2,j F̂x,1
α,i+1/2,j ,

F̂x,5
α,i+1/2,j = 1

2z1
α,i+1/2,j

(
γ + 1

γ − 1

F̂x,1
α,i+1/2,j

z1ln
α,i+1/2,j

+ z2
α,i+1/2,j F̂x,2

α,i+1/2,j

+ z3
α,i+1/2F̂x,3

α,i+1/2,j + z4
α,i+1/2,j F̂x,4

α,i+1/2,j

)

.

(3.6)

and entropy conservative numerical flux in y-direction is, F̂y

α,i,j+1/2 = [F̂y,1
α,i,j+1/2, F̂y,2

α,i,j+1/2,

F̂y,3
α,i,j+1/2, F̂y,4

α,i,j+1/2, F̂y,5
α,i,j+1/2]�, with,

F̂y,1
α,i,j+1/2 = z3

α,i,j+1/2z
5ln
α,i,j+1/2, (3.7)

F̂y,2
α,i,j+1/2 = m2

α,i,j+1/2F̂y,1
α,i,j+1/2,

F̂y,3
α,i,j+1/2 = m3

α,i,j+1/2 + m3
α,i,j+1/2F̂y,1

α,i,j+1/2,

F̂y,4
α,i,j+1/2 = m4

α,i,j+1/2F̂y,1
α,i,j+1/2,

F̂y,5
α,i,j+1/2 = 1

2z1
α,i,j+1/2

(
γ + 1

γ − 1

F̂y,1
α,i,j+1/2

z1ln
α,i,j+1/2

+ z2
α,i,j+1/2F̂y,2

α,i,j+1/2

+ z3
α,i,j+1/2F̂y,3

α,i,j+1/2 + z4
α,i,j+1/2F̂y,4

α,i,j+1/2

)

.
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Here, aln
i+1/2,j and aln

i,j+1/2 denotes the logarithmic means defined as,

aln
i+1/2,j = [a]i+1/2,j

[log (a)]i+1/2,j

, aln
i,j+1/2 = [a]i,j+1/2

[log (a)]i,j+1/2
,

and

mr
α,i+1/2,j = zr

α,i+1/2,j

z1
α,i+1/2,j

, mr
α,i,j+1/2 = zr

α,i,j+1/2

z1
α,i,j+1/2

, for r ∈ {2,3,4,5}.

Now we will consider the electromagnetic part. Note the Maxwell flux is linear. Then, it is
easy to check that the entropy conservative numerical flux for the electromagnetic part is

F̂x
m,i+1/2,j = 1

2

(
fx(Um,i,j ) + fx(Um,i+1,j )

)
,

F̂y

m,i,j+1/2 = 1

2

(
fy(Um,i,j ) + fy(Um,i,j+1)

)
.

(3.8)

Combining all the parts, the entropy conservative numerical flux for (1.1) are given by,

F̂x
i+1/2,j =

⎧
⎪⎪⎨

⎪⎪⎩

F̂x
i,i+1/2,j

F̂x
e,i+1/2,j

F̂x
m,i+1/2,j

⎫
⎪⎪⎬

⎪⎪⎭

, F̂y

i,j+1/2 =

⎧
⎪⎪⎨

⎪⎪⎩

F̂y

i,j+1/2

F̂y

e,i,j+1/2

F̂y

m,i,j+1/2

⎫
⎪⎪⎬

⎪⎪⎭

. (3.9)

3.2 Numerical Diffusion Operator

As entropy is dissipated at shocks, we need to add entropy stable numerical diffusion oper-
ators to avoid spurious oscillations at shocks. Following [18], the resulting numerical fluxes
are of the form,

Fx
i+1/2,j = F̂x

i+1/2 − 1

2
Dx

i+1/2[V]i+1/2,j ,

Fy

i,j+1/2 = F̂x
i+1/2 − 1

2
Dy

i,j+1/2[V]i,j+1/2.

(3.10)

with diffusion matrices are given by,

Dx
i+1/2 = Rx

i+1/2,j�
x
i+1/2,jR

x�
i+1/2,j , Dy

i,j+1/2 = R
y

i,j+1/2�
y

i,j+1/2R
y�
i,j+1/2. (3.11)

Here R{x,y} are the matrices of right eigenvectors of Jacobians ∂uf{x,y} and �{x,y} are diagonal
matrices of eigenvalues in the x- and y-directions, respectively. We will use a Rusanov type
diffusion operator given by a 18 × 18 matrix,

�{x,y} = � = diag
{(

max
1≤i≤5

|λx
i |
)
I5×5,
(

max
6≤i≤10

|λx
i |
)
I5×5,
(

max
1≤i≤18

|λx
i |
)
I8×8

}
.

