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Abstract: Using operator algebraic methods we show that the moment generating
function of charge transport in a system with infinitely many non-interacting Fermi-
ons is given by a determinant of a certain operator in the one-particle Hilbert space. The
formula is equivalent to a formula of Levitov and Lesovik in the finite dimensional case
and may be viewed as its regularized form in general. Our result embodies two tenets
often realized in mesoscopic physics, namely, that the transport properties are essentially
independent of the length of the leads and of the depth of the Fermi sea.

1. Introduction

Models of physical systems are often formulated with the help of one or a few parameters
which guarantee that whatever one computes is well defined and finite while, at the same
time, are believed not to affect properties of physical interest. Examples are: the number
of particles in a macroscopic system, and the lattice spacing (ultraviolet cutoffs) in the
study of critical phenomena.

The theory of transport in mesoscopic systems has two such parameters: the length
of the incoming leads that connect to the system and the depth of the Fermi sea. The
independence of the length of the leads is the statement that well designed experiments
measure the transport properties of the mesoscopic system and are independent of the
measuring circuit. The independence of the depth of the Fermi sea expresses the irrel-
evance for transport of electrons that are buried deep in the Fermi sea, since in most
situations they can not be excited above it. In this sense there is freedom from both
the volume and the ultraviolet scale. See [21] for a numerical investigation of these
properties.

One strategy to address this type of behavior is to consider idealized systems where
the parameters are taken to be infinitely large. The limiting idealized system comes with
the price tag that expressions for physical quantities that are otherwise guaranteed to be
finite, may become ambiguous, formal and even infinite. The value in worrying about
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this idealized, possibly un-physical system, is precisely in that once the ambiguities and
infinities are resolved, they teach us something important about the finite physical model,
namely, that the parameters used in its formulation, do indeed effectively disappear
from the physical properties. Their role is effectively reduced to the control of the small
differences between the idealized model and the physical one.

We shall consider a problem of this kind that arises in the context of modeling the
statistics of charge transport from one reservoir to another. Levitov and Lesovik [13]
wrote a formula for the appropriate generating function in terms of a certain infinite
dimensional determinant. The formula has found a number of applications to shot and
thermal noise in devices like transmission barriers, cavities, and interfaces. When one
wants to apply this formula to the idealized cases one finds ambiguities and, as em-
phasized by Levitov et al. [8,11,12], the determinant requires proper definition through
regularization. We intend to further the understanding of these points by providing an
alternative, mathematically consistent, form for the determinant. As we shall see, the
“regularized form” of the determinant naturally emerges once the quantum dynamics is
formulated on the state space of the idealized system.

In the next section we introduce the statistics of charge transport, review the Levitov-
Lesovik determinant, and propose a regularization. In Sect. 3 we state the main results.
Section 4 is devoted to proofs and begins with a short overview thereof. Finally, Sect. 5
exemplifies the assumptions made in this work.

2. The Levitov-Lesovik Formula and Its Regularization

We consider a lead, where independent electrons are evolved over some time interval
and ask about the statistics of the charge transferred from the left to the right portion
of the lead. To begin, we recall the result obtained in [13] and further elaborated in
[12,8]. We present its derivation and generalization to finite times along the heuristic
lines given in [10], in the sense that we do as if the one-particle Hilbert space H were
finite-dimensional.

The fermionic Fock space F over H contains a distinguished state, the vacuum,
with the physical interpretation of a no particle state. Let Tr, resp. tr, denote the trace
on F , resp. H. Let U be the unitary on H representing the time evolution, and Q the
projection corresponding to the right portion of the lead. Their second quantizations,
�(U ) = ∧k

i=1Ui , resp. d�(Q) = ∑k
i=1 Qi on k-particle states, then stand for the

evolution on F , resp. for the charge in that portion. We suppose that the initial many
particle (mixed) state is of the form

P = Z−1�(M)

for some operator M ≥ 0, where Z = Tr �(M) = det(1 + M) ensures that TrP = 1.
The reduced one-particle density matrix N is defined by the property that

tr(AN ) = Tr (d�(A)P)

for any one-particle operator A on H. In our case, N = M(1 + M)−1. This follows from

Tr
(

eiλd�(A)P
)

= Tr
(
�(eiλA)P

)
= Z−1Tr

(
�(eiλA M)

)
= det(1 + eiλA M)

det(1 + M)

= det(1 − N + eiλA N ) (1)

by taking the derivative at λ = 0.
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In the following, we assume that M and Q, and hence P and d�(Q), commute, which
physically means that in the state defined by P , charge in the lead measured by d�(Q)
is a good quantum number. Hence

P|α〉 = ρα|α〉, d�(Q)|α〉 = nα|α〉,
for some basis {|α〉} of F . The moment generating function for the charge transfer
statistics is

χ(λ) =
∑

n∈Z

pneiλn,

where pn is the probability for n electrons being deposited into the right portion of the
lead by the end of the time interval. It may be computed as a sum over initial and final
states, α resp. β, with the former weighted according to their probabilities ρα:

χ(λ) =
∑

α,β

|〈β|�(U )|α〉|2 ραeiλ(nβ−nα) = Tr
(
�(U )∗eiλd�(Q)�(U )e−iλd�(Q)P

)

= Z−1Tr
(
�(U∗eiλQUe−iλQ M)

)
= det

(
1 − N + eiλU∗ QU Ne−iλQ

)
, (2)

where the trace has been computed in the basis |α〉, with an identity
∑ |β〉〈β| = 1

absorbed at the left of �(U ); the last equality is by (1). This is the Levitov-Lesovik
formula:

χ(λ) = det D(λ), D(λ) = N ′ + eiλQU Ne−iλQ, (3)

with N ′ = 1 − N and QU = U∗QU . Since Q is a projection, e2π iQ = e2π iQU = 1
and D(λ) is a periodic function with period 2π . This expresses the integrality of charge
transport.

An example of a state of interest is that of a system at inverse temperature β having
one-particle Hamiltonian H ; it is P = Z−1�(M) with M = exp(−βH) and N =
[1 + exp(βH)]−1. In the limit β → ∞, P describes the Fermi sea, whence N is the
projection onto the occupied one-particle states.

The above derivation would be rigorous if the one-particle Hilbert space were finite
dimensional. The question we want to address here is what is the correct replacement for
D(λ)when P describes infinitely many particles, both because the lead may be infinitely
extended spatially (as appropriate for an open system) and because the Fermi sea may
be very or even infinitely deep. The first concern appears to affect only the derivation,
but not the result, Eq. (3). However, by the second, D(λ) differs from the identity by
more than a trace class operator, as would be required by the definition of a Fredholm
determinant. A manifestation thereof (and in a sense the only one) is that the expected
charge transport

〈n〉 = −iχ ′(0) = −i
d

dλ
det D(λ)

∣
∣
∣
∣
λ=0

= tr ((QU − Q)N ) (4)

involves an operator which is not trace class in the stated situation. These statements are
illustrated (in the β = ∞ case) in Fig. 1 representing the phase space of a single particle
moving freely.