We use the eigenvector scaling due to Barth [4] for defining the eigenvector matrices.
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3.3 Second Order Dissipation Operator

The diffusion operators described above are of first order, as the jump term [V] is of or-
der �x. To obtain the second order accurate scheme, we can perform piecewise linear re-
constructions of the entropy variable V. However, a straightforward reconstruction of the
entropy variables may not be entropy stable. In [6], the authors have constructed entropy
stable second order (and even higher-order) diffusion operators. For simplicity, we will con-
sider the diffusion operator, Dx

i+1/2,j [V]i+1/2,j in x-direction only. The diffusion operator in
y-direction, Dy

i,j+1/2[V]i,j+1/2 can be constructed analogously. We need to introduce scaled
entropy variables,

Wx,±
i,j = Rx�

i±1/2,j Vi,j .

If W̃x,±
i,j are the reconstructed values of Wx± in the x-direction, then the corresponding

reconstructed values Px±
i for Vij are given by,

Px±
ij = {RxT

i±i+1/2,j

}(−1)
W̃x,±

i,j .

The resulting second order entropy stable flux is then given by,

Fx
i+1/2,j = F̂x

i+1/2 − 1

2
Dx

i+1/2[Px]i+1/2,j , (3.12)

where the jump term [Px]i+1/2,j is given by,
[
Px
]

i+1/2,j
= Px−

i+1,j − Px+
i,j .

A sufficient condition for the scheme to be entropy stable (see [6]) is the existence of a
diagonal matrix Bx ≥ 0, such that,

[
W̃x
]

i+1/2,j
= Bx

i+1/2,j

[
Wx
]

i+1/2,j
,

i.e. the reconstruction of Wx has to satisfy a sign preserving property along the interfaces of
each cell. Component-wise this can be written as,

sign([w̃l]) = sign([wl]), (3.13)

for each component wl and w̃l of Wx and W̃x , respectively.

3.4 Reconstruction Procedure

We suppress the j -dependence below for notational convenience. The reconstruction for Wx

is performed component-wise, so that (3.13) is satisfied. Let us define jump of component
w of the variable Wx ,

δi+1/2 = [w]i+1/2. (3.14)

Consider φ, a slope limiter satisfying φ(θ−1) = φ(θ)θ−1 and define divided differences,

θ−
i = δi+1/2

δi−1/2
and θ+

i = δi−1/2

δi+1/2
.

Then the reconstructed values of w in the cell Ii are

w̃−
i = w−

i − 1

2
φ
(
θ−
i

)
δi−1/2, w̃+

i = w+
i + 1

2
φ
(
θ+
i+1

)
δi+1/2.
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Using these values we obtain

[w̃]i+1/2 =
(

1 − 1

2

(
φ
(
θ+
i

)+ φ
(
θ−
i+1

))
)

δi+1/2.

This shows that the sign property is satisfied iff

φ(θ) ≤ 1, ∀θ ∈ R.

In this article, we will use the minmod limiter based reconstruction which satisfies the sign
preserving property (see [6]). The minmod limiter is given by,

φ(θ) =

⎧
⎪⎨

⎪⎩

0, if θ < 0,

θ, if 0 ≤ θ ≤ 1,

1, else.

(3.15)

3.5 Discrete Entropy Stability

In this section, we prove that scheme given by the flux (3.12) is entropy stable i.e. it satisfies
a discrete version of the entropy estimate (2.3). We have the following result,

Theorem 3.1 The semi-discrete finite difference scheme (3.2), with entropy stable numerical
flux (3.12), is second order accurate for smooth solutions. Furthermore, it satisfies,

d

dt

∑

i,j

(ei,i,j + ee,i,j + em,i,j )�x�y ≤ C7

∑

i,j

(ei,i,j + ee,i,j + em,i,j )�x�y + C8 (3.16)

if conditions for Theorem 2.1 are satisfied.

Proof It is easy to see that the scheme is of second order accuracy, as both the entropy con-
servative flux F̂ and the numerical diffusion operator, are second order accurate for smooth
solutions. Now, consider the fluid part of (3.2), i.e.

dUα,i,j

dt
+ 1

�x

(
Fx

α,i+1/2,j − Fx
α,i−1/2,j

)+ 1

�y

(
Fy

α,i,j+1/2 − Fy

α,i,j−1/2

)= Sα,i,j (U), (3.17)

for α ∈ {i, e} with entropy numerical fluxes,

Qx
i+1/2,j = V

�
i+1/2,j Fx

i+1/2,j − χ̄i+1/2,j ,

Qy

i,j+1/2 = V
�
i,j+1/2Fy

i,j+1/2 − χ̄i,j+1/2.

(3.18)

Multiplying (3.17) with V�
α,i,j and imitating the proof of Theorem 2.2 from [17], we get

deα(Ui,j )

dt
= 1

�x

(
Q̂x

i+1/2,j − Q̂x
i−1/2,j

)− 1

�x

(
Q̂y

i,j+1/2 − Q̂y

i,j−1/2

)+ V�
α,i,j Sα,i,j (U)

− 1

2�x

([V]�i+1/2,j Dx
i+1/2,j

[
Px
]

i+1/2,j
+ [V]�i−1/2,j Dx

i−1/2,j

[
Px
]

i−1/2,j

)

− 1

2�y

([V]�i,j+1/2Dy

i,j+1/2

[
Py
]

i,j+1/2
+ [V]�i,j−1/2Dy

i,j−1/2

[
Py
]

i,j−1/2

)
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= − 1

�x

(
Qx

i+1/2,j − Qx
i−1/2,j

)− 1

�x

(
Qy

i,j+1/2 − Qy

i,j−1/2

)+ V�
α,i,j Sα,i,j (U)

− 1

4�x

([V]�i+1/2,j Dx
i+1/2,j

[
Px
]

i+1/2,j
+ [V]�i−1/2,j Dx

i−1/2,j

[
Px
]

i−1/2,j

)

− 1

4�y

([V]�i,j+1/2Dy

i,j+1/2

[
Py
]

i,j+1/2
+ [V]�i,j−1/2Dy

i,j−1/2

[
Py
]

i,j−1/2

)
.

Here

Q̂x
i+1/2,j = V

�
i+1/2,j F̂x

i+1/2,j − χ̄i+1/2,j , and Q̂y

i,j+1/2 = V
�
i,j+1/2F̂y

i,j+1/2 − χ̄i,j+1/2

are entropy fluxes corresponding to the entropy conservative fluxes F̂x and F̂y respectively.
Let us consider the diffusion terms. Ignoring all the indices, each diffusion term satisfies,

[V]�D[P] = [V]�R�R�[P]
= [V]�R�R�(R�)(−1)[W̃]

= (R�[V])��B
([W])

= (R�[V])��B
(
R�V
)

≥ 0,

as both B and � are non-negative diagonal matrices. So, we get

deα,i,j

dt
+ 1

�x

(
Qx

α,i+1/2,j − Qx
α,i−1/2,j

)+ 1

�y

(
Qy

α,i,j+1/2 − Qy

α,i,j−1/2

)≤ V�
α,i,j Sα,i,j .

A simple calculation shows that,

V�
α,i,j Sα,i,j = 0.

This results in the fluid entropy inequality,

deα,i,j

dt
+ 1

�x

(
Qx

α,i+1/2,j − Qx
α,i−1/2,j

)+ 1

�y

(
Qy

α,i,j+1/2 − Qy

α,i,j−1/2

)≤ 0,

α ∈ {i, e}, (3.19)

summing over all the cells we get,

d

dt

∑

i,j

eα,i,j�x�y ≤ 0, α ∈ {i, e}. (3.20)

Repeating the entropy argument of Dafermos [5] used in Theorem 2.1 we get an discrete
energy estimate for fluid part,

∑

i,j

(
ρ2

α,i,j + |ρα,i,j vα,i,j |2 + E2
α,i,j

)
�x�y ≤ C9

∑

i,j

eα,i,j�x�y + C10. (3.21)
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Imitating the proof of Theorem 2.1 where integration is replaced by summation, we get,

d

dt

∑

i,j

em,i,j�x�y ≤ C11

∑

i,j

(em,i,j + ei,i,j + ee,i,j )�x�y + C12. (3.22)

Combining with (3.20), we get (3.16). �

Remark 3.2 In Theorem 3.1, the discrete energy estimate (3.16) is satisfied only if the elec-
tron and ion density and pressure (as required by Theorem 2.1) are positive. We assume that
this positivity holds for the scheme. Currently, it is not possible to prove that this positivity
is also a consequence of the numerical scheme. However, we expect that the use of positivity
preserving limiters (like those in [19]) will enable us to prove positivity.

4 Fully Discrete Schemes

Let Un is the discrete solution at tn, and �t = tn+1 − tn. Then a semi-discrete scheme (3.2)
can be written as,

dUn
i,j

dt
= Li,j (Un) + Si,j (Un), (4.1)

where,

Li,j

(
Un
)= − 1

�x

(
Fx

i+1/2,j − Fx
i−1/2,j

)− 1

�y

(
Fy

i,j+1/2 − Fy

i,j−1/2

)
, and

Si,j

(
Un
)= s(Un

i,j ).

We describe two different time discretization schemes below.