The Fermi sea N corresponds to |p| < pF , pF being the Fermi momentum, and
similarly the right half of the lead Q to x > 0. The free evolution, which we take
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Fig. 1. Left: Dispersion relation E(p) of free particles, and its linearization. Right: Phase space (coordinates
x , p) with regions selected by N , Q and QU , and hatched along their boundaries with slanted, horizontal, and
vertical dashes, respectively

as a simple example for U , is a horizontal shear, so that QU − Q is associated with
two sectors, labelled + and −. Their intersection with the horizontal strip associated
with N delineates the phase space support of (QU − Q)N . Its area, which is a rough
estimate of the trace class norm of the operator, is proportional to the depth of the sea.
If the dispersion relation is conveniently linearized at ±pF , the depth becomes infinite,
implying that the operator is not trace class. As a remedy, we note that the expression

tr (QN − QU NU ) = 0,

with NU = U∗NU , vanishes by splitting the trace, though only suggestively so, because
the traces fail to exist separately due to the infinite spatial extent of the leads. Adding
nevertheless that expression to (4) yields

〈n〉 = tr (QU (N − NU )), (5)

which vanishes in the special case of the free evolution, NU = N , and is expected to
be finite in others. This way of renormalizing the expression is actually declaring that
the Fermi sea does not contribute to the current, instead of relying on a compensation
between left and right movers, as indicated by + and − in the figure.

This heuristic manipulation motivates the following regularization of the Levitov-
Lesovik determinant. Replacing D(λ) by

D̃(λ) = e−iλNU QU D(λ)eiλN Q (6)

should not change the value of the determinant, since informally

det(e−iλNU QU ) · det(eiλN Q) = eiλ tr(QN−QU NU ) = 1. (7)

Incidentally, this regularization affects only the first cumulant of the statistics, i.e. the
average charge transfer, since the full set of cumulants is generated by log det D̃(λ). We
are thus led to recast Eq. (3) as

χ(λ) = det D̃(λ), (8)

D̃(λ) = e−iλNU QU N ′eiλN Q + eiλN ′
U QU Ne−iλN ′ Q . (9)
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It is to be noted that this representation of χ(λ) is manifestly particle-hole symmetric:

χN (λ) = χN ′(−λ). (10)

It is also 2π -periodic in λ, though manifestly so only at T = 0 since N Q, N ′Q etc. are
all projections. In that case, Eq. (9) reduces to

D̃(λ) = 1 + QU (N − NU )
(
(eiλ − 1)N − (e−iλ − 1)N ′) ,

which shows that the generating functionχ(λ) is well-defined whenever its first cumulant
(5) is. As we shall see, a slightly weaker result holds at positive temperature.

Let us mention a few connections to other works. A related regularization of the
Levitov-Lesovik determinant at zero temperature was used in [15], where the rela-
tion of counting statistics to a Riemann-Hilbert problem was studied. Another one,
exhibiting the symmetry (10), was proposed in [16]. On the more mathematical side,
regularizations of determinants have been related to renormalization in [22], though
by means of a somewhat different regularization known as detn(1 + A) = det(1 +

A) exp
(

tr
∑n−1

j=1(−1) j A j/j
)

. The role of C*-algebras in the theory of open systems

has recently been advocated by Jakšić and Pillet, see e.g. [9], in general, but also to
fluctuations in particular. A generating function for fluctuations of energy in bosonic
systems has been proposed by [19].

The purpose of this work is to show that, under reasonable assumptions, Eq. (8) is
obtained without recourse to regularizations, if the second quantization is built upon the
Fermi sea rather than on the vacuum N = 0.

3. Results

Let H be a separable Hilbert space with the following operators acting on it: An orthog-
onal projection Q, a unitary U , and a selfadjoint N , with

0 ≤ N ≤ 1, (11)

whose physical interpretations have been described in the previous section. Let N ′ =
1 − N . We denote by Ip, (p ≥ 1) the Schatten trace ideals, i.e. the space of all bounded
operators A on H such that ‖A‖p

p := tr|A|p < ∞.
The algebra of canonical anticommutation relations (CAR) over H is the C*-algebra

A(H) generated by 1, and the elements a( f ) and a∗( f ), ( f ∈ H), such that

i. the map f �−→ a( f ) is antilinear,
ii. a∗( f ) = a( f )∗,

iii. these elements satisfy the following anticommutation relations:

{a( f ), a∗(g)} = ( f, g)1,

all other anticommutators vanishing.

A (global) gauge transformation is expressed by the automorphism αλ : a( f ) �→
a(eiλ f ). A state ω on A(H) is gauge-invariant if ω(αλ(A)) = ω(A) for all A ∈ A(H).
The operator N defines a gauge-invariant quasi-free state ωN through

ωN (a
∗( fn) . . . a

∗( f1) a(g1) . . . a(gm)) = δnm det(gi , N f j ), (12)
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or equivalently by ωN (a∗( f )a(g)) = (g, N f ) and Wick’s lemma. Let (HN , πN ,
N )

be the cyclic (or GNS) representation of ωN :

ωN (A) = (
N , πN (A)
N ), (A ∈ A(H)). (13)

The algebra of observables is the (strong) closure of the range of πN , which is equal
to its double commutant πN (A(H)) = πN (A(H))′′. We also recall that a state is pure
if and only if πN (A(H)) is irreducible, i.e. πN (A(H))′ = {c · 1 | c ∈ C}, see e.g. [5],
Thm. 2.3.19. This is equivalent to N being a projection operator.

These concepts briefly reviewed, we are now ready to state our main theorem. Its
significance is discussed below in a series of remarks. The key result, which is part (v)
together with Corollary 2, states that the moment generating function is given by the
regularized determinant, as described in the previous section.

Theorem 1. Assume that

[Q, N ] = 0, (14)
√

N − √
NU∗ ,

√
N ′ −

√
N ′

U∗ ∈ I1, (15)

where NU∗ = U NU∗.
Pure state. Suppose N = N 2. Then we have

i. D̃(λ)− 1 ∈ I1, where D̃(λ) is given in Eq. (9).
ii. The Bogoliubov automorphisms induced on A(H) by the unitary operators U and

exp(iλQ) are implementable on HN : There exist a unitary operator Û and a
selfadjoint Q̂ on HN such that

ÛπN

(
a#( f )

)
Û∗ = πN

(
a#(U f )

)
, (16)

eiλQ̂πN

(
a#( f )

)
e−iλQ̂ = πN

(
a#(eiλQ f )

)
, (17)

for all f ∈ H.
iii. eiλQ̂ ∈ πN (A(H))′′. More generally, f (Q̂) ∈ πN (A(H))′′ for any bounded

function f .
iv. The above properties define Û uniquely up to left multiplication with an element

from πN (A(H))′, and Q̂ up to an additive constant. In particular, Û∗eiλQ̂Ûe−iλQ̂

is unaffected by the ambiguities.
v.

(
N , Û
∗eiλQ̂Ûe−iλQ̂
N ) = det D̃(λ). (18)

Mixed state. The above conclusions hold also for 0 < N < 1 if, in addition,

Q
√

N N ′ ∈ I1. (19)

Remark. 1) Equation (15) demands that the evolution U preserves N , except for creating
excitations within an essentially finite region in space and energy, as can be seen from
the phase space picture given in the introduction. This assumption is appropriate for the
evolution induced by a compact device operating smoothly during a finite time interval.