4.1 Explicit Schemes

We use explicit Runge-Kutta (RK) time marching schemes for the time-discretizing of the
two-fluid equations. For simplicity, we restrict ourselves to the second- and third-order ac-
curate RK schemes (see [7, 16]). These methods are strong stability preserving (SSP). In
order to advance a numerical solution from time tn to tn+1, the SSP-RK algorithm is as
follows:

1. Set U(0) = Un.
2. For m = 1, . . . , k + 1, compute,

U(m)
i,j =

m−1∑

l=0

αmlU
(l)
i,j + βml�tn

(
Li,j

(
U(l)
)+ Si,j

(
U(l)
))

.

3. Set Un+1
i,j = U(k+1)

i,j .

The coefficients αml and βml are given in Table 1.
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Table 1 Parameters for
Runge-Kutta time marching
schemes

Order αil βil

2 1 1

1/2 1/2 0 1/2

3 1 1

3/4 1/4 0 1/4

1/3 0 2/3 0 0 2/3

4.2 IMEX-RK Schemes

As discussed in Sect. 1, two-fluid equations contain the following parameters: the speed of
light, mass ratio of ions to electrons, Debye length, and the Larmor radius. These parameters
determine the time scales of the flow and may impose severe restrictions on the time step
of explicit time marching schemes. Hence, we consider IMEX methods in this section. An
Implicit-Explicit Runge-Kutta (IMEX-RK) scheme for (1.1), is based on the implicit treat-
ment of the stiff source term and an explicit treatment of the convective flux terms. This
allows us to overcome stiffness due to the source terms.

We will use SSP-RK schemes, as described above, with each intermediate Euler update
being carried out by solving,

Um+1
i,j = Um

i,j + �t Li,j

(
Um
)+ �tSi,j

(
Um+1
)
, (4.2)

for Um+1. Usually (4.2) is solved using some iterative methods. However, we can exploit
the special structure of the source term for the two-fluid equations to solve (4.2) exactly. We
proceed as follows:
Denote U = {W1,W2,W3} with,

W1 = {ρi, ρe,B
x,By,Bz,ψ

}�
,

W2 = {ρiv
x
i , ρiv

y

i , ρiv
z
i , ρev

x
e , ρev

y
e , ρev

z
e ,E

x,Ey,Ez
}�

,

W3 = {Ei,Ee,φ}�.

We observe that (4.2) can be rewritten in the following three blocks,

W(m+1)

1 = G1

(
U(m)
)
, (4.3a)

W(m+1)

2 = G2

(
U(m)
)+ A
(
W(m+1)

1

)
W(m)

2 , (4.3b)

W(m+1)

3 = G3

(
U(m)
)+ H
(
W(m+1)

1 ,W(m+1)

2

)
. (4.3c)

Here G1,G2 and G3 are the explicit parts of (4.2) for the variables W1,W2 and W3 respec-
tively. Equations (4.3) are then solved in sequential manner:

(I) Equation (4.3a) is updated explicitly, as it involves the evaluation of the known terms
from the previous time step.

(II) Note that the matrix A(W(m+1)

1 ) in (4.3b) is,
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⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 Bz,(m+1)

r̂g
− By,(m+1)

r̂g
0 0 0

ρ
(m+1)
i

r̂g
0 0

− Bz,(m+1)

r̂g
0 Bx,(m+1)

r̂g
0 0 0 0

ρ
(m+1)
i

r̂g
0

By,(m+1)

r̂g
− Bx,(m+1)

r̂g
0 0 0 0 0 0

ρ
(m+1)
i

r̂g

0 0 0 0 Bz,(m+1)

r̂e,g
− By,(m+1)

r̂e,g

ρ
(m+1)
e
r̂e,g

0 0

0 0 0 − Bz,(m+1)

r̂e,g
0 Bx,(m+1)

r̂e,g
0

ρ
(m+1)
e
r̂e,g

0

0 0 0 By,(m+1)

r̂e,g
− Bx,(m+1)

r̂e,g
0 0 0

ρ
(m+1)
e
r̂e,g−ri

K
0 0 −re

K
0 0 0 0 0

0
−ri
K

0 0 −re
K

0 0 0 0

0 0
−ri
K

0 0 −re
K

0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.4)

with r̂e,g = −r̂g/λm and K = λ̂2r̂g . All the quantities in the matrix are already com-
puted in step I. So, we can rewrite (4.3b) as,

W(m+1)

2 = (I − (�t)A
(
W(m+1)

1

))(−1)
G2

(
U(m)
)
, (4.5)

which can evaluated exactly.
(III) Equation (4.3c) is now updated for Wm+1

3 by evaluating H(Wm+1
1 ,Wm+1

2 ).

Remark 4.1 The IMEX scheme proposed above does not require any non-linear Newton
solves or any global matrix inversions. It only needs explicit evaluations of the inverse of a
local 9 × 9 matrix in each cell making this scheme computationally inexpensive. Further-
more, there are no local linearizations or approximations being used in the scheme. It uses
an exact solution of the time stepping update (4.2).

Remark 4.2 Note that the wave speeds of the system depend on the speed of light and
the sound speeds of the electron and ion. The speed of these waves is either specified or
determined by the flux terms of the two-fluid equations. Consequently, an explicit in time,
evaluation of the flux terms, as in an IMEX scheme, might still lead to severe time step
restrictions on account of these waves.

5 Numerical Results

We present a set of numerical experiments to demonstrate the robustness of the proposed
schemes.

5.1 Convergence Rates

As it is not possible to obtain explicit solution formulas for the two-fluid equations, we
employ a forced solution approach to manufacture explicit solutions.

In one space dimension, we consider the modified equation:

∂tu + ∂xf(u) = s(u) + K(x, t)

with forcing term:

K(x, t) = {013,−
(
2 + sin

(
2π(x − t)

))
,0,0,2 + sin

(
2π(x − t)

)
,0
}�

.



J Sci Comput (2012) 52:401–425 415

Fig. 1 Errors of second order schemes

The initial densities are ρi = ρe = 2.0 + sin(2πx), with the velocities vx
i = vx

e = 1.0 and the
pressures pi = pe = 1.0. The initial magnetic field is By = sin(2πx) and the electric field is
Ez = − sin(2πx). The computational domain is (0,1) with periodic boundary conditions.
The ion-electron mass ratio is set to mi/me = 2.0.

It is straightforward to check that the exact solution is

ρi = ρe = 2.0 + sin
(
2π(x − t)

)
.

In Fig. 1(a), we have plotted the L1 errors for the second-order schemes based on entropy
stable fluxes with minmod (ES-MinMod) reconstruction for the spatial discretization and
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Table 2 Comparison of
simulation times of the numerical
schemes for Larmor radii of
10−2, 10−4 and 10−6 using
1500 cells

Scheme r̂g = 10−2 r̂g = 10−4 r̂g = 10−6

O2-ESMinMod-exp 100.42 5089.67 –

O3-ESMinMod-exp 152.26 533.85 74159.3

O2-ESMinMod-IMEX 103.67 106.53 102.87

O3-ESMinMod-IMEX 151.83 152.3 151.71

the second order SSP-RK scheme for time updated. For comparison, we have also plotted
the results for the second-order FVM scheme based on a four wave HLL type solver with
minmod limiter (O2-FVM). We observe that entropy stable schemes are significantly less
diffusive than the standard FVM schemes. This is further verified by the solution plots in
Fig. 1(b). The entropy stable version of the IMEX scheme is also less diffusive than its FVM
counterpart. However, we observe that rate of convergence for the IMEX scheme falls when
we refine the mesh. This is on account of splitting errors (in each RK2 sub-step) for the
IMEX schemes.

5.2 Soliton Propagation in One Dimension

Soliton propagation in two-fluid plasmas are simulated in [1–3, 9]. It is shown that ion-
acoustic solitons can form from an initial density hump. In this section, we follow [3, 9], to
simulate solitons in one space dimension.

Initially, the plasma is assumed to be stationary with ion density,

ρi = 1.0 + exp(−25.0|x − L/3.0|), (5.1)

and mass ratio mi/me = 25, on the computational domain D = (0,L) with L = 12.0. Elec-
tron pressure is pe = 5.0ρi with an ion-electron pressure ratio of 1/100. Normalized Debye
length is taken to be 1.0. Periodic boundary conditions are used. We consider three dif-
ferent Larmor radii: 10−2, 10−4 and 10−6. Numerical solutions are computed using 1500
cells. The simulations are carried out using an MPI parallelized version of the code, on 10
computational cores.

The solutions are plotted for second order, spatially accurate entropy stable schemes
(ESMN), using second (O2-ESMN) and third order (O3-ESMN) SSP Runge-Kutta, explicit
and IMEX time stepping routines. We have also plotted the corresponding FVM solutions.
The reference solutions for these simulations are computed using the O3-ESMN-IMEX
scheme on 10000 mesh points.

In Fig. 2, we have plotted solutions corresponding to the Larmor radius of 10−2. This
corresponds to the simulation performed in [9]. In Fig. 2(a), we have plotted the ion-density
profile at non-dimensional times t = 1,2,3,4 and 5. We observe that all the schemes are
able to capture soliton waves. In particular, the speed of soliton propagation is the same
for all the schemes. In Fig. 2(b), we have plotted the solutions at non-dimensional time
t = 5.0 and compared them with the reference solution. We again observe that the entropy
stable schemes are more accurate than the corresponding FVM schemes. However it is hard
to distinguish between some schemes in Fig. 2(b), as solution lines for O2-FVM-exp, O3-
FVM-exp, O2-FVM-IMEX and O3-FVM-IMEX coincide. Similarly, solution lines for O2-
ESMN-exp, O3-ESMN-exp, O2-ESMN-IMEX and O3-ESMN-IMEX lie on top of each
other in Fig. 2(b). To, further analyze the schemes in Fig. 2(c), we have zoomed in on the
solution at x = 1.35. We notice that ESMN-IMEX schemes are slightly more diffusive than
the ESMN-exp schemes.
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Fig. 2 Soliton propagation using 1500 cells and Larmor radius r̂g = 10−2
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Fig. 3 Soliton propagation using 1500 cells and Larmor radius r̂g = 10−4