2) The operators Û , Q̂ in (ii) are replacements for the non-existent �(U ) and d�(Q)
mentioned in the introduction. Equations (16, 17) state that any additional particle in the
system evolves by U , resp. contributes to the charge as described by Q.
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3) If the state is pure, the pair of Eqs. (15) reduce to the first one with square roots
dropped, and property (iii) holds trivially, since B(HN ) = πN (A(H))′′, the bounded
operators on HN . Moreover, Û is unique up to a phase. Incidentally, condition (19)
would be trivial in this case.

4) Property (iii) states that Q̂ is an observable, and the same is true for Û∗ Q̂Û ,
because of Û∗πN (A(H))Û ⊂ πN (A(H)), see (16). Thus, the total charges before and
after the evolution are separately bestowed with physical meaning.

5) The physical origin of the extra assumption (19) needed in the mixed state case
is as follows. In both cases, the expected charge contained in a portion of the lead is
of order of its length L , or zero if renormalized by subtraction of a background charge.
In the pure case however, the Fermi sea is an eigenvector of the charge operator, while
for the mixed state, the variance of the charge must itself be of order L , because the
occupation of the one-particle states is fluctuating, since N N ′ �= 0. Hence, in this latter
situation, the measurement of the renormalized charge yields finite values only as long
as L is finite, of which Eq. (19) is a mathematical abstraction. This condition, while
unnecessary for property (ii), is essential for (iii). Without the latter, the l.h.s. of Eq. (18)
appears to be ambiguous. On the other hand, the weaker condition

(QU − Q)
√

N N ′ ∈ I1, (20)

is sufficient for property (i) and to ensure that the difference Q̂U − Q is an observable.
6) The theorem does not apply to the general case (11). The two cases considered

suffice for thermal states with β = ∞ and 0 < β < ∞.

Let Q̂ = ∫
n d P(n) be the spectral representation of Q̂. According to quantum

mechanical principles an ideal measurement of Q̂ with outcome n in dn collapses 
N
to the state d P(n)
N , normalized to the probability (d P(n)
N , d P(n)
N ) of that
outcome. Effectively, this means that d P(n)
N is the state relevant for a second mea-
surement. The charge transfer is inferred from two measurements [15] of the charge Q̂,
one before and one after the evolution of the system by Û . The joint probability for mea-
surements n and m is (Ûd P(n)
N , d P(m)Ûd P(n)
N ) and the generating function
appropriately defined as

χN (λ) =
∫∫

(d P(n)
N , Û
∗d P(m)Ûd P(n)
N )e

iλ(m−n).

Corollary 2. The spectrum of Q̂ consists of integers, up to an additive constant. The
generating function is

χN (λ) = (
N , Û
∗eiλQ̂Ûe−iλQ̂
N )

and describes the transport of integer charges n with non-negative probabilities:

χN (λ) =
∑

n∈Z

pneiλn, pn ≥ 0,
∑

n∈Z

pn = 1.

Moreover, the particle-hole symmetry (10) holds true.
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4. Proofs

We begin by giving the proof of the corollary and continue with that of part (i) of the
theorem. Then we give some preliminaries, including details such as inner Bogoliubov
automorphisms and the Shale-Stinespring criterion for general ones. Thereafter we prove
parts (ii-iv) readily if the state is pure, and using its purification, if it is mixed. Finally,
the main formula (v) is obtained using an approximation procedure in terms of inner
automorphisms and finite dimensional determinants.

4.1. Proof of Corollary 2. We begin by recalling that every gauge-invariant state is a
factor state (see [17], Thm. 5.1), i.e.

πN (A(H))′ ∩ πN (A(H))′′ = {c · 1| c ∈ C}. (21)

From Eq. (17) and e2π iQ = 1, we see that e2π iQ̂ ∈ πN (A(H))′, while by (iii) we have
e2π iQ̂ ∈ πN (A(H))′′. Thus e2π iQ̂ = c, (|c| = 1) and we may assume c = 1 by adding
an additive constant to Q̂, see (iv). The spectral representation of Q̂ is then of the form

Q̂ =
∑

n∈Z

n Pn . (22)

We note that

(
N , eiλQ̂ Ae−iλQ̂ 
N ) = (
N , A
N ) (23)

for A ∈ πN (A(H))′′. Indeed, for A = πN (a∗( f ) a(g)), we have eiλQ̂ Ae−iλQ̂ =
πN (a∗(eiλQ f ) a(eiλQ g)) by (17). The expectations (23) agree because of (eiλQ g, N
eiλQ f ) = (g, N f ) by [Q, N ] = 0. The same holds true by (12) for arbitrary products
of a∗( fi ), a(gi ), and by density, for A ∈ πN (A(H))′′. By (iii) we may apply (23)
to AeiλQ̂ instead of A, and obtain (
N , Pn A
N ) = (
N , APn 
N ); then this to
APn ∈ πN (A(H))′′ instead of A, and get (
N , APn 
N ) = (
N , Pn APn 
N ). More-
over, we have Û∗eiλQ̂Û ∈ Û∗πN (A(H))′′Û ⊂ πN (A(H))′′ by (16). Hence, using (22),
we see that

(
N , Û
∗eiλQ̂Ûe−iλQ̂ 
N ) =

∑

n∈Z

(
N , PnÛ∗eiλQ̂Û Pn 
N )e
−iλn

=
∑

n,m∈Z

(
N , PnÛ∗ PmÛ Pn 
N )e
iλ(m−n)

is of the stated form. ��

4.2. Part (i). Since the projection Q commutes with N , see (14), we have

eiλN Q = 1 + (eiλN − 1)Q,

e−iλNU QU = 1 + QU (e
−iλNU − 1).

We insert these equations in the definition (9) of D̃(λ). Moreover,

NU − N = N 1/2(N 1/2
U − N 1/2) + (N 1/2

U − N 1/2)N 1/2
U ∈ I1, (24)
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so that

e−iλN − e−iλNU = i
∫ λ

0
e−i(λ−s)NU (NU − N )e−is N ds

also belongs to the trace class ideal. Rather than proving D̃(λ) ∈ 1 + I1 for D̃(λ) we
may thus do so for the expression

[1+ QU (e
−iλN −1)]N ′[1+(eiλN − 1)Q] + [1 + QU (e

iλN ′ − 1)]N [1 + (e−iλN ′ − 1)Q]
= N ′+N + QU [(e−iλN − 1)N ′ + (eiλN ′ − 1)N ] + [N ′(eiλN − 1) + N (e−iλN ′ − 1)]Q

+QU [(e−iλN − 1)N ′(eiλN − 1) + (eiλN ′ − 1)N (e−iλN ′ − 1)]Q

= 1 + QU
[
(cos(λN )− 1)N ′ + (cos(λN ′)− 1)N − i sin(λN )N ′ + i sin(λN ′)N

]

+Q
[
(cos(λN )− 1)N ′ + (cos(λN ′)− 1)N + i sin(λN )N ′ − i sin(λN ′)N

]

+2QU Q
[
(1 − cos(λN ))N ′ + (1 − cos(λN ′))N

]

= 1 + (Q2
U + Q2 − 2QU Q)[(cos(λN )− 1)N ′ + (cos(λN ′)− 1)N ]

+i(Q − QU )[sin(λN )N ′ − sin(λN ′)N ].
With the help of the functions f (x) = (cos x − 1)/x and g(x) = (sin x)/x , which are
bounded also at x = 0, the expression is rewritten as

1 + [(Q − QU )Q − QU (Q − QU )]N N ′λ( f (λN ) + f (λN ′))
+i(Q − QU )N N ′λ(g(λN )− g(λN ′)).