Compared to the solutions presented in [9], entropy stable schemes appear to be more
diffusive. However, in [9] authors have used a fourth order Runge-Kutta update for the
source updates. Additionally, observe that both entropy stable schemes and wave propaga-
tion method fails to capture the oscillation around x = 10.0 at the low resolution of 1500
cells. These oscillations are present in the solution only at finer resolutions.

In Figs. 3 and 4, we have plotted the solutions for Larmor radii of 10−4 and 10−6, re-
spectively. In Figs. 3(a) and 4(a), we have plotted the ion-density at non-dimensional times
t = 1,2,3,4 and 5. As in the previous case, we observe that all schemes capture soliton
waves. Furthermore, from the solution plots at non-dimensional time t = 5.0, in Figs. 3(b)
and 4(b), we again note that the entropy stable schemes are less diffusive than FVM schemes.
For the case of Larmor radius 10−6, we have not presented the solution for second order ex-
plicit time updates due to the very large simulation times, required for these schemes.

The above figures show that the IMEX schemes are slightly more diffusive than the
explicit schemes for the same resolution and for the same spatial discretization. A natural
question that arises in this context is why should be IMEX schemes be used when they only
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Fig. 4 Soliton propagation using 1500 cells and Larmor radius r̂g = 10−6

differ marginally in resolution with the explicit time stepping schemes? The answer to this
lies in the computational run-time.

From the source term for the two-fluid equations (1.5), we see that the Larmor radius is a
crucial parameter in determining the strength of the source term. Reducing the Larmor radius
leads to an increase in the strength (and hence, stiffness) of the source term. Furthermore, the
Larmor radius does not determine the speed of the waves in the two-fluid system. Hence,
reducing the Larmor radius is a good test for evaluating the relative advantage of IMEX
schemes over explicit time marching schemes.

To this end, we consider soliton propagation with different Larmor radii of 10−2, 10−4

and 10−6, respectively. As the Larmor radius does not influence the wave speed, the time
step for the IMEX schemes remains similar for the three simulations (with different Larmor
radii). On the other hand, the increase in the strength of the source term, due to the decrease
in the Larmor radius, implies a reduction in the time step for an explicit scheme. Therefore,
we expect to see a difference in the computational cost between the implicit and explicit
schemes.
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The simulation run-time for the three simulations (with different Larmor radii), on a mesh
of 1500 points, with all other simulation parameters being constant, are shown in Table 2.
The table shows that the runtime for explicit schemes increases dramatically as the Larmor
radius is reduced. The second-order scheme is particularly affected as the stability region for
RK2 is quite small and it requires smaller time steps. In fact, for the Larmor radius of 10−4,
the second-order (in time) explicit scheme is about 10 times slower than the third-order (in
time) explicit scheme. As a consequence, the run-time for the second-order explicit scheme
on a Larmor-radius of 10−6 is too large and the run was not completed. The run-time for
the third-order explicit scheme was also very large. On the other hand, the time taken by the
implicit schemes (for both second- and third-order time stepping) is constant with respect to
the Larmor radius. This implies a massive speed up of the IMEX schemes (about a factor of
500) when compared to the explicit schemes. This example illustrates the main advantage
of the IMEX schemes: their robustness with respect to very low Larmor radii.

5.3 Generalized Brio-Wu Shock Tube Problem

The initial conditions for this Riemann problem are

Uleft =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρi = 1.0,

pi = 5 × 10−5,

ρe = 1.0 me/mi,

pe = 5 × 10−5,

Bx = 0.75,

By = 1.0,

vi = ve = E = 0,

φ = ψ = Bz = 0

Uright =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρi = 0.125,

pi = 5 × 10−6,

ρe = 0.125 me/mi,

pe = 5 × 10−6,

Bx = 0.75,

By = −1.0,

vi = ve = E = 0,

φ = ψ = Bz = 0

(5.2)

on the computational domain (0,1) with, U = Uleft for x < 0.5 and U = Uright for x > 0.5.
The ion-electron mass ratio is taken to be mi/me = 1836. The initial conditions are non-
dimensionalized using p0 = 10−4. Non-dimensional Debye length is taken to be 0.01. Sim-
ulations are carried out using Larmor radii of 10 and 0.001. Neumann boundary conditions
are used.