Besides Q
√

N N ′ ∈ I1, see Eq. (19), we have QU
√

N N ′ = U∗Q
√

NU∗ N ′
U∗U ∈ I1 by

Eq. (15), and hence (Q − QU )
√

N N ′ ∈ I1, cf. (20). This makes the claim manifest. ��
In the zero temperature case, where N is a projection, the above proof simplifies

considerably due to N N ′ = 0.

4.3. Preliminaries. We recall a few results about Bogoliubov transformations, first inner
and then others.

Given a bounded operator A on H, operators �(A) and d�(A) are usually defined
on the Fock space over H. Following [2] we define them instead as elements of the
CAR-algebra A(H), when A is of finite rank.

• For rank one operators Ai = | fi 〉〈gi |, (i = 1, . . . , n), we set

d�(A1, . . . , An) = a∗( fn) · · · a∗( f1) a(g1) · · · a(gn). (25)

The definition is extended by multilinearity to operators Ai of finite rank. The result
is independent of the particular decomposition into rank one operators.

• For U − 1 of finite rank, we set

�(U ) =
∞∑

n=0

1

n!d�(U − 1, . . . , U − 1
︸ ︷︷ ︸

n

),

where the term n = 0, in which no arguments are present, is read as d� = 1. The
sum is finite, because the terms with n > rank(U − 1) vanish.
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The elements of A(H) just defined share the properties of the operators on Fock space
known by the same notation.

Lemma 3. Let U − 1 be of finite rank. Then

�(U )a∗( f ) = a∗(U f )�(U ), (26)

�(U1U2) = �(U1)�(U2). (27)

In particular, �(U ) is unitary if U is.

Proof. We have

d�(A1, . . . , An)a
∗( f ) = a∗( f )d�(A1, . . . , An)

+
n∑

i=1

a∗(Ai f )d�(A1, . . . , Âi , . . . , An), (28)

where the hat indicates omission. In the rank one case, Ai = | fi 〉〈gi |, this follows
from (25) and from (gi , f )a∗( fi ) = a∗(Ai f ). In the general case, by multilinearity.
Thus,

�(U )a∗( f ) = a∗( f )�(U ) + a∗((U − 1) f )
∞∑

n=1

1

(n − 1)! d�(U − 1, . . . ,U − 1)

= a∗( f )�(U ) + a∗((U − 1) f )�(U ) = a∗(U f )�(U ),

since we applied (28) with n equal entries Ai = U − 1.
We have

d�(A1, . . . , An)d�(B1, . . . , Bm)

=
min(n,m)∑

l=0

∑

Cl

d�(Ai1 B j1 , . . . , Ail B jl , A1, . . . , Âis , . . . , An, B1, . . . , B̂ js , . . . , Bm),

where the second sum runs over all l-contractions (i1, j1), . . . , (il , jl) with i1 < . . . <

il , jis �= jir . In the rank one case, which implies the general one, this is just Wick’s
lemma for normal ordered products. Thus

�(U1)�(U2) =
∞∑

n=0

1

n! d�(U1 − 1, . . . ,U1 − 1) ·
∞∑

m=0

1

m! d�(U2 − 1, . . . ,U2 − 1)

=
∞∑

n,m=0

min(n,m)∑

l=0

1

l!(n − l)!(m − l)! d�((U1 − 1)(U2 − 1), . . . ,

×U1 − 1, . . . ,U2 − 1, . . .)

with entries repeated l, n − l, m − l times. In fact, the number of l-contractions is

1

l!
n!

(n − l)!
m!

(m − l)! .
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Setting n − l =: s, m − l =: t , l + s + t =: r , we have

�(U1)�(U2) =
∞∑

r=0

∑

l,s,t
l+s+t=r

1

l! s! t ! d�((U1 − 1)(U2 − 1), . . . ,U1−1, . . . ,U2−1, . . .)

=
∞∑

r=0

1

r ! d�((U1 − 1)(U2 − 1) + (U1 − 1) + (U2 − 1), . . .),

since there are r !/ l! s! t ! ways to pick terms from each entry of the last line. Since
(U1 − 1)(U2 − 1) + (U1 − 1) + (U2 − 1) = U1U2 − 1, the proof is complete. ��

If O is an operator on H such that O −1 is in the trace class, its Fredholm determinant
is defined by

det O =
∞∑

k=0

tr ∧k (O − 1). (29)

This extends the usual definition of the determinant in the finite dimensional case.

Lemma 4. Let A be a finite rank operator, and 0 ≤ N ≤ 1. Then

ωN (d�(A, . . . , A
︸ ︷︷ ︸

k

)) = tr ∧k (AN ).

Moreover, if U is such that U − 1 is of finite rank, then

ωN (�(U )) = det((1 − N ) + U N ). (30)

Proof. The trace of a finite rank operator A = ∑m
i=1 fi (gi , ·) is tr A = ∑m

i=1(gi , fi ).
By the same token, that of

∧k A =
m∑

i1,...ik=1

1

k!
∑

σ∈Sk

(−1)σ ⊗k
α=1 fiσ(α) (giα , ·)

is

tr ∧k A =
∑

1≤i1<...<ik≤m

det(giα , fiβ )
k
α,β=1.

Since the a#( f ) anticommute, we have

d�(A, . . . , A) =
∑

1≤i1<...<ik≤m

a∗( fi1) · · · a∗( fik ) a(gik ) · · · a(gi1),

whose expectation value is computed by (12) as

ωN (d�(A, . . . , A)) =
∑

1≤i1<...<ik≤m

det(Ngiα , fiβ )
k
α,β=1 = tr ∧k (AN ),

because the decomposition of AN differs from that of A by Ngi in place of gi . This
proves the first part of the lemma. The second part is now an application of the definition
of the determinant, Eq. (29). Indeed, ωN (�(U )) = 1 +

∑∞
k=1 tr ∧k ((U − 1)N ) =

det(1 + (U − 1)N ). ��
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We recall a few results on Bogoliubov transformations. Their proofs can be found
e.g. in [1], where however CAR-algebras are introduced in the self-dual guise. A remark
at the end of this subsection is intended as an aid to translation. The first result is the
Shale-Stinespring criterion [24] about unitary implementability (see e.g. [14,1], Thm.
6.3 (1)).