The purpose of this numerical experiment is to demonstrate the behavior of the solutions
of two-fluid equations in two different regimes: one with high Larmor-radius and another
with very low Larmor radius, respectively.

Numerical solutions are presented in Fig. 5. In Fig. 5(a), we have plotted the numeri-
cal solutions based on O2-ESMinMod scheme using second order explicit and IMEX time
updates. Solutions are computed with non-dimensional Larmor radius of 10.0, using 1000
cells. We observe that solution is very close to the solution of the Euler equations for each
species. Note that letting r̂g → ∞, one recovers the uncoupled equations of gas dynamics
for both species. Furthermore, both IMEX and explicit schemes produce very similar results.

The second regime that we investigate is to set the Larmor radius to 10−3. One expects
to recover the MHD limit for vanishing Larmor radius. This limit is quite complicated to
compute as one has to resolve the small-scale Langmuir oscillations, necessitating very fine
meshes (see [9]). We show results obtained on a mesh of 50000 cells both for second-order
and third-order (in time) entropy stable (explicit as well as IMEX) schemes in Figs. 5(b)
and 5(c), respectively.
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Fig. 5 Generalized Brio-Wu shock tube Riemann problem
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Fig. 6 Soliton propagation in two dimensions on 200 × 200 mesh with r̂g = 10−2

We observe that the both explicit and IMEX solutions are converging to the MHD limit.
However the second-order (in time) explicit scheme produces some small scale oscillations
(near the left boundary). These small scale oscillations are not present in the results present
in [9] as the source term in [9] is discretized using a fourth order Runge-Kutta update. On
the other hand, the IMEX schemes resolves all the waves correctly. For the explicit schemes,
small scale oscillations disappear when SSP-RK3 time update is used (see Fig. 5(c)) and the
results are comparable to those present in [9] in this case.

5.4 Soliton Propagation in Two Space Dimensions

Two dimensional soliton simulations were presented in [2]. We follow [2] and simulate 2-d
solitons by considering the initial ion-density to be

ρi = 1.0 + 5.0 exp(−500.0(x − Lx/2.0)2 + (y − Ly/2.0)2) (5.3)

on the computational domain (0,Lx) × (0,Ly) with Lx = Ly = 2.0. All other initial condi-
tions are same as in the case of one dimensional soliton propagation in Sect. 5.2. Neumann
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Fig. 7 Soliton propagation in two dimensions on 200 × 200 mesh with r̂g = 10−4

Table 3 Comparison of
simulation times of the numerical
schemes for Larmor radii of
10−2 and 10−4, using 200 × 200
cells

Scheme r̂g = 10−2 r̂g = 10−4

O3-ESMinMod-exp 907.2 2661.36

O3-ESMinMod-IMEX 921.82 939.96

boundary conditions are used to allow the waves to exit the domain without noticeable re-
flections. Note that we consider the ion-electron mass ratio of 25 as compared to the ratio
of 10, considered in [2]. Furthermore, we use Larmor radii of 10−2 and 10−4, compared to
10−1, used in [2]. We expect dispersive waves moving outwards, similar to the one dimen-
sional case, considered in section 5.2 (also see [2]).

Numerical results are presented in Figs. 6 and 7, corresponding to the Larmor radii of
10−2 and 10−4, respectively. In Figs. 6(a) and 7(a) we have plotted the solution at non-
dimensional time of t = 0,0.1,0.2 and 0.3 using O3-ESMN-IMEX scheme. The wave struc-
ture observed is similar to the one dimensional case. In Figs. 6(b) and 7(b), we have plotted
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one dimensional cuts of the solution at x = 1 and at non-dimensional time t = 0.5 for O3-
ESMN-exp and O3-ESMN-IMEX schemes. As seen in the figures, the initial density hump
breaks into a standing wave, centered at the origin, together with dispersive waves that prop-
agate outward. We observe similar performances for both schemes. Furthermore, the IMEX
scheme is faster than the explicit scheme for the low Larmor radius simulation (see Table 3).

6 Conclusion

We consider the two-fluid plasma equations and design finite difference schemes to approx-
imate them. The semi-discrete version of the scheme is shown to be entropy stable. As the
source terms in the two-fluid equations can be stiff, we propose IMEX schemes that treat the
source terms implicitly. The novelty of our approach, in this context, is to observe that the
special structure of the two-fluid plasma equations allows us to write the implicit (in source)
time update as a local (in each cell) linear system of equations. This system can be solved
exactly. Hence, our IMEX scheme does not require any Newton iterations or linearizations.

Both the explicit and IMEX entropy stable schemes are shown to perform robustly on
a set of numerical experiments. The entropy stable schemes are clearly more accurate than
standard HLL type finite volume schemes. The main advantage of the IMEX schemes lie in
the fact that they are robust (in run-time) with respect to a decrease in the Larmor radius. In
particular, on (realistic) low Larmor radii simulations, the IMEX schemes can gain orders
of magnitude in speedup as compared to the explicit schemes.