Proposition 5. Let P be a projection and V a unitary operator on H. The Bogoliubov
automorphism induced by V on H, i.e. a( f ) �→ a(V f ), is unitarily implementable in the
representation πP if and only if PV (1 − P) and (1 − P)V P are in the Hilbert-Schmidt
class, I2.

In particular, an equivalent condition is [P, V ] = PV (1 − P)− (1 − P)V P ∈ I2.
There is a version of this proposition for groups ([1], Thm. 6.10 (2, 3)).

Proposition 6. Let V in the previous proposition be replaced by a 1-parameter unitary
group Vλ, (λ ∈ R), such that Vλ is norm continuous and PVλ(1 − P) is continuous
in the I2-norm. Then Vλ has an implementer of the form V̂λ = exp(iλv̂), where v̂ is a
self-adjoint operator on HP . The requirement

(
P , v̂
P ) = 0 (31)

may be imposed, in which case v̂ is unique.

An equivalent condition, is Vλ = exp(iλv) with v a bounded, selfadjoint operator on
H, and Pv(1 − P) ∈ I2.

The next result is about the continuity of the implementation, see [1], Thm. 6.10 (7).

Proposition 7. Let v and vn, (n = 0, 1, . . .), satisfy the hypotheses of Prop. 6, and let v̂,
v̂n satisfy the normalization (31). If (vn) converge strongly to v and if ‖P(vn − v)(1 −
P)‖2 → 0 as n → ∞, then

s− lim
n

eiλv̂n = eiλv̂.

The last preliminary is concerned with the twisted duality of CAR-algebras. Let P
be an orthogonal projection on H, K ⊂ H a closed subspace, and K⊥ its orthogonal

complement. Let Ã(K⊥) be the von Neumann algebra generated by �̂πP (a( f )), ( f ∈
K⊥), where �̂ is the parity. Then [7,4]

πP (A(K))′ = Ã(K⊥). (32)

The implementers V̂ from Prop. 5 commute with parity: Let �̂ : HP → HP be
the unitary implementation of the *-automorphism a( f ) �→ a(− f ) which is uniquely
determined by �̂
P = 
P . Then

[V̂ , �̂] = 0, (33)

see [1], Thm. 6.3 (3), Thm. 6.7 (2). We will actually apply this fact only to V̂ = V̂λ as
in Prop. 6, in which case it can be verified as follows. Since [Vλ,−1] = 0, the operators
�̂V̂λ and V̂λ�̂ implement the same Bogoliubov automorphism, whence �̂V̂λ = cλV̂λ�̂
with |cλ| = 1. From (
P , V̂λ
P ) = (�̂
P , �̂V̂λ
P ) = cλ(
P , V̂λ
P )we find cλ = 1
for small λ, because (
P , V̂λ
P ) → 1, (λ → 0). The conclusion extends to all λ by
the group property.
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Remark. In order to make contact with the repeatedly cited article [1] we recall that
a self-dual CAR-algebra A(H̃, �) is given in terms of a separable Hilbert space H̃
equipped with a conjugation �. Its generators B(h) are linear in h ∈ H̃ and the relations
are B(h)∗ = B(�h) and {B(h), B(h′)∗} = (h′, h)1. A projection P̃ on H̃ satisfying
P̃ + � P̃� = 1 defines a pure state ω on the algebra through

ω(B(h)∗B(h)) = 0, (P̃h = 0).

The algebra A(H) is connected to the above by picking a conjugation C on H and by
setting

H̃ = H ⊕ H, �( f ⊕ g) = Cg ⊕ C f, B( f ⊕ g) = a∗( f ) + a(Cg).

States defined by P and P̃ then agree if P̃( f ⊕ g) = (1 − P) f ⊕ C PCg.

4.4. Parts (ii-iv). Pure state, N = N 2. Existence: In the case Vλ = exp(iλQ) we have
[N , Vλ] = 0 by Eq. (14), so that existence of a unitary implementer V̂λ = exp(iλQ̂) is
trivial by Prop. 6. Similarly, in the case V = U we have [N ,U ] = (N − NU∗)U ∈ I2
by Eq. (24). Hence it is also implementable by Prop. 5.

Uniqueness: Let V̂ denote either exp(iλQ̂) or Û . Suppose V̂1 and V̂2 both implement
the same transformation. Then V̂1V̂ ∗

2 πN (a(V f )) = πN (a(V f ))V̂1V̂ ∗
2 . Thus V̂1 =

(V̂1V̂ ∗
2 )V̂2 and V̂2 differ by left multiplication with V̂1V̂ ∗

2 ∈ πN (A(H))′. In the pure
case the cyclic representation is irreducible, whence Û is unique up to a phase and Q̂ up
to an additive constant. As mentioned in Remark 3, property (iii) is empty in this case.
Mixed state, 0 < N < 1. Given 0 ≤ N ≤ 1 on H, we consider its purification

PN =
(

N
√

N N ′√
N N ′ N ′

)

= P2
N

on H⊕H, together with the cyclic representation (HPN , πPN ,
PN ) of the state defined
by PN on A(H ⊕ H). We can identify

A(H) ∼= A(H ⊕ 0)

via a( f ) = a( f ⊕ 0), and

HN ≡ πPN (A(H ⊕ 0))′′
PN ⊂ HPN , 
N ≡ 
PN , πN (a) ≡ πPN (a) � HN ,

(34)

since these objects satisfy

(
PN , πPN (a
∗( f ⊕ 0)a(g ⊕ 0))
PN ) = (g ⊕ 0, PN ( f ⊕ 0)) = (g, N f ), (35)

as required by (13). We can not handle the most general mixed case 0 ≤ N ≤ 1. The
reason comes from the following lemma, whose proof is postponed till the end of the
section.

Lemma 8. Assume 0 < N < 1 (strict inequality). Then 
PN is cyclic in HPN for
πPN (A(H ⊕ 0)). In particular, we have equality in (34), HN = HPN .
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A unitary V on H induces two automorphisms on A(H ⊕ H): (a) a( f ⊕ g) �→
a(V f ⊕g), and (b) a( f ⊕g) �→ a(V f ⊕V g), whose implementation may be envisaged:

(a) V̂πPN (a( f ⊕ g))V̂ ∗ = πPN (a(V f ⊕ g)), (36)

(b) V̂πPN (a( f ⊕ g))V̂ ∗ = πPN (a(V f ⊕ V g)).

Both choices for V̂ would provide an implementation for V in the representation πN
on HN . Only in the first case we have V̂ ∈ πN (A(H))′′. Indeed, by (32) applied to
H ⊕ 0 ⊂ H ⊕ H instead of K ⊂ H, we need to check V̂ ∈ Ã(0 ⊕ H)′. This however
follows from [V̂ , πPN (a(0 ⊕ g))] = 0, see (36), and from [V̂ , �̂] = 0, see (33).

In order to determine the existence of these implementations we compute
[

PN ,

(
U1 0
0 U2

)]

=
( [N ,U1]

√
N N ′ U2 − U1

√
N N ′√

N N ′ U1 − U2
√

N N ′ [N ′,U2]
)

,

and see that that of (a) (i.e. U1 = V and U2 = 1) is granted if

[N , V ] ∈ I2, (1 − V )
√

N N ′ ∈ I2; (37)

and that of (b) (U1 = V = U2) if

[N , V ] ∈ I2, [√N N ′, V ] ∈ I2. (38)

We can now complete the proof of parts (ii) and (iii) of the theorem. For V =
exp(iλQ), we use (a). Then Eqs. (37) hold true by Eqs. (14, 19): (1 − eiλQ)

√
N N ′ =

(1 − eiλ)Q
√

N N ′. This also proves (iii). For V = U , we use (b), with conditions (38)
holding by Eqs. (15, 24).

Part (iv) is readily proven as follows. Like in the pure case, the implementers are
unique up to left multiplication by an element of πN (A(H))′ (which is larger than
the multiples of the identity since the representation is reducible). Thus exp (iλQ̂) ∈
πN (A(H))′′ still implies its uniqueness up to a phase because of (21). ��
Remark. If it were for property (ii) only, one could adopt method (b) also for
V = exp(iλQ).

Proof of Lemma 8. The space HPN is spanned by the vectors

n∏

i=1

πPN (a
#( fi ⊕ gi ))
PN . (39)

It suffices to show that they can be approximated arbitrarily well by a sum of such vectors
where, however, gi = 0. To this end, we first note that

πPN (a
∗(PN ( f ⊕ g)))
PN = 0,

πPN (a(P
′
N ( f ⊕ g)))
PN = 0,

where P ′
N = 1 − PN . This follows from (12) for PN instead of N , and implies in turn

‖πPN (a
∗( f ⊕ g))
PN ‖ ≤ ‖P ′

N ( f ⊕ g)‖,
‖πPN (a( f ⊕ g))
PN ‖ ≤ ‖PN ( f ⊕ g)‖.
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Let us first consider the case where the last factor in (39) is an annihilation operator and
set fn ⊕ gn =: f ⊕ g. We have

PN ( f ⊕ g − f̃ ⊕ 0) =
( √

N√
N ′

) (√
N ( f − f̃ ) +

√
N ′g

)
.

A vector f̃ ∈ H is well-defined by
√

N f̃ := √
N f +

√
N ′F(N ≥ ε)g,

where F(N ≥ ε) is the spectral projection for N on [ε,∞) and ε > 0. Thus,

‖PN ( f ⊕ g − f̃ ⊕ 0)‖ ≤ ‖F(N < ε)g‖
can be made arbitrarily small because of Ker N = {0}. If the last factor is a creation
operator, the arguments proceed similarly using Ker N ′ = {0}. Hence the announced
replacement can be performed in the last factor. After anticommuting it to the left, the
claim is reduced to products with fewer factors, for which it holds by induction. ��

4.5. Part (v). The idea of the proof is to approximate the Bogoliubov automorphism
induced by eiλQ by means of inner automorphisms, as introduced in Subsect. 4.3. The
generating function on the l.h.s. of (18) then becomes computable by Lemma 4. We
present separate proofs in the pure and the mixed case. The second proof, while applying
to both cases, is longer than the one we give for pure states. Both depend on Prop. 7.
Pure state. Let F be a finite rank operator on H with [F, N ] = 0. As such, it has an
implementation in the cyclic representation πN ; its non-uniqueness does not affect the
l.h.s. of

(
N , Û
∗eiλF̂ Ûe−iλF̂
N ) = (
N , Û

∗πN (�(e
iλF ))ÛπN (�(e

−iλF ))
N )

= (
N , πN (�(U
∗eiλFUe−iλF ))
N ); (40)

on the r.h.s. we used thatπN (�(eiλF )) is one possible implementation of eiλF by (26) with
eiλF in place of U ; the second line follows by (16), which implies Û∗πN (�(eiλF ))Û =
πN (�(U∗eiλFU )), and by (27). Another choice for F̂ is fixed by

(
N , F̂
N ) = 0, (41)

and we may ask the same normalization for Q̂.

Lemma 9. There is a sequence of finite dimensional orthogonal projections Fn such that

[Fn, N ] = 0, s− lim
n

Fn = Q. (42)

Proof. We note that (N Q)2 = N Q, so that Q = N Q + N ′Q is an orthogonal split-
ting of Q. Let Fn = F (1)n + F (2)n , where F (1)n , resp. F (2)n , is a subprojection of N Q

(i.e. F (1)n N Q = F (1)n ), resp. of N ′Q, with F (1)n
s→ N Q, and F (2)n

s→ N ′Q. Clearly,
Fn

s→ Q and

[F (1)n , N ] = [N ′, F (1)n ] = N ′F (1)n − F (1)n N ′ = N ′N QF (1)n − F (1)n QN N ′ = 0,

since N N ′ = 0. The same holds for F (2)n , and thus for Fn . ��
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By (42, 41) the assumptions of Prop. 7 are satisfied for the sequence (Fn) and its
limit Q. Therefore,

(
N , Û
∗eiλQ̂Ûe−iλQ̂
N ) = lim

n→∞(
N , Û
∗eiλF̂n Ûe−iλF̂n
N ). (43)

By Eqs. (40, 30, 42) the inner product on the r.h.s. equals

det(N ′ + eiλU∗ FnU e−iλFn N ) = det(e−iλNU FnU N ′eiλN Fn + eiλN ′
U FnU Ne−iλN ′ Fn ),

where we multiplied the determinant by

1 = det(e−iλNU FnU ) · det(eiλN Fn ), (44)

like in the heuristic derivation (7); but unlike there, this step is now correct, since Fn is
of finite rank. We also used [Fn, N ] = 0. Finally, we claim that the operator under the
last determinant converges to

e−iλNU QU N ′eiλN Q + eiλN ′
U QU Ne−iλN ′ Q = e−iλNU QU N ′ + eiλN ′

U QU N (45)

in trace class norm, i.e. the same expression with Q in place of Fn . The r.h.s. is obtained
using exp(iλN Q) = 1 + N Q(exp(iλ)− 1) and N N ′ = 0. The convergence implies that
of the determinants: Indeed, for A − 1, B − 1 ∈ I1, we have ([18], Lemma XIII.17.1
(d))

| det A − det B| ≤ ‖A − B‖1e(‖A−1‖1+‖B−1‖1+1).

Upon conjugating with U , it is enough to show

‖(e−iλN Fn − e−iλN Q)N ′
U∗‖1 −→ 0,

and similarly with N and N ′ interchanged. This operator equals e−iλ − 1 times

N (Fn − Q)N ′
U∗ = (Fn − Q)N N ′ + (Fn − Q)N (N ′

U∗ − N ′).

The first term vanishes, and the second tends to 0 in the trace class norm as n → ∞,
because of

Xn
s−→ 0, Y ∈ I1 =⇒ ‖XnY‖1 −→ 0 . (46)

��
Mixed state. Let us start by proving a result analogous to Lemma 9:

Lemma 10. Let P, Q be orthogonal projections in a separable Hilbert space H with

[Q, P] ∈ I1. (47)

Then there are finite dimensional subprojections Fn of Q with

‖[Fn − Q, P]‖1 −→ 0, (n → ∞). (48)
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Proof. We split Q as

Q = Q P Q + Q(1 − P)Q ≡ L1 + L0, (49)

and observe that [Q, L1]=0 and

(P − 1)L1 ∈ I1, (50)

L2
1 − L1 = Q P[Q, P]Q ∈ I1.