We will extend the entropy stable schemes to even higher order of accuracy and cou-
ple them with adaptive mesh refinement to be able to simulate realistic two-dimensional
examples like magnetic reconnection, in a forthcoming paper.

References

1. Baboolal, S.: Finite-difference modeling of solitons induced by a density hump in a plasma multi-fluid.
Math. Comput. Simul. 55, 309–316 (2001)

2. Baboolal, S.: High-resolution numerical simulation of 2D nonlinear wave structures in electromagnetic
fluids with absorbing boundary conditions. J. Comput. Appl. Math. 234, 1710–1716 (2010)

3. Baboolal, S., Bharuthram, R.: Two-scale numerical solution of the electromagnetic two-fluid plasma-
Maxwell equations: Shock and soliton simulation. Math. Comput. Simul. 76, 3–7 (2007)

4. Barth, T.J.: Numerical methods for gas-dynamics systems on unstructured meshes. In: Krner, D.,
Ohlberger, M., Rohde, C. (eds.) An Introduction to Recent Developments in Theory and Numerics of
Conservation Laws. Lecture Notes in Computational Science and Engineering, vol. 5, pp. 195–285.
Springer, Berlin (1999)

5. Dafermos, C.M.: Hyperbolic Conservation Laws in Continuum Physics, 3rd edn. Springer, Berlin (2009)
6. Fjordholm, U.S., Mishra, S., Tadmor, E.: Arbitrarily High order accurate entropy stable essentially non-

oscillatory schemes for system of conservation laws. Research Report N. 2011–39, Seminar für Ange-
wandte Mathmatik ETH Zürich (2011)

7. Gottlieb, S., Shu, C.W., Tadmor, E.: Strong stability-preserving high-order time discretization methods.
SIAM Rev. 43, 89–112 (2001)

8. Goedbloed, H., Poedts, S.: Principles of Magnetohydrodynamics. Cambridge University Press, Cam-
bridge (2004)

9. Hakim, A., Loverich, J., Shumlak, U.: A high-resolution wave-propagation scheme for ideal two-fluid
plasma equations. J. Comput. Phys. 219, 418–442 (2006)

10. Ismail, F., Roe, P.L.: Affordable, entropy-consistent Euler flux functions II: Entropy production at
shocks. J. Comput. Phys. 228, 5410–5436 (2009)

11. Johnson, E.A., Rossmanith, J.A.: Collisionless magnetic reconnection in a five-moment two-fluid
electron-positron plasma. In: Proceedings of Symposia in Applied Mathematics (proceedings of
HYP2008), vol. 67.2 (2009)



J Sci Comput (2012) 52:401–425 425

12. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cam-
bridge (2002)

13. Loverich, J., Hakim, A., Shumlak, U.: A discontinuous Galerkin method for ideal two-fluid plasma
equations (2010). arXiv:1003.4542

14. Munz, C.D., Omnes, P., Schneider, R., Sonnendrücker, E., Voß, U.: Divergence correction techniques
for Maxwell solvers based on a hyperbolic model. J. Comput. Phys. 161, 484–511 (2000)

15. Shumlak, U., Loverich, J.: Approximate Riemann solvers for the two-fluid plasma model. J. Comput.
Phys. 187, 620–638 (2003)

16. Shu, C.W.: TVD time discretizations. SIAM J. Math. Anal. 14, 1073–1084 (1988)
17. Tadmor, E.: The numerical viscosity of entropy stable schemes for systems of conservation laws. I. Math.

Comput. 49, 91–103 (1987)
18. Tadmor, E.: Entropy stability theory for difference approximations of nonlinear conservation laws and

related time-dependent problems. Act. Numerica 451–512 (2004)
19. Zhang, X., Shu, C.W.: On positivity-preserving high-order Discontinuous Galerkin schemes for Euler

equations on rectangular meshes. J. Comput. Phys. 229, 8918–8934 (2010)

http://arxiv.org/abs/arXiv:1003.4542

	Entropy Stable Numerical Schemes for Two-Fluid Plasma Equations
	Abstract
	Introduction
	Analysis of Continuous Problem
	Semi-discrete Schemes
	Entropy Conservative Flux
	Numerical Diffusion Operator
	Second Order Dissipation Operator
	Reconstruction Procedure
	Discrete Entropy Stability

	Fully Discrete Schemes
	Explicit Schemes
	IMEX-RK Schemes

	Numerical Results
	Convergence Rates
	Soliton Propagation in One Dimension
	Generalized Brio-Wu Shock Tube Problem
	Soliton Propagation in Two Space Dimensions

	Conclusion
	References