By the last property, the only possible accumulation points in the spectrum of L1 are 0
and 1. In particular, there is an x ∈ (0, 1) which is not in the spectrum. Let Q1 be the
spectral projection of L1 associated with (x,∞). It may be represented as

Q1 = 1

2π i

∮

C
(z − L1)

−1dz,

where C ⊂ C is a contour encircling that part of the spectrum only. Using
∮
C z−1dz = 0,

due to x > 0, we have

(P − 1)Q1 = 1

2π i

∮

C
(P − 1)

(
(z − L1)

−1 − z−1
)

dz

= 1

2π i

∮

C
(P − 1)L1(z − L1)

−1z−1dz ∈ I1 (51)

by (50). On the subspace Ran Q, the projection Q1, defined in terms of L1 and x is
complementary to the one, Q0, similarly defined by L0 and 1 − x , see (49). Since
1 − x > 0, we have

P Q0 ∈ I1 (52)

by analogy to (51). Let now F (i)n , (i = 0, 1), be a sequence of finite dimensional
subprojections of Qi with F (i)n

s→ Qi . Then

[F (0)n − Q0, P] = (F (0)n − Q0)P − P(F (0)n − Q0) = (F (0)n − Q0)Q0 P

−P Q0(F
(0)
n − Q0),

[F (1)n − Q1, P] = [F (1)n − Q1, P − 1] = (F (1)n − Q1)Q1(P − 1)

−(P − 1)Q1(F
(1)
n − Q1),

are trace class by (51, 52), and converge to zero in the corresponding norm by (46) and
‖T ∗‖1 = ‖T ‖1. Thus Fn = F (0)n + F (1)n is seen to have the stated properties. ��

We apply the lemma to H ⊕ H, PN and Q̃ = Q ⊕ 0 instead of H, P and Q; in this
case, subprojections of Q̃ are of the form F ⊕ 0, with F a subprojection of Q. Since

[PN , Q̃] =
( [N , Q] −Q

√
N N ′√

N N ′Q 0

)

,

the hypothesis (47) of Lemma 10 is fulfilled. The claim yields

‖[Fn − Q, N ]‖1
n→∞−→ 0, (53)
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as well as ‖√N N ′(Fn − Q)‖1 → 0, which however is already known by (19) and
Fn = Fn Q. We thus have a sequence (Fn) of unitarily implementable transforma-
tions: the conditions (37) are both fulfilled, the first one because [N , exp(−iλFn)] =
[N , Fn](exp(−iλ)−1) and the second because (1−exp(−iλFn))

√
N N ′ =(exp(−iλ)−1)

Fn Q
√

N N ′. Moreover, the assumptions of Prop. 7 are satisfied, so that Eqs. (43,40) are
true again.

To complete the proof, it remains to show that

det(N ′ + eiλFnU e−iλFn N ) −→ det(e−iλNU QU N ′eiλN Q + eiλN ′
U QU Ne−iλN ′ Q). (54)

To this end, we multiply the determinant by

det(1 + FnU (e
−iλNU − 1)), det(1 + (eiλN − 1)Fn), (55)

from the left, resp. from the right. These factors would be identical to those in (44) if Fn
and N commuted, which is however no longer the case. Also, their product is not 1, but
rather equals

det(1 + FnU (e
−iλNU − 1)) · det(1 + (eiλN − 1)Fn)

= det(1 + (eiλN − 1)Fn) · det(1 + Fn(e
−iλN − 1))

= det(1 − Fn + eiλN Fne−iλN ), (56)

where

eiλN Fne−iλN − Fn = i
∫ λ

0
eis N [N , Fn]e−is N ds ∈ I1

and

‖eiλN Fne−iλN − Fn‖1
n→∞−→ 0 (57)

by [N , Q] = 0 and (53). Therefore, (56) converges to 1 and it suffices to prove (54) with
the l.h.s. multiplied by (55). The determinant becomes that of

(1 + FnU (e
−iλNU − 1))(N ′ + eiλFnU e−iλFn N )(1 + (eiλN − 1)Fn). (58)

By means of

‖(1 + FnU (e
−iλNU − 1))N ′ − e−iλNU QU N ′‖1 −→ 0, (59)

‖e−iλFn NeiλFn − N‖1 −→ 0, (60)

which we shall prove momentarily, we may replace (58) by

e−iλNU QU N ′(1 + (eiλN − 1)Fn) + (1 + FnU (e
−iλNU − 1))eiλFnU Ne−iλFn

×(1 + (eiλN − 1)Fn).

The claim then follows from

‖N ′(1 + (eiλN − 1)Fn)− N ′eiλN Q‖1 −→ 0, (61)

‖Ne−iλFn (1 + (eiλN − 1)Fn)− Ne−iλN ′ Q‖1 −→ 0, (62)

‖(1 + FnU (e
−iλNU − 1))eiλFnU N − eiλN ′

U QU N‖1 −→ 0. (63)



Fredholm Determinants and the Statistics of Charge Transport 825

Fig. 2. A simple model with two infinite chiral leads

It remains to prove (59–63). The limit (60) follows like (57). The expression in (61) is
N ′(exp(iλN )−1)(Fn − Q)= f (N ) N N ′Q(Fn−Q), where f (N )= N−1(exp(iλN )−1)
is a bounded operator; its convergence to zero follows from (19). As for (62) we have

e−iλFn (1 + (eiλN − 1)Fn) = (1 + (e−iλ − 1)Fn)(1 + (eiλN − 1)Fn)

= 1 + (e−iλeiλN − 1)Fn + (e−iλ − 1)[Fn, eiλN ]Fn,

so that by using (57) it remains to show

‖N (1 + (e−iλN ′ − 1)Fn)− Ne−iλN ′ Q‖1 −→ 0.

This, however, is just (61) with N and N ′ interchanged. Finally, in (59, 63) we may,
by (15), replace N and N ′ by NU and N ′

U in those places where the subscript is not
already present. By passing to a unitary conjugate and adjoint, they reduce to (61, 62). ��

5. Examples

We illustrate the hypotheses (14, 15) by presenting a model in which they can be verified.
The left and right portions of the single lead mentioned in Sect. 1 are replaced by two
infinite leads, which are however chiral. The interaction between them occurs in a finite
interval and allows particles to scatter between the leads.

Let H = L2(R)⊕ L2(R) be the one-particle space with operators

Q =
(

1 0
0 0

)

, N =
(
�(−p) 0

0 �(p)

)

. (64)

Here, x ∈ R is the position variable, p = −id/dx the conjugate momentum, and � the
Heaviside function. The projection N describes the Fermi sea of the free Hamiltonian

H0 =
(

p 0
0 −p

)

(65)

for vanishing Fermi energy. Clearly, [Q, N ] = 0.

5.1. Example 1. The example is conveniently stated by passing to another pair of con-
jugate variables, E and t : The energy E := ±p yields the spectral representation of H0
in multiplication form,

H0 =
(

E 0
0 E

)

,
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while the operator

T =
(−x 0

0 x

)

=:
(

t 0
0 t

)

,

represents, due to i[H0, T ] = −1, the time t of passage at x = 0 of a freely moving
particle, which is presently elsewhere. In this example only, the meaning of t is therefore
that of a dynamical variable, and not that of the parameter governing evolution.

Rather than specifying an interacting Hamiltonian, we model the scattering process
by directly giving the propagator U for the time interval under consideration. We assume
it to be given by a unitary multiplication operator U (t)with U (t)−1 of compact support,
see Remark 1 in Sect. 3.

Such a simple kind of evolution should be seen as an effective description in the
adiabatic limit and in the interaction picture. The passage across the interaction region
maps the incoming state to the outgoing one by means of a scattering matrix which, in
the limit of low frequencies ω, is that of the static scatterer in effect at time t , S(t). In the
same limit, only electrons within an interval ∼ �ω of the Fermi energy ought to matter
for transport. Thus, U (t) = S(t, 0), where the 2 × 2-matrix S(t, E) is the fiber of S(t)
at energy E . For a more thorough justification, see [6,3].

Proposition 11. Suppose U − 1 ∈ M2(C∞
0 (Rt )). Then [N ,U ] ∈ I1.

Here M2(X) are the 2 × 2 matrices with entries in X .

Proof. We may rename U (t)−1 by U (t)without loss. By the assumption we may write
U = f U , where f = f (t) satisfies f ∈ C∞

0 (Rt ), too. Then [N ,U ] = f [N ,U ] +
[N , f ]U , with

f [N ,U ] = f (E + i)−1 · (E + i)[N ,U ],
and similarly for the second term. We claim that both factors are Hilbert-Schmidt and
hence their product trace class. The first one is, because the functions f and g(E) ≡ (E +
i)−1 are in L2(Rt ), resp. L2(RE ). As for the second one, we note that N = �(−E)⊗12,
whence [N ,U ] has matrix entries [�(−E),Ui j ]. That leads to integral operators K
acting merely on L2(RE ) with kernels

K (E, E ′) = (E + i)Ûi j (E
′ − E)

(
�(−E)−�(−E ′)

)
.

They are supported where sgn E = −sgn E ′ and satisfy
∫∫

|K (E, E ′)|2d E d E ′ =
∫ ∞

0

∫ ∞

0
|E ′′ + i|2

(
|Ûi j (E

′ + E ′′)|2 + |Ûi j (−E ′ − E ′′)|2
)

×d E d E ′′,

which is finite. Thus, the corresponding operator is in I2. ��
By contrast, but under the same assumption as in the proposition, the operator (QU −

Q)N may fail to be trace class. By (4), this shows the need for regularizing (3). Indeed,
we may arrange for a ψ ∈ H and U such that (QU − Q)ψ �= 0. The sequence ψn =
exp(inT )ψ tends to zero weakly. Using �(−E) exp(int) = exp(int)�(n − E) and
�(n − E)

s→ 1, we have ‖Nψn − ψn‖ → 0 and, since Q, U are multiplication
operators in t , ‖(QU − Q)Nψn‖ → ‖(QU − Q)ψ‖ �= 0. As a result, (QU − Q)N
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is not even compact. The argument just given may be summarized in physical terms as
follows: Whatever contribution to transport, as signified by (QU − Q)N , comes from
one energy in the Fermi sea, it is repeated at all such energies, because the evolution U
proceeds with the same velocity ±1 at all energies.

It should be remarked that [N ,U ] may fail to be in I2 if, unlike in Prop. 11,
U (t) attains different limits at t → ±∞. This fact has been pointed out in [12] in
slightly different terms as a manifestation of the orthogonality catastrophe. Consider for
instance a potential drop V (t) of finite duration being applied between the leads, with∫ ∞
−∞ V (t)dt /∈ 2πZ. That situation can be modeled in the context of the present example

by means of a vector potential, where it gives rise to the catastrophe. The same physical
situation is however tame in the context of the next example.

5.2. Example 2. Here we specify a time-dependent perturbation of (65), H(t) = H0 +
V (t), where V (t) is multiplication by a 2 × 2 matrix V (t, x). Let U = U (t2, t1) be the
propagator for H(t) between times t1 and t2.

Proposition 12. Suppose V (t, ·), ∂t V (t, ·) ∈ M2(C∞
0 (Rx )). Then [N ,U ] ∈ I2.

Note that the commutator is claimed to be Hilbert-Schmidt only, which covers only
the statements (ii-iv) of Theorem 1.

Proof. By [23], Lemma 4 or [20], Thm. 2.8 it suffices to show that the statement holds
true for the first term in the Dyson expansion of U , i.e. for

Ũ (s2, s1) = −i
∫ s2

s1

eiH0t V (t)e−iH0t dt, (66)

with estimates uniform in the sub-interval [s1, s2] ⊂ [t1, t2]. By writing

V (t) =
(

V++(t) V+−(t)
V−+(t) V−−(t)

)

,

the kernel of [N , V (t)] in momentum space becomes

[N , V (t)](p, p′)

=
(

V̂++(t, p − p′)(�(−p)−�(−p′)) V̂+−(t, p − p′)(�(−p)−�(p′))
V̂−+(t, p − p′)(�(p)−�(−p′)) V̂−−(t, p − p′)(�(p)−�(p′))

)

.

The diagonal contributions are inI2 without recourse to the integration (66). For instance,
∫∫

dpdp′ |V̂−−(t, p − p′)|2|�(p)−�(p′)| =
∫ ∞

−∞
du |u||V̂−−(t, u)|2 < ∞.

The off-diagonal contributions improve once the time integral is performed. We compute
it by parts and obtain, for instance, the kernel

−i
∫ s2

s1

V̂+−(t, p − p′)ei(p+p′)t dt

= − ei(p+p′)t − 1

p + p′ V̂+−(t, p − p′)
∣
∣
∣
∣
∣

s2

s1

+
∫ s2

s1

ei(p+p′)t − 1

p + p′ ∂t V̂+−(t, p − p′)dt, (67)
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times�(−p)−�(p′). The boundary terms are separately inI2, since their corresponding
square norm is

4
∫∫

dpdp′ sin2((p + p′)si/2)

(p + p′)2
|V̂+−(si , p − p′)|2|�(−p)−�(p′)|

= 4
∫ ∞

−∞
du

sin2(usi/2)

u2

∫ |u|/2

−|u|/2
dv |V̂+−(si , v)|2 ≤ π |si |‖V+−(si )‖2

2.

By the same estimate, but with ∂t V+−(t) in place of V+−(si ), also the integrand in (67)
is in I2. ��

We recall that in [23,20] the implementation of the propagator of a time-dependent
Dirac Hamiltonian was studied, of which the above H(t) is the 1-dimensional version.
In larger dimensions, as considered there, the implementability is ensured only in some
cases.

We remark that by the method used in Example 1 one can show that diagonal pertur-
bations lead to [N ,U ] ∈ I1, but not for off-diagonal ones.
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